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New Method of Investigation of the Fredholm Property
of Three-Dimensional Helmholtz Equation with
Nonlocal Boundary Value Conditions

Mustafayeva Yelena?, Aliyev Nihan?

?Baku State University, Azerbaijan, 23, Z.Khalilov st., AZ1148

Abstract. The paperis dedicated to the investigation of the Fredholm property of boundary value problems
with nonlocal boundary conditions for a three-dimensional Helmholtz equation. The basic relationships
giving complete system of necessary conditions for the solvability of the boundary value problem are
obtained on the assumption of well-known fundamental solution of Helmholtz equation. Some of these
conditions contain singularities the regularization of which cannot be done by conventional methods and
is conducted by an original scheme.

1. Introduction

As is known, for an ordinary differential equation the number of additional conditions (Cauchy condi-
tions or boundary conditions) always coincides with the order of the equation in question .

In the course of equations of mathematical physics and partial differential equations, the canonical form
of an equation of elliptic type is the Laplace equation (second-order equation) for which one local boundary
condition (Dirichlet, Neumann or Poincare) is specified.

The non-local boundary conditions free us from the above misunderstanding between ordinary differ-
ential equations and partial differential equations. For nonlocal boundary value problems the authors have
found the possibility of proving Fredholm property with the help of so-called necessary conditions.

It should be noted that for an ordinary differential equation these necessary conditions similar to nonlocal
boundary conditions are mentioned by A.A.Dezin [1]-[3] (who came to these conditions by an artificial way
and so couldn’t build them for partial differential equations).

The idea of necessary conditions for partial differential equations was first used by A.V. Bitsadze for the
Laplace equation [ 4, p.185] both in two-dimensional and three-dimensional cases. But the regularization of
the singularities in the necessary conditions was artificial particularly in three-dimensional and contained
some uncertainties.

Finally, Begehr derived these necessary conditions for Cauchy-Riemann equation [5]-[6].
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Some of the necessary conditions obtained for the posed three-dimensional problem contain singular
multiple integrals. But the regularization of these singularities doesn’t subject to the conventional scheme
[7-11].

As is known the regularization of singular integral equations in general case is conducted by the
method of successive substitutions: after the first substitution a double singular integral is obtained and
when changing the order of integration in the double integral Poincare-Bertrand formula is applied to get
a regular kernel and a jump which doesn’t “eat” the external function. Thus, a Fredholm integral equation
of second kind with a regular kernel is obtained.

In the considered problem the obtained necessary conditions, or integral equations, are in spectrum so
when they are regularized by the mentioned scheme we come to Fredholm integral equations of first kind
what is a “deadlock”.

By the suggested new scheme the singular necessary conditions are regularized with aid of the given
boundary conditions what is principally new. As a result the posed problem is reduced to a system of
Fredholm integral equations of second kind.

2. Problem statement
Let us consider the three-dimensional Helmholtz equation in a convex in the direction x3 domain D C R3
whose projection onto plane Ox;x; = Ox’ is domain S C Ox1x;, I is the boundary (surface) of the domain
D:
Au+a*u(x) = —f(x), x = (x1,%2,x3) € D C R® (1)

with nonlocal boundary conditions

3

J
Z[ (1)( ) u(x) |xﬁ =p) + (2)( ) (x) |x3 =) |+

j=1

2
Y P ) =0, i= 1,2 ¥ €5, ®
k=1

and additional Dirichlet’s condition on the equator L of the surface I

u(x) = fox), xe L=T4 ﬂ L. 3)

where S is the projection of the domain D onto the plane Oxix, = Ox’, I' = JD is Lyapunov’s sur-
face; L is the equator connecting the upper and lower semi-surfaces I'1 and I'y: T = (€ = (&1,&2,&3) :
E3=yr(&), & =(&1,&) €S}, k=1, 2, where &3 = yi(é1,&2) , k =1, 2, are the equations of the semi-surfaces
I't and I'; (the convexity of the domain D in the direction of Ox3 provides the existence of such equations),
functions yi(&’), k = 1, 2, are twice differentiable with respect to the both of variables &1, &;; the coefficients
ozl(;{) (x") satisfy Holder condition in S; agk) (x"), i,k=1,2, f(x) and fy(x) are continuous functions.

The fundamental solution for the three-dimensional Helmholtz operator (A + a*I)U(x) = 6(x)) has the
form of [12] U(x) = — &= or U(x) = —

~4m © — % from which we choose the following

pinb—el

U(x—(f)Z —m. (4)
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3. Necessary conditions

4447

To get necessary conditions of the solvability of boundary value problem (1)-(3) for three-dimensional
Helmholtz equation we’ll multiply both sides of equation (1) scalarly by fundamental equation (4) and

integrate over domain D:

f(Au + au(x)U(x — E)dx = — f fUx = &)dx,
D D

or

m\x—g\ ialx—¢|
f (At + a2 u(x))—é f £(x) 4; e

Integrating (5) by parts we’ll obtain the following:

f (Au + dPu()U(x — E)dx = Z f ‘92”(") U(x — E)dx + f Pu(x)U(x — )dx =

| gl

D

I
—_

i

3
Zf(&u(?c)u( S )%)COS(VXIX])d'X+
= :

+ fD u(x) Z %dx + fD Pu(x)U(x — E)dx =

3
3 J (B8 - 0 8= coston, e+ [ ot v

As U(x — &) is a fundamental solution of Helmholtz equation then

3
ZM PURE = &) = (A + A" DUx = &) = d(x = &)
]

=1

is Dirac’s 0-function. Taking into account this and substituting (6) into (5), we have the relationship

—Lf(x)ll(x—é)dxzf{ 8 +a u(x)} U(x — &)dx =

[f 8u(x) — &) cos(vy, x;)dx — f %{—J(:)w(gx—fdx] + jl;azu(x))ll(x—é)dx =

)
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i
j=1

fazu(x)ll(x —&)dx =
D

3 Ju(x) du(x) dU(x — &) R
= ; (f; 7 U(x = &) cos(vy, x;j)dx — jz; 7 de) + La u()U(x — &)dx =

3
= ; j; 8;1)(5) U(x = &) cos(vy, x;)dx—

3
Z[f () cos(vx,x])dx—fu( )de]+fa2u(x)ll(x—£)dx
D

j=1

3
Z f (Mx) Ulx - &) - u(x )au( ))C"S(V’” K+ f HEOE = )i
] D

whence we obtain the 1st basic relationship

INICE

— u(x) ( é))cos(vx,x] )dx — ff(x U(x — &dx =
0x;

_ _ _Ju©, £€D,
—fDu(x)(‘S(x cf)dx—{ %u(é), feT. (7)
The 2nd of relationships (7) is called the 1st necessary condition of solvability of problem (1)-(2):
du(
) = Zf( e - 5 costr par - [ o=, cer. @
Xj

The necessary condition (8) can be rewritten as follows:

36 == [ (52t - - s 5= av [ fouie- ey, e ©)

Thus we have proved

Theorem 3.1. Let a convex along the direction x; domain D C R® be bounded with the boundary T which is a
Lyapunov surface. Then the obtained first necessary condition (9) is regular.

Multiplying (1) by au(x £)
relationships:

,i=1,3,, integrating it over the domain D we obtain the rest of three basic
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fau(x) oU(x — E)dx N f&u(x) [QU(x -8 . IU(x — &)
r

ox; vy r Ot ox; 08(Va, Xm) — o cos(vy, x;) | dx+

(Y/x)_w(x—xé)

Ju(x) | dU(x — é)
r ox ox;

cos(vy, xi)] dx+

fa u(x)U(x — &) cos(vy, xi)dx + ff( ) o) i=1,3, (10)

, ¢€T,

NI

mﬂx 5M _[ %, cen, -
aél

where the numbers i, m, | make a permutation of numbers 1,2,3.
The second expressions in (10) are the other three necessary conditions (£ €I',i = 1,3):

lau(é) [ du(x) dU(x — 5)
2 & Jr ox My

du(x) [U(x - &)
r O, | Ox; ¢

JU(x - &)
X,

0S(Vy, Xin) — cos(vy, x,f)] dx+

cos(vy, x1) — al,l(ax—xl—cf) cos(vy, xi)] dx +

+f8u(x) [U(x — &)
r 8xl | 8xi

2 ) dU(x = &)
+‘£a u(x)U(x — &) cos(vy, x;)dx + jl;f(x)de, (11)

1

where the numbers i, m, | make a permutation of numbers 1,2,3.
As

Ux=-8 __ 0 e 1
ox; B axj4n|x—£|_ 47t

[12::1()(/ &5) pith— 5|| . 2(xl 51) elal=¢|

2x—¢]|
I — &

1 lx_;/ ialx—&| _ ZLZ(X]‘ _ 5],)€ia|x—g| B 1 T/_‘gll ialx—&| (1 a |x - 5|) _
4n = &P ~4n I = &2 B
el cos(x — &, x))

SR (1 —ialx - &)

then

U -¢) _ cos(x — &, xj)

za\‘c—é\ 1-1 _ . 12
ox; Aty — &P (1 —ialx - &) (12)
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Substituting (12) into (11), we’ll obtain that

Su) =5 f (x >C°s|(x_ ;IVX) ¢ (1 — dafx - &) dv+

1 (e du(x) 1 plale=]
Y Cx =2l vy dx +Ef,3f(x)|x—g|dx’ EeT.

Introducing the designations:

Kij(x, &) = (cos(x — & x) cos(vs, xj) = cos(x = & x7) cos(vy, 1)) €™ (1 — i |x — &)

and representing

el (1 — ja |x — &])
= 2 (cos(x — &, x;) cos(Vy, Xn) — cOS(x = &, Xin) cO8(Vy, X;)) =
4dm|x — &
drlx — &

we can rewrite the 2nd , the 3rd and 4th necessary conditions (11) in the form of

1ou@) _ (ou) Kim(x,&) , [ 9ul) Kalx,&)

= X dx+
2 9& r OXm 4m|x — &P r 90X 4mlx - &P
du(x) dU(x — &) f 5, el cos(vy, x;)
¢ Ox; vy ax rk u() 4rt|x — ¢ et

ff( )cc;s(ﬂlc Erxz) (1 —ia|x — &) dx
T |x

where the numbers i, m, | make a permutation of numbers 1,2,3.

4450

(13)

(14)

(15)

As the normal derivative of the fundamental solution has no singularity at point x = £ if I is Lyapunov’s
surface, the order of singularity in the 4th integral in the right hand side is lower than the multiplicity of

the surface integral then we have singularity only in the 1st and 2nd integrals in RHS of (5).

To distinguish only singular terms in the 2nd, 3rd, 4th necessary conditions we’ll disclose two first
surface integrals in the (i + 1)-th relationship (15) (i = 1, 2, 3) over the lower and the upper half surfaces I',

k=1, 2:
1 du Ju(x) K, (x, &) dx’'
by j+1 () —— -
29g; 197N Z( D f v drfx - &P | X3 =7i() COS(Vx,X3)+

& =yr(&)
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2
j du(x) Ki(x, &) ax’'

Y i [ B Lo

+2.D L ox; )Jq:yj(x) dri|x— &P | X3 = Vj(x/) cos(vy, X3) e

& = yk(&)

=1

whence discarding nonsingular terms (k # j) , we'll obtain the 2nd, 3rd, 4th necessary conditions for k = 1,2
in the form:

Lo ey =y [ 2 KD o,
298 E=yx(&) s X X3=)k(x’) 47 |x — 5|2 X3 = )/k(x’) COS(VX, Xg)
& = k(&)
du(x) Ki(x, &) dx’
_1\k+1 s NS -
HD fs ox| = Il — P | =) Cos(upas) | (1o
& = yi(&)

where three dots designate the sum of nonsingular terms.
Let ua introduce the designations:

K)o 1y _ 1. _

K,-]- (&, &) = Kij(x, &) X3 = p(x) 7 k=1,2. 17)
& =yi(&)
Now we consider |x — & |2 X3 = ) 7 k=1,2, in the denominator of the integrands (16):
& = yr(&)

_ 2 — |y _ & 2 no_ )2 —

|x — & X3 = Yi(x') Ix" = &'1° + (i(x’) = vi(E))
& =yi(&)

| 72 - ayk(x/)z 20 ’
= - & 1+Z — | oS’ (& = & x)+

m=1
ayk(x,) &Yk(x/) ’ ’ ’ ’ / ’
2 % cos(x’ — &, x1)cos(x’ — &, x2) + O(lx" — &'])|. a8)
Designating:
2 2
a ’
Pr(x', &) =1+ Z( )(;};(x )) OS2 (¥ — &, xp)+

m=1

dyr(x’) dy(x’)

+2
oxq oxy

cos(x’ — &, x1)cos(x’ — &, x2) + O(|x" — &'))
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we can rewrite (18) as follows

b= 2P| 4 = ypy = - EP P, ).

&3 = r(&)

R em ark3.1. It should be noted that for &’ = x’ we have:

J J dy, 9
Pk(x//x)—1+( 7/k) +( yk) Ve 9V

axl 8_352 Za_xla_x2 O,k= 1,2

By means of designations (17), (19) we can rewrite necessary conditions (15) for k=1, 2 as follows:

Lo e = et [ 2 1 Khw, &) av
2861 53*)%(5) s 8xm X3= )/k( ) | EI|2 Pk(x/ 5) COS(VX, x3)
du(x) 1 (x &) dx .
k+1 _
+(-1) f [S— ) e~ Pk(x 7 sy H 1= 128

where three dots designate the sum of nonsingular terms.

Theorem 3.2. Under assumptions of Theorem 3.1 necessary conditions (20) are singular.

4452

(19)

(20)

Let us return to the 1st necessary condition (13) and disclose each surface integral over the upper and

lower semi-surfaces T}, k = 1,2, of the boundary T

Te={E=(&1,&,8) : &3 =pr(&), & =(&1,&) €S}, k=1, 2:

E=7i(&) —Z( D" = fs () [y =) X

m=1

x( " (1—ialx 5|)) & = vi(&) cos(vx,x3)+
X3 = Ym(xl)
2 l et =El Jyy(x) dx’
+mZ—1(_ = fs(lx &l s ) £ = H(E) cos(vy )
= X3 = Vm(x’)

elalx=¢l
+ f f(X) dx, ¢ eTy.

that

(21)

Evidently, when k # m in (21), the corresponding integral is nonsingular. When k = m in the first sum of
(21), the corresponding integral has a removable singularity at x — &; in the second sum of (21) the integral
has a weak singularity as the order of singularity is less than the multiplicity of the integral, and in the 3rd
integral the Holder condition for f(x) gives us a removable singularity as well. So designating nonsingular

terms in (21) with three dots, introducing a new designation
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Q&) = (cos(x = & v)e™ 4 (L —iale = ED) | & ., o)
x3 = yi(x)

and taking into account (21), we obtain the 1st necessary condition in the form of (for k=1, 2):

1 1 /’ ’ dx’
3O lsonier = (Vg [ 00 pyopiy T B @

4n Pu(x, &) ¢! — &' cos(vy, X3)

4. Regularization of the necessary conditions

Let us build a linear combination of necessary conditions (20) for k=1,2 (j=1,2,3) with unknown yet
coefficients ‘Bi.‘j(é’):

0 J
B G lomnier + BV G | = f Zﬁ(k)(é (1)

X[m| K%, ) 20 K (x, é)}z . & o)
X —

x3=y5(x’) Pu(x, &) X3=yk(x") Pk(x, & £/|2 cos(Vy, X3)

where the numbers j, m ,l make a permutation of numbers 1,2,3.

Form a sum of (23) for j=1,2,3 and bracket the common factor +éf under the sign of integral (i = 1, 2):

27t|x’

: ) 9
Z (;ijl & ) u(é) )és neE) ﬁ(Z)(‘S ) u(é) |93 =y2(& ))

j=1

- ! k 0 e
- Lanx’ &P Cos(vx x3) Z( D Zﬁ (&%

(24)

au x) | K?,Z(x’, <) ou(x) | (k)(x & )
X3= )/k(x’) Pk(x’, 5/) x3:)’k(x P (x, 5)

Adding and subtracting ‘Bl(.;()(x’) from ‘Bg)(é’) , k=1,2in (24) we obtain:

- J 9
Z (;ijl (& ) u(é) )63 neE + ﬁ(Z)(‘S ) u(é) |93 =y2(& ))

=1

—.

_ 1 k
_fs 27wt — &P COS(erXS) Z( 2
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® o K®
du(x) K'm(x &) du(x) (x 5_)
Z ® /
X ,B ( [ o, ‘XFVk(X') Pk(x,/ é') + ox; |x3 =) Pk(x, é)

1
+f52n |x’ — &7 cos(vy x3) Z( DkZ [ﬁ(k) & - (k) ]x

’ o (k)
X[m| Kol £) out K 5)] o

x3=yk(x’) Pk(x' 5;) X3=)k(x") P (x/ 5)

Suggesting that functions ‘Bg.()(é’) satisfy Holder condition we get a week singularity under the second

integral in the right-hand side of (25). Intending to group the derivatives in the first integral we at first
expand all the coefficients at the derivatives by Taylor’s formula at point £’ = x':

Kg.()(x’, 5/) Kf;f)(x/, x/) 9 Kfjf)(x/, x/) 9 Q.()(x’ x/)
’ <7 = ) N | D (v ) ( 1= 51)+ f (x2_52)+"' :
Pk(xlé) Pk(x,X) Pk(xrx) P(x x)

All the terms except the first one reduce the order of singularity and make it weaker for a double integral
over the surface S. That’s why we’ll only consider the first term from each such expansion:

: ) J
Z( @ & ) u(é) )63 nE + ﬁ(Z)(‘S ) u(é) |93 =y2(& ))

j=1

= ! k ®
- LZR lx’ — & Cos(vY x3) Z( 1 Z:B (x')x

x)| K()( &) au(x)| K(k)(x 5)
X3= )/k(x) P (x, 5 ) x3:)’k(x P (x, 5 )

:f 1 Z( 1)kiau(x)| _ %
s 2mlx — &P Cos(vx,xg,) ox; x=yi(x’)

=1

mj

(k) lf k) (0
[ﬁ (x )P(x’x’ ﬁ (x )P(x’,x’) *

where the numbers j, [, m form a permutation of numbers 1,2,3; i=1,2.
To regularize the integral in the right hand side of (26) let us impose conditions on the coefficients ‘Bff) &),

(k)( ’ ) K(k)(x X )]
(26)

i.e. let the coefficients at the derivatives under the sign of integral (26) be equal to the coefficients agf)(é’)
from the boundary conditions (2). Then we get a system of 6 equations for each i=1,2:
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Kl(f) X', x « K(k) X', x
V) By V)

where k=1,2; j=1,2,3, and as we mentioned above the numbers j, /, m form a permutation of numbers 1,2,3.

N (P
)~ % @) (27)

We suppose that systems (27) have the solution ‘Bff) for i,k=1,2; j=1,2,3, respectively.

Remark 4.1. The obtained functions ‘B(.’.() i,k=1,2; j =1,2,3, are linear functions of the given functions

(.’.‘) i,k=1,2; j =1,2,3, and, therefore, indeed satisfy Holder condition.

Then for the further regularization we replace the expression under the integral sign in the RHS of (26)
using boundary conditions (2):

3
Mg 8u(«5) @ ) F() &
]Z:; (ﬁfj )53 ne) +Bi (& ) )| = | o T P costn )
| s ; 28
_fsm ;“f (@, yi(x')) m ..... o)

Substituting the 1st necessary condition (22) for u(&) on Ty, k=1, 2, into (28), we have:

3
Z( “(5)

=1

2
__ f MOS(VX/XS) ) MO fs U(D) |ermyier X

m=1

du(é
S=n@) t+ [3’2)(5) u )|zs )/2(5))

Qu(l,x') dac’
21 |x" = U P(x?, C7) cos(ve, C3)

Changing the order of integration we get two regular relationships (k=1,2):
3 ’
8u(£) () [e3=@) AC
Z( 5 € 55 e + B /)ZIWX
].:1 S Cr 3)

2 " (x)Qu (T, x) dx’
! . 29
X fs le [zn i = &P = U Py, c)] cos(ve,x3) @

The internal integrals in the RHS of (29) are singular but they don’t contain the unknown function
u(&) = u(&1, &2, &3) and converge in Cauchy’s sense. Thus, we have regularized relationships (??) and ,
therefore, we have established the following

Theorem 4.1. Let the conditions of Theorem 3.1 hold true. If system (27) is uniquely resolved, the conditions (2) are
linear independent, the coefficients ag.()(x’) fori=1,2;j= 1,3, k=1,2, belong to some Holder class and the rest

of the coefficients and kernels are continuous functions, functions fi(x'), i = 1,2, are continuously differentiable and
vanish on the boundary dS = S\S then the relationships (29) are reqular.
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5. Fredholm property of the problem

It is well-known that

d du(x Ju(x ()
a_xpu(xlleIVk(xLXZ)) = %p) |X3:yk(x’) + %3) )xFyk(x') y;Tp’ k=1,2p=1,2,
whence we have
du(x) _du(x, yk(x'))  du(x) )
8Xp |X3=Vk(x') - axp ax3 |X3=)/k(JC’) axp ;P = 1/ Z/k = 1, 2. (30)

So, the derivatives 85)51) |Y3 ) and 2 3)(2 |Y3:),k(xr) are defined through the derivative ‘93”—)5? |x3:),k(xr). Then we
have two unknown quantities: the boundary values of the unknown function u(x’, y1(x’)) and u(x’, y2(x")).

We substitute the expressions (30) for agg) |x3 =) and 2 axz |x3:yk(x/) into boundary conditions (2):

R N . CANCD) 8u(x) AV m(¥)
liu =Z|:Z|: 1(] )( )( ax] |x3 ymr) ax] ) +

j=1 Lm=1

Ju(x)

(M)
+a,’(x") g

‘x3:7/m(X’) + agm)(x')u(x’,ym(x’))] =~

2 ’
e Iy N [ ) 24E) —aﬁ?(x'>}+

ox
=1 3

2 u(x’, y1(x')) u(x’, y2(x'))
+Z[ ) ——5 =+ alx )—]

j=1 ] ax]

+aV (Y, 1) + a®P @ ux, 72(x') = 0,x €8, i=1, 2. (31)

Let us introduce the designations:

Aj(x') = [Z o) () =5 ”( 9 a0 >l ij=12.

Then system (31) will be rewritten in the form:

8“()) du (x)|

11( ) x3=y1(x’) +A12( ) x3=yo(x’) = Fi(x’)/ i= 1,2, (32)

where the right-hand sides of system (32) have the form:

2 2
F() = i) - ) Y al )M Z a® ), ), ¥ €8, i=1,2. (33)
]

=1 m=1
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Remark 5.1. Note that the right hand sides F;(x") of system (32) are functionals of the boundary values of
the desired function and partial derivatives of these boundary values what follows from (33):

z9u|r1 8u(r1 (9u|r2 9M|r2
8x1 ! 8x2 ’ 8x1 ’ 8x2

Fi(x') =Fi(,ulr, ,ulr, , )i=1,2.
We'll reduce system (32) to a normal form. For this purpose we require the determinant of the system to be
nonzero:

N | An@) Ap’)
A(x ) = ’ A21(X/) Azz(x') ‘ # 0. (34)

If there holds true condition (34) then by Cramer’s formulas we have:

Fi(x')  Ap(x)
F2(x’) A22(x’)
All(x’) Fl(x')
An(x')  Fa(x')

Ju(x) _ 1
x5 =) T AQR)

35
Ju(x) _ 1 ( )
dx; |¥=r2(¢) T A

System (35) is a system of integral Fredholm equations of 2-nd kind with a regular kernel. Therefore, it has
a unique solution which in in the virtue of (34) has the form:

po) ou ou ou ou
%:) |X3:yk(x’) = CDk(u |rl ,u |1—2 , ax|? , &x)? ) ax|11“2 ) |Fz

) k=1,2. (36)

Let us substitute expressions (30) for the derivatives‘ig—](:) |x3=yk(x1) , J, k =1,2,into regular relationships (29):

: ) J
Z (;ijl & ) u(é) )53 =n@) t ﬁ(z)(é ) M(E) |c,3 =y2(& ))

=t

5N o [OHE, Yml(E)) 8u(é) Y m(E")
ZXZ.B()(é)( (96 ‘% =ym(&’) ag] )+

d
B T mer + B G

)53:)’2(5’) =

coslCmema| = @)
—Z fM(C))ca =) 4T fa D) x3 = i)
cos(v;, G3)  Js ! 21 |x’ = O Pe(x’, T)

dx’ filx") dx’

X
cos(Vx,x3)  Js 27 |x’ — &'f? cos(vy, x3)

Fo (37)
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Let us group the terms in (37) as follows:

2, 9 d
3 u(©) ST lz e 24) )/k(é) e l

k=1

2

W e QUE, V1(ED) o) o FUE, V2AEN | _
e Y [ HEED e 2E A

=1

coslC=emd ¢ = )
B Z f u(C) ’Ca =k ) fa(k)(x’) X3 = Vk(x’)
cos(vg, G3)  Js 2n |y’ — UP Pe(x’, O)

dx’ filx)) dx’

X
cos(vy, X3)  Js 2m|x’ — &|* cos(vy, Xx3)

Fon (38)

The terms in (38) have either weakly singular kernels or regular ones (inside three dots).
If we introduce the designations:

Ci(&) = - [Zﬁl,’i(é) 7ie) ﬁg)(é’)} ij=1,2,

25 & U, ym(@) &= O | T
(&) = - () ey LR e e @ 7
B(&) ;MZ_;@, O TR [

e T ()
X f o) X = yilv) ax +
s 2nlx’ — UP Pe(x!,C7)  cos(Vy, X3)

fi(x') dx’
s 27 |x — é’lz cos(Vy, X3)

+..,&8€S, i=1,2,

then system (38) can be rewritten in the form:

2
3 .
Z Cim(&) u(é) |93 =) = Bi(&) ,i=1, 2. (39)

m=1

In the virtue of remark 3.1 system (39), or (38), is a system of integral Fredholm equations of the second kind
with respect to %”T(? |<53:yk(<§’) , k=1,2. Consequently, the system has the unique solution. As the right hand
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sides B;(&’) are linear functionals of the boundary values of the desired function and partial derivatives of
these boundary values then we have that

8u|r1 8u|r2 (9u(rl (9u|r2
08 0& T 9& T 09&

where u |Fk =u(&, (&), alrk = au(ga—g(g)) , j=1,2k=1,2, are the boundary values of the desired solution

ou(&
u( )|<:3 (@) = (40)

= We(ur, , ulr,

u(x) on the surfaces I'y, k = 1 2, and the derivatives of its boundary values correspondingly.

The functionals @k, Wi,k = 1, 2, from (36) and (40) are linear with respect to the unknown values
‘9”|F1 9H|r2 =1 2:
u‘r1/u|r2/ 351.1 (95]/]— ; &

u |r1 u ‘1"2 Ju )rl ou |rz
057 0& T 9& T 094

Dy (u |r1 , u |r2 ,

=Y @ ul: +}:b<"><s> + Z [ @y, dc+

i=1 i,j=1

" f d<")<c> dc+<pk<5>k—12 (41)
i,7=1

=

dulr, oulr, ulr, Aulr,
9817 98" 9& T d&

Wi(u |r1 , M|rz ,

2

=Y @l +Zb<”<5> +Z [ el dce

i=1 i,j=1

+Zf A00) o dC+(P1(5), 1=3,4 k=1,2. 2)

i,j=1

Excluding 3; |g,3 &) » k=1,2, from system (41), (42) we'll obtain a system of linear integro-differential
Fredholm equations of the second kind with respect to u(&’, yx(&')), k=1, 2:

iA% +ZB"’(£> &5 Z f COCulr, dc+

i=1 i,j=1

2 du
+ZID(.'.‘)(C) I ~dC+g(E) =0, k=12, (43)
S
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AP(E) =€) D&, BYE) = b)) - &),
C(C) = T - (@), D) = dP (@) - di A @),

k(&) = or(&) — Pra(E), k=1, 2.

Thus, we have come to a two-dimensional system of linear integro-differential equations of the first order

for which Dirichlet’s conditions (3) are given on the boundary dS = S\S= T'; T of a two-dimensional
domain S. As this boundary is one-dimensional then this Dirichlet’s condition doesn’t restrict the generality
because its dimension is two units less than the dimension of the domain D.

Thus, we have established the following

Theorem 5.1. If the assumptions of Theorem 4.1 and conditions (34) hold true and system (39) is uniquely resolved
then boundary-value problem (1)-(2) is reduced to a two-dimensional system of linear integro-differential equations

(43) with Dirichlet’s condition (3) on the boundary dS = S\S.
Finally, there has been established

Theorem 5.2. If the assumptions of Theorem 5.1 hold true then boundary value problem (1), (2), (3) has Fredholm
property.
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