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Abstract. Recently, Radu [Note on the iterates of g and (p, g)-Bernstein operators, Scientific Studies and
Research, Series Mathematics and Informatics, 26(2) (2016) 83-94] has investigated the convergence of
iterates of g-Bernstein polynomial and (p, g)-Bernstein polynomial with the aids of weakly Picard operators
theory. In this article, we establish Kelisky-Rivlin type theorem on the power of the g-Bernstein operators for
two dimensional case, (p, 7)-Bernstein operators and bivariate (p, 7)-Bernstein operators by using contraction
principle.

1. Introduction and Preliminaries

In 1912, Bernstein [11] introduced a sequence of operators B, : C[0, 1] — C[0, 1] defined by

n

B0 = Y ([ -0(E) reron, W

k=0

for n € N and f € C[0,1]. These sequence of polynomials possess remarkable properties i.e., positivity,
linearity, end point interpolation property and many more, due to this fact these polynomial and their
generalization have been intensively studied.

In 1967, Kelisky and Rivlin [18] were the first to investigate the power of the well known Bernstein
polynomials, which are defined recursively as B5(f;x) = B,(B5!(f;x);x) for k > 1. They studied the
convergence of BE( f;x) as k = oo, both in the case that k is independent of n and when k is a function of .

Theorem 1.1. ( Kelisky and Rivlin [18]) If n € IN* is fixed, then for all f € C[0,1],

lim B(f;%) = f(0) + [f(1) = fO)x, x€[0,1]
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Later on several researcher have been investigated iterates properties of Bernstein operator from differ-
ent point of view [13, 15, 34].
In 1987, Lupas [21] introduced a g-analogue of the Bernstein operator and in 1997 another generalization
of these operators based on g-integer was introduced by Phillips [32]. For g = 1 these polynomials are
the classical ones. In 2002, Oruc and Tuncer [30] and in 2007, Xiang et al. [36] studied the convergence
properties for iterates of g-Bernstein polynomial. The convergence of B,(f,q;x) as § — oo and the con-
vergence of the iterates B} (f,q;x) as both n — oo and j, — oo have been investigated by S. Ostrovska in
2003 (see [31]). In 2013, Wang and Zhou [35] studied the iterates properties for g-Bernstein Stancu operators.

Fixed point theory is a very wide topic of mathematical research and it has extensive applications in
various fields within mathematics as well as outside it. In 1922, the Polish mathematician Stefan Banach
established a remarkable fixed point theorem known as the Banach Contraction Principle (BCP) which is
one of the most important results of analysis and considered as the main source of metric fixed point theory.
Today we have many generalization of this result.

In 2014, Jleli and Samet [16] introduced the class of JS-contraction mapping and generalized the Banach
Contraction Principle.

Recently, Altun, Arifi, Jleli, Lashin and Samet generalized the work of Jleli and Samet and gave a fixed point
theorem for a new class of ]JS- contraction mapping (see [9]). They also investigated the iterates property
of g-Bernstein-Stancu operators and g-Bernstein-Stancu operators of nonlinear type as an application of
Theorem 1.2.

Theorem 1.2. ([9]) Let E be a group with respect to a certain operation +. Let X be a subset of E endowed with a
certain metric d such that (X, d) is complete. Let Xo C X be a closed subset of X such that X is a subgroup of E. Let
T : X — X be a given mapping satisfying

vy eXxXx-—yeXy=dTx, Ty) <kd(x,y),

where k € (0,1) is a constant. Suppose that the operation mapping + : X — X defined by
+x,y)=xxy, (xry)eXxX

is continuous with respect to the metric d. Moreover, suppose that
x—Txe Xy, xeX

Then we have

1. For every x € X, the picard sequence {T"x} converges to a fixed point of T.
2. Forevery x € X,

(x + Xg) N Fix(T) = {lim T"x},
n—o0
where Fix(T) is the set of all fixed point of T, that is,
Fix(T) = {x € X : Tx = x}.

Now, in this paper as an application of Theorem 1.2, we want to extend the study of the iterates of
g-Bernstein operators in two dimensional case. Also, our aim is to study the convergence for iterates of
(p, 9)-Bernstein operators and bivariate (p, g)-Bernstein operators.

2. Iterates of g-Bernstein Operators in Two Dimension

In this section we generalize the work of Kelisky and Rivlin on the power of the g-Bernstein operator to the
two dimensional case as an application of Theorem 1.2.
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g-calculus plays an important role in approximation theory. We recall some definitions of g-calculus (see

[35]).
Let k € N and g € (0, 1) then g-integer [k], is defined as

1-¢* .
E if q * 1,
[k]q =
k if g=1.
Set [0]; = 0. The g-factorial [k],! is defined as
[klglk = 1],---[1]4 if k€N,
[k];! =

1 if k=0.

and for k € N, g-binomial coefficient [ I; ] is defined by

q
[k],! .
[r]qTq—r]qI 1f1§r§k,
k —
[rL 1 if r=0,
0 if r>k.

The g-analogue of (1 + x)j is the polynomial

L A+ +g0)...1+9" %) ifn=12,..,
(1”)‘7:{1 if n = 0.

Iterates of g-Bernstein polynomials are defined as
By (f3x) = Bug(Br(f5%); %) for M =1,2,3...
and
B}l,q(f; x) = Bn,q(f} x).

It is obvious that g-calculus reduce to ordinary when g = 1.
Bivariate Bernstein polynomial over a triangle was introduced by Lorentz [20]. Let A be the standard
triangle in R? i.e.,

A={xy):x,y>0andx +y < 1}.

ForneN,0<q <1, feC(a)and (x,y) € A, define the bivariate g-Bernstein polynomial as

[il; [
Busfion =), YU es(pr [jl—]‘;) @
iitj<n J
where
b [y! inj n—i-j
,']'(x/ y) = Xy (1 - X y)q . (3)

(114710 = i = flg!

Lemma 2.1. Let e;(x,y) = x'y/, where i, j € {0,1} and i + j < 2 then for 0 < q <1, (x, y) € A, we have
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1. Bn,q,A(eo,O; X, y) =1,
2. Bn,q,A(el,O; X, }/) =X,
3. Bn,q,A(eO,l; X, }/) = y

Lemma 2.2. The bivariate q-Bernstein operator over a triangle defined by (2) interpolates the function f at each
vertex of the triangle, i.e.,

Bn,q,A(f; 0,0) = f(O/ 0), Bn,q,A(f; 1,0) = f(ll 0), Bn,q,A(f; 0,1)= f(O/ 1).
Theorem 2.3. Let B, 5, 4(f; X, y) be the q-Bernstein operator defined in (2). Then forall f € C(A;R)and all (x,y) € A

Lim By (i) = £(0,0) + [£(1,0) = f(0,0)]x + [£(0,1) = £(0,0)]y.
Proof. Let X = E = C(4; R). We endow X with the metric d defined by

d(f,g) = max{|f(x,y) — g(x, y)l : (x,y) € &}, (f, 9) € XXX

Then (X, d) is a complete metric space.
Let Xo ={f € X : f(0,0) = f(0,1) = f(1,0) = 0}, then X is a closed linear subspace of X. Let (f,g) € XX X
such that f — g € X, that s,

(f,9) € Xx X and £(0,0) = 9(0,0), f(1,0)=g(1,0), f(0,1)=g(0,1).
Let (x, y) € A be fixed. Then, we have
|Bn,q,A(f.x y) - nqA(_l];x y)|

)f(ﬁ [’—) ) b?j<x,y>g(& @)

[”]q P [n]q ’ [”]q

[ilg (/] lil; [/l

q e N N I Bt B

%mwﬁmymﬁ 4@/m)ﬂ

(1 ) 0 1

=L el i)~ o)
< (1= (bo(x, ) + b (x, y) + b, (x, y))A(f, 9)
S (1 — Uy d(f/g ’

where u, = (m}n (bgo(x, y) + b;’o(x, y) + bgl(x, y)). Therefore, we have

X,Y)EA

i+j<n

i+j<n

(f/g) € X X X/f - 9 € XO = d(Bn,q,A(f;x/ y)/ Bn,q,A(g;xr y)) S kd(flg)r

where k =1 —u, € (0,1).

Next, let a(x, y) := f(x,y) = Buga(f;x, ), (x,y) € A.
We can easily check that

a(0,0) = a(1,0) = a(0,1) = 0,
which yields

f@y) = Bugalf;x,y) € Xo, feX
Applying Theorem 1.2, we deduce that

(f + Xo) VFix(Byga(f; %, ) = { lim L By o (fi y))-
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Let f € X, it is not difficult to observe that the function A : A — R defined by

Alx,y) == £(0,0) + [f(1,0) = f(0,0)]x + [f(0,1) = f(0,0)]y, (x,y) €A,
belongs to Fix(B,,4,.(f; x, v)). Moreover, for all (x,y) € A,

N, y) = A, y) - fx,y) = £0,0) + [£(1,0) = £O,0)]x + [£(0,1) = £(0,0)]y — f(x, y).
Observe that

A’(0,0) = A’(1,0) = A’(0,1) = 0.
Therefore, A’ € Xo = A € f + Xo. As consequence, we get

lim Byt (fix,9) = £(0,0) + [f(1,0) = f(0,0)]x + [£(0,1) = £(0,0)]y,
which yield the desired result. [J

Now, we consider bivariate g-Bernstein operator over a square I = [0, 1] x [0, 1] (see [10]). For n,m € IN,
0<qg<1,feC(0,1]*) and x, y € [0, 1], the bivariate g-Bernstein polynomial is denoted by By, . 4(f;x, y) and
is defined as

Bumg(fix,y) == Z Zm: bZ,k(x)b?n,j(y)f(@ ﬁ) ()

= [n],” [m],

where

ey ::[ ’; } P -2
q

and

by, () :=[ "]1 ] Y-y,
q

Lemma 2.4. ([10]) Let e;j(x,y) = x'y/, 0<i+j<2 Forx,y€[0,1], 0<gq <1, we have

1. Bn,m,q(eO,Or' x,y) =1,
Bymqle1,0;%,y) = x,
Bn,m,q(eo,l; X, ]/) =Yy
Bumqler1;x, y) = xy,
Bn,m,q(e2,0; X, ]/) =x2+ X([;qX)/
B

(1-y)
n,m,q(EO,Z; X, y) = yZ + y[m]qy :

ARSI S N

Lemma 2.5. ([10]) The bivariate g-Bernstein operator defined by (4) interpolates the function f in the four corners
of the unit square, i.e.,

Bimq(f;0,0) = f(0,0), Bumq(f;0,1) = £(0,1),
Bumgq(f;1,0) = f(1,0), Bumg(f;1,1) = f(1,1).
Theorem 2.6. Let n,m € N*, f € C([0,1]* R) and x,y € [0,1]. Then we have
Jim Buwa(f:x,y) = f(0,0)+[f(1,0) ~ £(0,0)lx + [f(0,1) — £(0,0)]y
+[£(0,0) - f(L,0) - f(0,1) + f(1, D]xy.



S. Rahman et al. / Filomat 32:12 (2018), 4351-4364 4356
Proof. Let X=E=C([0, 1]*; R). Define metric d on X
d(f,9) = max{|f(x,y) —g(x, Yl : x, y € [0,1]}, (f,9) € XX X,

then (X, d) is a complete metric space.
Consider Xy = {f € X : f(0,0) = f(0,1) = f(1,0) = f(1,1) = 0}, then X is a closed linear subspace of X. Let
(f,9) € X x X such that f — g € X, that is,

(f,9) € XxXand f(0,0) = g(0,0), f(1,0)=g(1,0), f(0,1)=g(0,1), f(1,1)=g(1,1).
Let x, y € [0,1] be fixed. Then we have
IBnmq(f'x Y) = Bumaq(g: %, y)l

. [j]
ZZb K0,y )f([n] riz]:)

. [kl; [
k=0 j=0 ]Z‘bnk()qm]()([n]q [m ]‘7)

= |2 LB, S s ([[k]lz [[]nij) ([[:]1: [[;ﬁ]q)}

n

=0

k=0 j
iy Kl Ll kl, [l
i 1 04 W Ulg
S;O ) MACEH >]f [n]q [m]q) ([n]q,[m]q)
< (1= (@ ()b, o (y) + b ()b, () + B u ()BT, () + b, ()b ))(S, 9)
S( — Uy m)d(f g)
where
U = mlg‘u(bqo(x) 1 o@) + b0 Qb)) + b, (OB, () + b, (0B, (y)) > 0.

Therefore, we have

(f,9) € XXX, f—g€Xo=dBumq(f; %), Bumg(g:x,y) <Kd(f,9),

where k' = (1 — u,,,) € (0,1).
Next, let f(x,y) := f(x,y) = Bumq(f;x, ), x,y € [0,1].

We can easily check that
p0,0) = p(0,1) = f(1,0) = p(1,1) = 0
which yields

f(x) - Bn,m,q(f; X, ]/) € XO/ f e X
By Theorem 1.2, we deduce that

(f + Xo) N Fix(Bumg(f5x, ) = { im By, .(f;, ).

Let f € X, x,y € [0, 1] it is not difficult to observe that the function p : [0,1] X [0, 1] — R defined by
wx,y) = f(0,0)+[f(1,0) - f(0,0)]x + [£(0,1) — £(0,0)]y
+[£(0,0) - £(1,0) — £(0, 1) + f(1, D]xy,
belongs to Fix(B,,m4(f; x, y)). Moreover, for all x, y € [0,1],
Wy = pxy) - flxy)
= f(0,0)+[f(1,0) - f(0,0)]x + [f(0,1) — £(0,0)]y
+[f(01 0) - f(lr 0) - f(Or 1) + f(lr 1)]X]/ - f(x/ }/)
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Observe that
(0,00 =p'(1,0) = ¢/(0,1) = ¢'(1,1) = 0.
Therefore, 1’ € Xog = p € f + Xo, As consequence, we get
Jim d(By,,o(fx, ), 1) =0,

which completes the proof. [

3. (p, q)-Bernstein Operator

During the last two decades, the application of g-calculus have emerged as a new area in the field of approxi-
mation theory, and further (p, g)-calculus is a new generalization of the g-calculus. Recently, Mursaleen et al.
[24, 25] applied (p, q)-calculus in approximation theory. For further developments of (p, 4)-approximation
one can refer to [1-6, 12, 14, 19, 22, 23, 26, 27, 29]. Let us recall some basic notations of (p, q)-calculus:

The (p, g)-integers [1],,; are defined by

p'-q"
[n]P’q = ﬂ, n= 0,1,2,..., 0< g<p <1.
The (p, 9)-factorial [1],4! and (p, q)-binomial coefficients [ Z ] are defined as follows
P4
[Yl]p,q[n - 1]p,q e H]p,q ifneN,
[n]p,q! =
lf n=20.
_ [yt £ 1<k<
[k]p4![n=k,,4! 1 <k<mn,
n _
[k]w' 1 if k=0,
0 if k>n.

Also, the (p, g)-binomial expansion is

n

n (n=k)(n-k=1)  k(k-1)

no._ = == n-kpk.n-k k

(ﬂx+by)p,q‘_§,[k] pT g T am "y
pAa

k=0

n

(X + Yy = (x + Ypx + qYE°x + °y)...(p"x + 4" y).
For p = 1, all the notions of (p, q)-calculus are reduced to g-calculus.
Mursaleen et al. [24, 25] introduced the (p, g)-analogue of Bernstein operators as follows:

n
Bupq(fix) = ébi;i(x)f(%), x€[0,1], (5)
where
b 1 n K kn—k—l 4 '
bn,k(x)=m[ k] pe [0 -a.
p 2 p.q =0

Note that for p = g = 1, the (p, g)-Bernstein operators given by (5) turn out to be Bernstein operator given

by (1).
We have the following basic result:
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Lemma 3.1. Forx €[0,1], 0 <g <p <1, we have

1- Bn,p,q(eo} x) = l/
2. Bn,p,q(el ;X) =X,

n—1

14 qln=1lpq 2
Ty il 7

3. Bn,p,q(eZ} x) =

where e; = t' for i=0,1,2.

4. TIterates of (p, q)-Bernstein Operators

The iterates of positive and linear operators in various classes were intensively investigated in the last
decades. The convergence of linear operators using the fixed point theory was introduced by Agratini and
Rus [7, 8, 34]. Recently in 2016, Radu [33] investigate the convergence of iterates of g-Bernstein polynomial
and (p, q)-Bernstein polynomial by using contraction principle.
Iterates of (p, q)-Bernstein polynomial are defined as

B (f5%) = Bupg(Bi, o(f5%); %), for M =1,2,3..

and

B}L,p,q(f; x) = Bn,Pr'i(f/' x)-

n
Lemma4.1. LetneIN*, 0<g<p <1 Then, }, b’:l’Z(x) =1
k=0
Lemma4.2. Letn € N"and 0 < g <p <1, then min (bp’q (x), B (x)) > 0.
xelo,1] MO

Lemma 4.3. (p, q)-Bernstein polynomial defined by (5) possess the end point interpolation property, i.e.,

Bupq(f:0) = £0), Bupq(f;1) = f(1).

4.1. Kelisky-Rivlin Type Result for Linear (p, q)-Bernstein Operator:

Theorem 4.4. Letn € N*, 0 < g <p < 1. Then for every f € C([0,1]; R)
lim Bl (%) = 0) + [f(1) - Ok, x€[0,1].
Proof. Let X = E = C([0, 1], R). Define

d(f,g) = max{|f(x) —gx)|: x € [0,1]}, (f,9) e XxX

Then X endowed with metric 4 is a complete metric space.
Consider Xy = {f € X : f(0) = f(1) = 0}, then X is a closed linear subspace of X. Let (f, g) € X X X such that
f —g € Xo, that is,

(f,9) € XxXand f(0) = g(0), f(1) = g(1).
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Let x € [0, 1] be fixed. Then we have

Byp,q(f3 %) = Bpqg(g; %)l
- ;Ob"mf(kn[ )Zb o)
- Rl -

n-1
- (Sl - o)

n—-1

< L b(x )‘f k_[n][l,;q )—g (pkfl’f][zzp,q)
- (Ftpero

Let

v, = min (" (x) + b1 (x)),
" 536,?1( olX) + b7 (x)

then by using Lemma 4.1, we get v, > 0 and
n-1
baG) = 1= +55x)
k=1
< 1-v,.
Therefore, we have
(fPeXXX f-geXy= d(Bn,p,q(f; x), Bn,p,q(g;x)) < td(f,9),

wheret =1-1v, € (0,1).

Next, let y(x) := f(x) = By, 4(f;x), x € [0,1].
We can easily check that

y(0)=y(1) =0,

which yields

flx) - Bn,p,q(f} x) € Xo, f€X

Applying Theorem 1.2, we find that

(f + Xo) N Fix(By, p4(f; %)) = hm Bfqu(f; x)}

Let f € X, it is not difficult to observe that the function w : [0, 1] — R defined by

w(x) = f(0) + [f(1) - f(O)lx, x € [0,1],
belongs to Fix(B,,4(f; x)). Moreover, for all x € [0,1]

@' (x) = w(x) = f(x) = fO)A —x) + f(1)x - f(x)

4359
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Observe that
@'(0) = f(0) - f(0) =

and
@'(1) = f() - f(1) =

Therefore, v’ € Xp = w € f + Xp. As consequence, we get
lim d(BY, (5, @) =0,

which is the required result. [

4.2. Kelisky-Rivlin Type Result for Non-linear (p, q)-Bernstein Operator:
For f € C[0,1],0 < g <p £1, and n € N, we define the non-linear (p, q)-Bernstein operators of degree n
by

x €[0,1], (7)

Bl fr0) = Zﬁ o)

where
1 n Wy
o=z | ] = -
p 2 P =0

Theorem 4.5. Letn € N*, 0 < g < p < 1. Then for every f € C([0,1]; R)

Jim (B, Y(f;x) = £(0) + [f1) - fO)lx, x€[0,1]
Proof. Let E = C([0, 1], R) and X be defined by

={feE:f(0)>0,f(1) >0} CE.

We endow X with the metric d defined by

d(f,g) = max{|f(x) —gx)|: x €[0,1]}, (f,9) e XxX

Then (X, d) is a complete metric space.
Define Xy = {f € X : f(0) = f(1) = 0}, then X, is a closed subgroup of X. Let (f,g) € X x X such that
f =g € Xo. Fixx € [0,1], then we have

|B1*1pq(f‘x) - B; pq(g;x)|

- [Leellmg) - e )|
- 15 Mf (o R rer |

- [ Sesol ) - bl )

C Frioflpt )t )
S(hfmmyﬁm

IA

(1 —w,)d(f, 9),
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where v, is given by equation (6). Therefore, we have

(f,9) e XXX, f—g€Xo=dB,,,(f;x),B,,,9:x) < td(f, 9),

wheret=1-1v, €(0,1).
For x € [0,1], let 6(x) := f(x) — B

6(0) = f£(0) - 1f(O) =0,

o) = f(M) = 1f (I =0,
which yields

fx)=B;,,.(f;ix) €Xo, feX
Applying Theorem 1.2, we have

il f;x), then we have

(f + Xo) NFix(By, , ,(f; %) hm (B, g (f: )M}

For f € X, define the function w : [0,1] — R by

w(x) = f(0) + [f(1) = f(O)]x, x € [0,1].

We can easily observe that w € Fix(B;, , ,(f;x)) N (f + Xo). As consequence, we get

hm d((By,,q(f x)M

which yield the desired result. [J

5. Iterates of Bivariate (p, q)-Bernstein Operator

In 2016, Karaisa [17] defined the bivariate Bernstein operators based on (p, q)-integer and investigated their
approximation property. Let I = [0,1] X [0,1], f : I = Rand 0 < q1,42 < p1,p2 < 1, then the bivariate

Bgllfi’;%)(!’zrﬂz)

Bernstein operator is denoted by and is defined as follows:

n

141)\P2,42 - 141 2/42 141 [j]Zrz
wﬁwmmxw=22ymquud < ) ®)

k n j—m
k=0 j=0 [n]lf’lr‘ll Ps [m]pz,qz

where

- " ko) . n—k-1
2 S S
bnk ('x) n(n 1) k pl X H (pl - qlx)’
P11

pl 2 5=0

m G-
bpz qz(y) m(m=1) [ ] ] 2 yj H (PZ qz]/)
pz 7 P2/ !h

Lemma 5.1. ([17]) Let e;j(x,y) = x'y/, 0<i+j<2 Forx,y€[0,1], 0<qi,q2 <p1,p2 <1, we have

L BOMP P e x,y) = 1,

L0, % Y) = X,
01X Y) =Y
4. Bg}ﬁql)(pzm)(el,l}x/ y) = xy,

2. B%%%)(Pzrﬂz)(e
3. Bff;'ﬁ] )(Pz:‘]z)(e
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nl

qiln=1lp, 4 x2
[" p1a1 [y
! Qlm=1lpy 4 o

[m],2 ) y+ (13,05 v

5. BPl A1)(p2, 42)(620 X, y)

6. B(Pl A1) (P2, th)(e 2 X, y)

Lemma 5.2. The generalized bivariate (p, q)-Bernstein operator defined by (8) interpolates the function f in the four
corners of the unit square, i.e.,

BYLIPA(£,0,0) = £(0,0), BUaP(£;0,1) = £(0,1),

BI(£51,0) = £1,0), BIIVP(£1,1) = £(1,0).
Theorem 5.3. Let n,m € N*, 0 < q1,q2 < p1,p2 < land x,y € [0,1]. Then for every f € C([0, 1% R)
Jim BN (fxy) = £0,00+[£(1,0) = FO,01x + [£(0,1) = £O,0)]y
+[£(0,0) = f(1,0) = £(0, 1) + f(1, D]xy.
Proof. Let X = E = C([0,1]?, R). Defined : X x X —» R by
d(f, 9) = max{lf(x, y) = g, y)l - x,y € [0, 1]}.
Then d is a metric on X and (X, d) is a complete metric space.

Let Xo = {f € X : f(0,0) = f(0,1) = f(1,0) = f(1,1) = 0}, then Xj is a closed linear subspace of X. Let
(f,9) € Xx X such that f —g € Xy, i.e,

f(0,0) = ¢(0,0), £(1,0) =g(1,0), f(0,1) =9(0,1), f(1,1) = g(1,1).
Let x, y € [0, 1] be fixed. Then we have

|B(P1141)(P2/qz)(f. X, y) - B(i%%)(l’z,qz)(g’. X, )|

Y Y e, )

k=0 j=0 i L P i 17

[k]]ﬂl,ql [j]r’zrqz
_g( k—l’l [ ] 7 ]'_m )}‘
Py "Utpug p, [m]p,,0,

< v (x)bZ;j%(y)‘f( S j_[nf]pz’”’z )
=0 j=0 2 U P (7]
_( [klpua: [71p2.0:

pI{—n[n]pW] ' Pé_m[m]pz,qz

< (U= @ OV ) + W OV () + U QU () + U 2 ()
xd(f, 9)

< (1 =oumd(f,9),

where

Onm = m%n O QO (y) + VL () () + b (VL () + B ()b (1))
x,y€l0,

Therefore, we have

(f,9) € XXX, f — g € Xo = dBYSIVP (£, x, y), BIIP) (g0 ) < d(f, g),
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where t’ = (1 —v,,,) € (0,1).
Let n(x, y) := f(x, y) = BowP P (fx,1), x,y€[0,1], then

1(0,0) = n(0,1) = n(1,0) = n(1,1) = 0,

which yields

f0) =B P(f;2,y) € Xo.

By Theorem 1.2, we find that

(f + Xo) 0 Fix(B (3, ) = { lim (B (5 x, )™,

For f € X and all x, y € [0, 1], we can easily check that the function ¢ : [0,1] X [0, 1] — R defined by

belongs to Fix(

(p(x, ]/) = f(or 0) + [f(lr 0) - f(or 0)]X + [f(0/ 1) - f(0/ 0)]y
+[f(0r 0) - f(l,O) - f(O, 1) + f(lr 1)]x%

Bﬁ,’f ;,;ql)(p Z’{12)( f;x,1)). Moreover, for all x, y € [0,1]

Py = ey - fxy)
= f(0,0) +[f(1,0) — f(0,0)]x + [f(0,1) — f(0,0)]y
+[f(01 0) - f(lr 0) - f(or 1) + f(lr 1)]x]/ - f(x/ ]/)

Observe that

¢'(0,0) = ¢'(1,0) = ¢'(0,1) = ¢'(1,1) = 0.

Therefore, ¢’ € Xy = ¢ € f + Xy. As consequence, we get

O

Lim BIPPPY(fxy) = £0,0)+[£(1,0) = £O,0)1x +[£(0,1) = £0,0)ly
+[f(01 O) - f(l,O) - f(O/ 1) + f(l/ 1)].7(]/
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