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Abstract. The aim of this article is to study the existence of coincidences and fixed points of generalized
hybrid contractions involving single-valued mappings and left total relations in the context of complete
metric spaces. Some special cases are also discussed to derive some well known results of the literature.
Finally, some examples and applications are also presented to verify the effectiveness and applicability of
our main results.

1. Introduction and Preliminaries

One of the simplest and most useful results in fixed point theory is the Banach contraction principle [9],
a powerful tool in analysis for establishing existence and uniqueness of solution of problems in different
fields. Over the years, this principle has been generalized in numerous directions in different spaces. These
generalizations have been obtained either by extending the domain of the mapping or by considering a
more general contractive condition on the mappings.

Very recently, Jleli and Samet [24] introduced a new type of contraction and established some new fixed
point theorems for such contraction in the context of generalized metric spaces.

Definition 1.1. Let ψ : (0,∞)→ (1,∞) be a function satisfying:

(ψ1) ψ is nondecreasing;

(ψ2) for each sequence {αn} ⊆ R+, limn→∞ ψ(αn) = 1 if and only if limn→∞(αn) = 0;

(ψ3) there exists 0 < k < 1 and l ∈ (0,∞] such that lima→0+
ψ(α)−1
αk = l.

A mapping F : X→ X is said to be JS-contraction if there exist the function ψ satisfying (ψ1)-(ψ3) and a
constant α ∈ (0, 1) such that for all x, y ∈ X,

d(Fx,Fy) , 0 =⇒ ψ(d(Fx,Fy)) ≤ [ψ(d(x, y))]α. (1.1)
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Theorem 1.2. [24] Let (X, d) be a complete metric space and F : X → X be a JS-contraction, then F has a unique
fixed point.

To be consistent with Samet et al. [24], we denote by Ψ the set of all functions ψ : (0,∞) → (1,∞)
satisfying the above conditions.

Hussain et al. [18] modified and extended the above result and proved the following fixed point theorem
for ψ-contractive condition in the setting of complete metric spaces.

Theorem 1.3. [18] Let (X, d) be a complete metric space and F : X → X be a self-mapping. If there exist a function
ψ ∈ Ψ and positive real numbers α, β, γ, δ with 0 ≤ α + β + γ + 2δ < 1 such that

ψ(d(Fx,Fy)) ≤ [ψ(d(x, y))]α · [ψ(d(x,Fx))]β · [ψ(d(y,Fy))]γ · [ψ((d(x,Fy) + d(y,Fx))]δ (1.2)

for all x, y ∈ X, then F has a unique fixed point.

Hybrid fixed point theory is a recent growth in the scope of fixed point theorems for contracting single-
valued and multivalued mappings in metric spaces. Indeed, the study of such mappings was initiated
during 1980-90 by Beg et al. [10], Hadzic [15], Kaneko [25], Kubiak [26], Azam [8] and Hussain et al.[16].
Functional inclusions, optimization theory, fractal graphics and discrete dynamics for set-valued operators
are the fields in which hybrid fixed point theory has potential applications. For more details in this direction,
we refer the reader to (see [3, 4, 6, 11–14, 17, 20–23, 27]).

Let A and B be arbitrary nonempty sets. A relation R from A to B is a subset of A × B and is denoted
by R : A  B. The statement

(
x, y

)
∈ R is read ”x is R-related to y”, and is denoted by xRy. A relation

R : A  B is called left-total if for all x ∈ A there exists a y ∈ B such that xRy that is R is a multivalued
function. A relation R : A  B is called right-total if for all y ∈ B there exists an x ∈ A such that xRy. A
relation R : A B is known as functional, if xRy, xRz implies that y = z, for x ∈ A and y, z ∈ B. A mapping
F : A→ B is a relation from A to B which is both functional and left-total.

For R : A B, E ⊂ A we define

R (E) =
{
y ∈ B : xRy for some x ∈ E

}
.

dom (R) =
{
x ∈ A : R ({x}) , φ

}
,

Range (R) =
{
y ∈ B : y ∈ R ({x}) for some x ∈ dom (R)

}
.

For convenience, we denote R ({x}) by R {x} . The class of relations from A to B is denoted by R (A,B). Thus
the collectionM (A,B)of all mappings from A to B is a proper sub collection of R (A,B). An element w ∈ A
is called coincidence point of F : A→ B and R : A B if Fw ∈ R {w} . In the following we always suppose
that X is nonempty set and (Y, d) is a metric space. For R : X Y and u, v ∈ dom (R) , we define

D (R {u} ,R {v}) = inf
uRx,vRy

d(x, y).

The aim of this paper is to prove coincidence fixed point results of a pair of self mappings and left total
relation satisfying a generalized ψ-contractive condition in the framework of complete metric spaces.

2. Main Results

Now we state and prove our main results of this section.

Theorem 2.1. Let X be a nonempty set and (Y, d) be a metric space. Let F : X → Y be single-valued mapping,
R : X Y be such that R is left-total, Ran1e(F) ⊆ Ran1e(R) and Ran1e(F) or Ran1e(R) is complete. If there exist a
mapping ψ ∈ Ψ and a constant k ∈ (0, 1) such that

ψ(d(Fx,Fy)) ≤ [ψ(D(R{x},R{y}))]k (2.1)
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for all x, y ∈ X. Then there exists w ∈ X such that Fw ∈ R{w}.

Proof. Let x0 ∈ X be an arbitrary, but fixed element. We define the sequences {xn} ⊂ X and {yn} ⊂ Ran1e(R).
Let y1 = Fx0, since Ran1e(F) ⊆ Ran1e(R). We may choose x1 ∈ X such that x1Ry1, since R is left-total. Let
y2 = Fx1, since Ran1e(F) ⊆ Ran1e(R). If Fx0 = Fx1, then we have x1Ry2. This implies that x1 is the required
point that is Fx1 ∈ R{x1}. So we assume that Fx0 , Fx1, then from (2.1) we get

1 < ψ(d(y1, y2)) = ψ(d(Fx0,Fx1)) ≤ [ψ(D(R{x0},R{x1}))]k. (2.2)

We may choose x2 ∈ X such that x2Ry2, since R is left-total. Let y3 = Fx2, since Ran1e(F) ⊆ Ran1e(R). If
Fx1 = Fx2, then we have x2Ry3. This implies that Fx2 ∈ R{x2} and x2 is the coincidence point. So Fx1 , Fx2,
then from (2.1), we get

1 < ψ(d(y2, y3)) = ψ(d(Fx1,Fx2)) ≤ [ψ(D(R{x1},R{x2}))]k. (2.3)

By induction, we can construct sequences {xn} ⊂ X and {yn} ⊂ Ran1e(R) such that

yn = Fxn−1 and xnRyn (2.4)

for all n ∈N. If there exists n0 ∈N for which Fxn0−1 = Fxn0 . Then xn0 Ryn0+1. Thus Fxn0 ∈ R{xn0 } and the proof
is finished. So we suppose now that Fxn−1 , Fxn for every n ∈N. Then from (2.2),(2.3) and (2.4), we deduce
that

1 < ψ(d(yn, yn+1)) = ψ(d(Fxn−1,Fxn)) ≤ [ψ(D(R{xn−1},R{xn}))]k (2.5)

for all n ∈ N. Since xnRyn and xn+1Ryn+1, therefore by the definition of D, we get D(R{xn−1},R{xn}) ≤
d(yn−1, yn).Thus from (2.5), we have

1 < ψ(d(yn, yn+1)) ≤ [ψ(d(yn−1, yn))]k (2.6)

which further implies that

1 < ψ(d(yn, yn+1)) ≤ [ψ(d(yn−1, yn))]k
≤ [ψ(d(yn−2, yn−1))]k2

≤ ... ≤ [ψ(d(y0, y1))]kn
. (2.7)

From (2.7), we obtain

lim
n→∞

ψ(d(yn, yn+1)) = 1. (2.8)

Then from (ψ2), we get

lim
n→∞

d(yn, yn+1) = 0. (2.9)

From the condition (ψ3), there exist 0 < k < 1 and l ∈ (0,∞] such that

lim
n→∞

ψ(d(yn, yn+1)) − 1
d(yn, yn+1)k

= l.

Suppose that l < ∞. In this case, let B = l
2 > 0. From the definition of the limit, there exists n1 ∈N such that

|
ψ(d(yn, yn+1)) − 1

d(yn, yn+1)k
− l| ≤ B

for all n > n1. This implies that

ψ(d(yn, yn+1)) − 1
d(yn, yn+1)k

≥ l − B =
l
2

= B
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for all n > n1. Then

n(d(yn, yn+1))k
≤ An[ψ(d(yn, yn+1)) − 1]

for all n > n1, where A = 1
B . Now we suppose that l = ∞. Let B > 0 be an arbitrary positive number. From

the definition of the limit, there exists n1 ∈N such that

B ≤
ψ(d(yn, yn+1)) − 1

(d(yn, yn+1))k
]

for all n > n1. This implies that

n(d(yn, yn+1))k
≤ An[ψ(d(yn, yn+1)) − 1]

for all n > n1, where A = 1
B . Thus, in all cases, there exist A > 0 and n1 ∈N such that

n(d(yn, yn+1))k
≤ An[ψ(d(yn, yn+1)) − 1]

for all n > n1. Thus by (2.7), we get

n(d(yn, yn+1))k
≤ An([ψ(d(y0, y1))]kn

− 1).

Letting n→∞ in the above inequality, we obtain

lim
n→∞

n(d(yn, yn+1))k = 0.

Thus, there exists n2 ∈N such that

d(yn, yn+1) ≤
1

n1/k
(2.10)

for all n > n2. Now we prove that {yn} is a Cauchy sequence. For m > n > n2 we have,

d(yn, ym) ≤
m−1∑
i=n

d(yi, yi+1) ≤
m−1∑
i=n

1
i1/k

. (2.11)

Since, 0 < k < 1, then
∑
∞

i=1
1

i1/k converges. Therefore, d(yn, ym)→ 0 as m,n→∞. Thus we proved that {yn} is
a Cauchy sequence in Ran1e(R). Completeness of Ran1e(R) ensures that there exist z ∈ Ran1e(R) such that,
yn → z as n→∞. Now since R is left-total, so wRz for some w ∈ X. Now

1 < ψ(d(yn,Fw)) = ψ(d(Fxn−1,Fw)) ≤ [ψ(D(R{xn−1},R{w}))]k

≤ [ψ(d(yn−1, z))]k.

Since limn→∞ d(yn−1, z) = 0, so by (ψ2), we have limn→∞ ψ(d(yn−1, z)) = 1.This implies that limn→∞ ψ(d(yn,Fw)) =
1, which further implies that limn→∞ d(yn,Fw) = 0. Hence d(z,Fw) = 0. It follows that z = Fw. Hence
Fw ∈ R{w}. In the case when Ran1e(F) is complete. Since Ran1e(F) ⊆ Ran1e(R), so there exists an element
z∗ ∈ Ran1e(R) such that yn → z∗. The remaining part of the proof is same as in previous case.

Example 2.2. Let X = Y = R, d
(
x, y

)
=

∣∣∣x − y
∣∣∣ . Define F : R→ R, R : R R as follows:

Fx =

{
0 if x ∈ Q′

1 if x ∈ Q,

R = (Q× [0, 3]) ∪ (Q′× [7, 9])

Then Range (F) = {0, 1} ⊂ Range (R) = [0, 3] ∪ [7, 9]. Let ψ(t) = e
√

t.
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For x ∈ Q, y ∈ Q′ or either y ∈ Q, x ∈ Q′, we have d(Fx,Fy) , 0 implies

ψ(d(Fx,Fy)) ≤ [ψ(D(R{x},R{y}))]k

with k = 1
2 . Thus all conditions of the above theorem are satisfied and 1 is the coincidence point of F and R.

From Theorem 2.1, we deduce the following result immediately.

Theorem 2.3. Let X be a nonempty set and (Y, d) be a metric space. Let F,R : X → Y be two mappings such that
Ran1e(F) ⊆ Ran1e(R) and Ran1e(F) or Ran1e(R) is complete. If there exist a mappingψ ∈ Ψ and a constant k ∈ (0, 1)
such that

ψ(d(Fx,Fy)) ≤ [ψ(d(Rx,Ry))]k

for all x, y ∈ X. Then F and R have a coincidence point in X. Moreover, if either F or R is injective, then R and F have
a unique coincidence point in X.

Proof. By Theorem 2.1, we obtain that there exists w ∈ X such that Fw = Rw, where,

Rw = lim
n→∞

Rxn = lim
n→∞

Fxn−1, x0 ∈ X.

For uniqueness, assume that w1,w2 ∈ X, w1 , w2, Fw1 = Rw1 and Fw2 = Rw2. Then

1 < ψ(d(Fw1,Fw2)) ≤ [ψ(d(Rw1,Rw2))]k

for any k ∈ (0, 1). If R or F is injective, then

d (Rw1,Rw2) > 0

and

1 < ψ(d (Rw1,Rw2)) = ψ(d(Fw1,Fw2)) ≤ [ψ(d(Rw1,Rw2))]k < ψ(d(Rw1,Rw2)),

a contradiction. Thus proved.

Corollary 2.4. [24] Let (X, d) be a complete metric space and F : X→ X be a self mapping. If there exist a function
ψ and a constant k ∈ (0, 1) such that for all x, y ∈ X, ,

d(Fx,Fy) , 0 =⇒ ψ(d(Fx,Fy)) ≤ [ψ(d(x, y))]k.

then F has a unique fixed point.

Proof. Choosing X = Y and R = I (the identity mapping on X).

Corollary 2.5. Let F : X → Y, R : X  Y be such that R is left-total, Range (F) ⊆ Range (R) and Range (F) or
Range (R) is complete. If there exists some k ∈ [0, 1) such that for all x, y ∈ X

d(Fx,Fy) ≤ kD(R {x} ,R
{
y
}
).

Then there exists w ∈ X such that Fw ∈ R {w} .

Proof. Consider the mapping ψ(t) = e
√

t, for t > 0. Then obviously ψ satisfies (ψ1)-(ψ3). From Theorem 2.1,
we obtain the desired conclusion.

Corollary 2.6. Let X be nonempty set and (Y, d) be a metric space. F,R : X → Y be two mappings such that
Range (F) ⊆ Range (R) and Range (F) or Range (R) is complete. If there exists some k ∈ [0, 1) such that for all
x, y ∈ X

d(Fx,Fy) ≤ kd(Rx,Ry).

Then R and F have a coincidence point in X. Moreover, if either F or R is injective, then R and F have a unique
coincidence point in X .
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Proof. Consider the mapping ψ(t) = e
√

t, for t > 0 . Then obviously F satisfies (ψ1)-(ψ3). From Theorem 2.3,
we obtain the desired conclusion.

Remark 2.7. If in the above Corollary we choose X = Y, and R = I (the identity mapping on X), we obtain the
Banach contraction theorem.

Note that the family Ψ consists of a large class of functions. For example, if we take

ψ(t) = 2 −
2
π

arctan(
1
tβ

)

where 0 < β < 1 and t > 0, we can obtain the following result from our main Theorem.

Theorem 2.8. Let X be a nonempty set and (Y, d) be a metric space. Let F : X → Y be single-valued mapping,
R : X Y be such that R is left-total, Ran1e(F) ⊆ Ran1e(R) and Ran1e(F) or Ran1e(R) is complete. If there exist a
mapping ψ ∈ Ψ and a constant β, k ∈ (0, 1) such that

2 −
2
π

arctan(
1

d(Fx,Fy)β
) ≤ [2 −

2
π

arctan(
1

D(R{x},R{y})β
)]k

for all x, y ∈ X. Then there exists w ∈ X such that Fw ∈ R{w}.

Theorem 2.9. Let X be a nonempty set and (Y, d) be a metric space. Let F,R : X → Y be two mappings such
that Ran1e(F) ⊆ Ran1e(R) and Ran1e(F) or Ran1e(R) is complete. If there exist a mapping ψ ∈ Ψ and a constant
β, k ∈ (0, 1) such that

2 −
2
π

arctan(
1

d(Fx,Fy)β
) ≤ [2 −

2
π

arctan(
1

d(Rx,Ry)β
)]k

for all x, y ∈ X. Then F and R have a coincidence point in X. Moreover, if either F or R is injective, then R and F have
a unique coincidence point in X.

Corollary 2.10. Let (X, d) be a complete metric space. Let F : X → X be a self mapping. If there exist a mapping
ψ ∈ Ψ and a constant β, k ∈ (0, 1) such that

2 −
2
π

arctan(
1

d(Fx,Fy)β
) ≤ [2 −

2
π

arctan(
1

d(x, y)β
)]k

for all x, y ∈ X. Then F has a unique fixed point in X.

Example 2.11. Consider the sequence

S1 = 1 × 2
S2 = 1 × 2 + 3 × 4
S3 = 1 × 2 + 3 × 4 + 5 × 6
Sn = 1 × 2 + 3 × 4 + . . . + (2n − 1)(2n) =

n(n+1)(4n−1)
3 .

Let X = {Sn : n ∈N} and d
(
x, y

)
=

∣∣∣x − y
∣∣∣ . Then (X, d) is a complete metric space. Define the mapping

F : X→ X by,

F (S1) = S1, F (Sn) = Sn−1, for all n ≥ 2.

Clearly, the Banach contraction is not satisfied. In fact, we can check easily that

lim
n→∞

d(F(Sn),F (S1))
d(Sn,S1)

= 1
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Let us consider the mapping ψ : (0,∞)→ (1,∞) defined by

ψ(t) = e
√

tet
.

We can easily show that ψ ∈ Ψ. Now we shall prove that F satisfies the conditions of Corollary 2.4, that is
d(F(Sn),F (Sm)) , 0 implies that

d(F(Sn),F (Sm)) , 0 =⇒ e
√

d(F(Sn),F(Sm))ed(F(Sn ),F(Sm ))
≤ ek
√

d(Sn,Sm)ed(Sn ,Sm )

for some k ∈ (0, 1). The above condition is equivalent to

d(F(Sn),F (Sm))ed(F(Sn),F(Sm))
≤ k2d(Sn,Sm)ed(Sn,Sm).

So, we have to check that

d(F(Sn),F (Sm))ed(F(Sn),F(Sm))

d(Sn,Sm)ed(Sn,Sm)
≤ k2

for some k ∈ (0, 1). We consider two cases,

Case 01. For 1 = n and m > 2, we have

d(F(S1),F (Sm))ed(F(S1),F(Sm))−d(S1,Sm)

d(S1,Sm)

=
4m3
− 9m2 + 5m − 6

4m3 + 3m2 −m − 6
e−2(2m−1)m

≤ e−1

Case 02. For m > n > 1, we have

d(F(Sm),F (Sn))ed(F(Sm),F(Sn))−d(Sm,Sn)

d(Sm,Sn)

=
(2m − 3)(2m − 2) + (2n − 1)(2n)
(2m − 1)(2m) + (2n + 1)(2n + 2)

e2(2n−1)n−2(2m−1)m

≤ e−1

with k = e−
1
2 . Thus all the conditions of Corollary 2.4 are satisfied and F has a unique fixed point. In this

example S1 is a unique fixed point of F.

Now we discuss the existence and uniqueness of solution of a general class of the following Volterra
type integral equation under various assumptions on the functions involved. Let C[0,Θ] denote the space
of all continuous functions on [0,Θ], where Θ > 0 and for an arbitrary ||x||λ = supt∈[0,Θ]{|x(t)| e−λt

}, where
λ > 0 is taken arbitrary . Note that || · ||λ is a norm equivalent to supremum norm and (C([0,Θ],R), || · ||λ)
endowed with the metric dλ defined by

dλ(x, y) = sup
t∈[0,Θ]

{

∣∣∣x(t) − y(t)
∣∣∣ e−λt
}

for all x, y ∈ C([0,Θ],R) is a Banach space.
Consider the integral equation:

( f y)(t) =

∫ t

0
K(t, s, hx(s))ds + 1(t) (2.12)

where x : [0,Θ]→ R is unknown, 1 : [0,Θ]→ R and h, f : R→ R are given functions. The kernel K of the
integral equation is defined on [0,Θ] × [0,Θ] ×R.
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Theorem 2.12. Assume that the following conditions are satisfied:

(i) K : [0,Θ] × [0,Θ] ×R→ R, 1 : [0,Θ]→ R and f : R→ R are continuous
(ii)

∫ t

0 K(t, s, .) : R→ R is increasing, for all t, s ∈ [0,Θ],
(iii) there exists λ ∈ (0,+∞) such that

|K(t, s, hx(s)) − K(t, s, hy(s)))| ≤ λ|hx(s) − hy(s)|

for all t, s ∈ [0,Θ] and hx, hy ∈ R.
(iv) If f is injective, there exists k ∈ (0, 1) such that for all x, y ∈ R;∣∣∣hx − hy

∣∣∣ ≤ k2
∣∣∣ f x − f y

∣∣∣
and { f x : x ∈ R} is complete. Then there exist w ∈ C([0,Θ],R) such that for x0 ∈ R,

f w(t) = lim
n→∞

f xn(t) = lim
n→∞

[
1(t) +

∫ t

0
K(t, s, hxn−1(s))ds]

]
and w is the unique solution of (2.12).

Proof. Let X = Y = C([0,Θ],R) and

dλ(x, y) = sup
t∈[0,Θ]

{

∣∣∣x(t) − y(t)
∣∣∣ e−λt
}

for all x, y ∈ X. Let F,R : X→ X be defined as follows:

(Fx)(t) = 1(t) +

∫ t

0
K(t, s, hx(s))ds and Rx = f x.

Then by assumptions RX = {Rx : x ∈ X} is complete. Let x∗ ∈ FX, then x∗ = Fx for x ∈ X and x∗(t) = Fx(t). By
assumptions there exists y ∈ X such that Fx(t) = f y(t), hence RX ⊆ FX. Since

|(Fx)(t) − (Fy)(t)| =

∣∣∣∣∣∣
∫ t

0
[K(t, s, hx(s))]ds −

∫ t

0
[K(t, s, hy(s))]ds

∣∣∣∣∣∣
≤

∫ t

0

∣∣∣K(t, s, hx(s)) − K(t, s, hy(s))
∣∣∣ ds

≤

∫ t

0
λ
∣∣∣hx(s) − hy(s)

∣∣∣ ds

≤

∫ t

0
λk2

∣∣∣ f x(s) − f y(s)
∣∣∣ ds

=

∫ t

0
λk2

∣∣∣(Rx)(s) − (Ry)(s)
∣∣∣ e−λseλsds

≤ λk2
|

∣∣∣Rx − Ry
∣∣∣ |λ ∫ t

0
eλsds

≤ λk2
|

∣∣∣Rx − Ry
∣∣∣ |λ eλt

λ
= k2

|

∣∣∣Rx − Ry
∣∣∣ |λeλt.
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This implies that

|(Fx)(t) − (Fy)(t)|eλt
≤ k2
|

∣∣∣(Rx − Ry
∣∣∣ |λ

or equivalently,

dλ(Fx,Fy) ≤ k2dλ(Rx,Ry).

Taking exponential, we have

edλ(Fx,Fy)
≤ ek2dλ(Rx,Ry)

Now, we observe that mapping ψ : (0,∞)→ (1,∞) defined by

ψ(t) = e
k√t.

for each t ∈ [0,Θ] and k ∈ (0, 1). Thus all conditions of Theorem 2.1 are satisfied. Hence, there exists a
unique w ∈ X such that

f w(t) = lim
n→∞

Rxn(t) = lim
n→∞

Fxn−1(t) = F(w)(t), x0 ∈ X

for all t, which is the unique solution of (2.12).
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