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aUSTHB, Faculté de Mathématiques, RECITS Laboratory BP 32, El-Alia, 16111 Bab-Ezzouar, Algiers, Algeria
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Abstract. The present study is devoted to some new formulas for a family of Appell polynomials. These
formulas are expressed in terms of Bernoulli-Euler and Bernoulli-Genocchi polynomials. Moreover, other
additive formulas and new combinatorial identities are established. In particular some closed relations
with nested sums are exhibited.

1. Introduction

Several families of polynomials play a fundamental role in various fields of mathematics and applied
sciences. Especially, after their introduction and study in the seminal work of Appell (see [3]). Appell
polynomials are paid much attention and their theory is subject of many studies (see for example [8, 12, 17–
22]). Indeed, the active research on this family of polynomials is motivated by its several applications
in various fields of mathematics and applied sciences such as combinatorics, analytic number theory and
asymptotic approximation theory.

Among the various methods and techniques used in the literature for studying Appell polynomials and
their generalizations, are those developed by Srivastava et al.. In the aim to consider the q-Appell polynomi-
als, Srivastava gave in [19] some characterization of Appell polynomials in terms of Stieltjes integrals. Some
specializations of the main results of [19], allow to recover several known results. In [22] Verde-Star and
Srivastava aim at giving the complete list of the binomial formulas of the generalized Appell polynomials,
using a generating-function of the generalized Appell form for a sequence of Newton polynomials. Several
related formulas, including the well-known q-analogue of the binomial formula are obtained. Continuing
his investigations on Appell polynomials, Srivastava introduced and investigate some of the principal
generalizations and unifications of the classical Bernoulli, Euler and Genocchi polynomials, and also their
corresponding numbers, by means of suitable generating functions. Moreover, Srivastava presented several
interesting properties of these general polynomial systems including some explicit series representations
in terms of the Hurwitz (or generalized) zeta function and the familiar Gauss hypergeometric function. In
addition, in this interesting study a historical overview of these classes of polynomials and their various
extensions are presented. On the other hand, some families of differential equations associated with the
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Hermite-based Appell polynomials and other classes of Hermite-based polynomials, have been investi-
gated recently in [21]. Moreover, the corresponding results for the Hermite-based Genocchi polynomials,
and those involving the Hermite-based Euler polynomials are derived.

Several characterizations of the family of Appell polynomials {An(x)}n≥0, where de1(An) = n, were
given in various studies (see for example [13, 15, 16]). Mainly, it was shown in [16] that the assertion
dAn

dx
(x) = nAn−1(x), for n = 1, 2, ..., is equivalent to the existence of a formal power series f (t) =

+∞∑
n=0

αn
tn

n!
,

with α0 , 0, satisfying the equation,

f (t)ext =

∞∑
n=0

An(x)
tn

n!
. (1)

Expression (1) makes it possible to recover one of the well known Appell assertion, namely, there is a
one-to-one correspondence of the set of numerical sequences {αn}n, with α0 , 0, and the set of polynomials
sequence {An(x)}n given by the following binomial convoluted expression,

An(x) =

n∑
k=0

(
n
k

)
αn−kxk, (2)

or, equivalently An(x) = αn +

(
n
1

)
αn−1x +

(
n
2

)
αn−2x2 + · · · + α0xn, for n = 0, 1, 2, . . .. It is also known that the

family of Appell polynomials contains many important classes of classical polynomials (see [13, 18]). That
is, following (1) the polynomials Bn(x) (n ≥ 0) of Bernoulli, En(x) (n ≥ 0) of Euler and Gn(x) (n ≥ 0) of
Genocchi, are nothing else but the Appell polynomials corresponding, respectively, to the invertible series

of the functions f (t) =
t

et − 1
, f (t) = 2

et+1 and f (t) =
2t

et + 1
. More precisely, we have

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
;

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
and

2text

et + 1
=

∞∑
n=0

Gn(x)
tn

n!
, (3)

where |t| < 2π for Bernoulli polynomials and |t| < π for Euler and Genocchi polynomials. Several approaches
and methods have been considered for studying Appell polynomials, as well as for Bernoulli, Euler and
Genocchi polynomials. In particular, formulas of these polynomials and some identities connecting them
are developed. Recently, an approach by means of a determinantal form for Appell polynomials has been
considered in [7], and its equivalence with the previous characterizations of Appell polynomials has been
studied.

The goal of this paper is to explore another determinantal approach to study some properties of a
large class of Appell polynomials. This approach involves Bernoulli, Euler and Genocchi polynomials.
Moreover, several new combinatorial identities and additional formulas are established, and some related
nested sums are exhibited. Our approach is based on standard computations, involving the generating
functions (3).

The content of this study is organized as follows. We first introduce the deterministic concept, in con-
nection with new identities, involving Bernoulli, Euler and Genocchi polynomials. Therefore, expressions
of Appell polynomials and a determinantal additional formulas for Appell polynomials, are established in
terms of Bernoulli, Euler and Genocchi polynomials (Section 2). Secondly, an interesting class of Appell
polynomials, extending Euler and Genocchi polynomials is considered, and some new combinatorial iden-
tities are established, especially those related to nested sums (Section 3). Finally, concluding remarks and
perspectives are presented (Section 4).

2. On Another Determinantal Approach for Appell Polynomials

In this Section we present a determinantal approach for Appell polynomials by means of some expansion

formulas. Let x and t be real numbers, with |t| < π, and set T(x, t) =
text

et − 1
×

2ext

et + 1
. Taking into account the
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right hand side of (3) a direct computation permits to have

T(x + 1, t) − T(x, t) =

∞∑
n=0

 n∑
k=0

(
n
k

)
(Bn−k(x + 1)Ek(x + 1) − Bn−k(x)Ek(x))

 tn

n!
.

On the other hand, we have T(x + 1, t) − T(x, t) = 2te2xt =
∑+∞

n=1 n2nxn−1 tn

n!
. Comparing the preceding two

expansions of T(x + 1, t) − T(x, t), we can formulate the next result.

Proposition 2.1. Let x be a real number and an integer n ≥ 0. Then, the two following identities are verified,

xn =
1

2n+1(n + 1)

n+1∑
k=0

(
n + 1

k

) ∣∣∣∣∣ Bn−(k−1)(x + 1) Ek(x)
Bn−(k−1)(x) Ek(x + 1)

∣∣∣∣∣ , (4)

xn =
1

2n+1(n + 1)(n + 2)

n+2∑
k=0

(
n + 2

k

) ∣∣∣∣∣ Bn−(k−2)(x + 1) Gk(x)
Bn−(k−2)(x) Gk(x + 1)

∣∣∣∣∣ , (5)

where
a c
b d represents the determinant of the matrix

[
a c
b d

]
.

The proof of the identity (5) is similar to the preceding proof of (4). As a consequence of Proposition 2.1,
we show that the Appell polynomials, {An(x)}n≥0 given by (2), can be expressed in terms of the Bernoulli,
Euler and Genocchi polynomials. That is, by a straightforward calculation, the substitution of xn given by
(4)-(5) in Expression (2) allows us to reach the formulas,

An(x) =

n∑
k=0

αn−k

k+1∑
j=0

Λ j,k,n ×

∣∣∣∣∣ Bk−( j−1)(x + 1) E j(x)
Bk−( j−1)(x) E j(x + 1)

∣∣∣∣∣ , (6)

where Λ j,k,n =
1

2k+1(k + 1)

(
n
k

)(
k + 1

j

)
, and

An(x) =

n∑
k=0

αn−k

k+2∑
j=0

∆ j,k,n ×

∣∣∣∣∣ Bk−( j−1)(x + 1) G j(x)
Bk−( j−1)(x) G j(x + 1)

∣∣∣∣∣ , (7)

where ∆ j,k,n =
1

2k+1(k + 1)(k + 2)

(
n
k

)(
k + 2

j

)
. Recently, several additional formulas were established in [12],

for a large class of Appell polynomials. As a consequence of Proposition 2.1, we derive two new addition
formulas for the Appell polynomials, in terms of Bernoulli, Euler and Genocchi polynomials.

Theorem 2.2. Let {An(x)}n≥0 be a sequence of Appell polynomials. Then, each of the following addition formulas
holds,

An(x + y) =

n∑
k=0

An−k(y)
k+1∑
j=0

Λ j,k,n ×

∣∣∣∣∣ Bk−( j−1)(x + 1) E j(x)
Bk−( j−1)(x) E j(x + 1)

∣∣∣∣∣ , (8)

An(x + y) =

n∑
k=0

An−k(y)
k+1∑
j=0

∆ j,k,n ×

∣∣∣∣∣ Bk−( j−1)(x + 1) G j(x)
Bk−( j−1)(x) G j(x + 1)

∣∣∣∣∣ , (9)

where Λ j,k,n =
1

2k+1(k + 1)

(
n
k

)(
k + 1

j

)
and ∆ j,k,n =

1
2k+1(k + 1)(k + 2)

(
n
k

)(
k + 2

j

)
.
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Proof. For an Appell polynomial An(x), we have

An(x + y) =

n∑
k=0

(
n
k

)
An−k(y)xk, (10)

(see [12, 13]). Now, by replacing the factor xk in (10) by its expression given in (4), and by interchanging
the order of the resulting double sum, we get the expansion formula (8). Similarly, Expression (9) can be
proved by substituting the expansion formula (5) of xn in Formula (10).

The determinantal formula (4) of xn and Expression (8) of An(x + y), involve the Bernoulli and Euler
polynomials. However, these formulas can be expanded only in terms of the Bernoulli polynomials, using
some well known closed relations between Bernoulli and Euler polynomials. Indeed, for every integer

m ≥ 2, it is well known that En(mx) =
−2

n + 1
mn ∑m−1

k=0 (−1)kBn+1(x + k
m ), and

En(x) =
2

n + 1

[
Bn+1(x) − 2n+1Bn+1(

x
2

)
]
, (11)

for m = 1 (see [8, 17]). Thus, the determinantal expansion formula (4) of xn, can be formulated only in terms
of the Bernoulli polynomials. By considering (11), we introduce the following useful notation

Es,k(x) :=
2

k + 1

∣∣∣∣∣ Bs(x + 1) Bk(x) − 2kBk( x
2 )

Bs(x) Bk(x + 1) − 2kBk( x+1
2 )

∣∣∣∣∣ , (12)

where s, k are integers and x is a real number. On the same lines, it is well known that (see [2])

Gn(x) = 2Bn(x) − 2n+1Bn(
x
2

). (13)

Hence, similarly the determinantal expansion formula (5) of xn, can be expressed only in terms of the
Bernoulli polynomials. By considering (13), we consider the following notation,

Gs,k(x) := 2
∣∣∣∣∣ Bs(x + 1) Bk(x) − 2kBk( x

2 )
Bs(x) Bk(x + 1) − 2kBk( x+1

2 )

∣∣∣∣∣ , (14)

for every integer s, k and a real number x ∈ R.

Proposition 2.3. Under the preceding data, for every n ≥ 1 the following expansion formulas hold,

xn =
1

2n+1(n + 1)

n+1∑
k=0

(
n + 1

k

)
En−k+1,k+1(x), (15)

and

xn =
1

2n+1(n + 1)(n + 2)

n+2∑
k=0

(
n + 2

k

)
Gn−k+2,k(x). (16)

where the En,k(x) and Gn,k(x) are as in (12) and (14), respectively.

Proof. For m = 1 and s = n− (k− 1), the substitution of Expression (11) in (4), leads to the following relation,∣∣∣∣∣ Bn−(k−1)(x + 1) Ek(x)
Bn−(k−1)(x) Ek(x + 1)

∣∣∣∣∣ = En−k+1,k+1(x),

for every k (0 ≤ k ≤ n + 1), where Ek, j(x) is as in (12). This completes the proof of (15). The identity (16) is
established in a manner similar to that of (15).
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Expression (15) can be used for providing a new additional formula for Appell polynomials. That is,
the substitution of Formula (15) in (10), implies the following relation An(x + y) =

∑n
k=0

∑k+1
j=0 Λ j,k,nAn−k(y) ×

Ek− j+1, j+1(x), where Λ j,k,n =
1

2k+1(k + 1)
(n

k
)(k+1

j
)

and the Ek, j(x) are as in (12). We do the same for Expression

(16). Therefore, we have the result.

Theorem 2.4. Let {An(x)}n≥0 be a sequence of Appell polynomials. Then, each of the following addition formulas
holds,

An(x + y) =

n∑
k=0

An−k(y)
n+1∑
j=k

Λ j,k,n × Ek− j+1, j+1(x), (17)

where Λ j,k,n =
1

2k+1(k + 1)

(
n
k

)(
k + 1

j

)
, the Ek, j(x) are as in (12) and

An(x + y) =

n∑
k=0

An−k(y)
n+2∑
j=k

∆ j,k,n ×Gk− j+2, j(x), (18)

where ∆ j,k,n =
1

2k+1(k + 1)(k + 2)

(
n
k

)(
k + 2

j

)
and Gk, j(x) are as in (14).

Expressions (17)-(18) can be generalized using the notion of nested sums formula (see [1, 5, 14]). That is,
we setWk,n(x) =

∑n+1
j=k Λ j,k,n×Ek− j+1, j+1(x) andUk,n(x) =

∑n+2
j=k ∆ j,k,n×Gk− j+2, j(x), where theEk, j(x) and theGk, j(x)

are as in (12) and (14), respectively. Then, Expressions (17)-(18) take the form An(x+y) =
∑n

k=0 An−k(y)Wk,n(x)
and An(x + y) =

∑n
k=0 An−k(y)Uk,n(x), respectively. Therefore, Formulas (17)-(18) can be extended as follows.

Let n ≥ 1 be an integer and x1,...,xs, y be real numbers, then we have the formulas,

A(
s∑

i=1

xi + y) =

n∑
k1=0

n−k1∑
k2=0

· · ·

n−
∑s−1

i=1 ki∑
ks=0

An−
∑s

i=1 ki
(y)Yk1,...,ks;n(x1, . . . , xs) (19)

where Yk1,...,ks;n(x1, . . . , xs) =Wk1,n(x1)Wk2,n−k1 (x2) · · ·Wks,n−
∑s−1

i=1 ki
(xs) and

A(
s∑

i=1

xi + y) =

n∑
k1=0

n−k1∑
k2=0

· · ·

n−
∑s−1

i=1 ki∑
ks=0

An−
∑s

i=1 ki
(y)Vk1,...,ks;n(x1, . . . , xs) (20)

where Vk1,...,ks;n(x1, . . . , xs) = Uk1,n(x1)Uk2,n−k1 (x2) · · ·Uks,n−
∑s−1

i=1 ki
(xs). In fact, Formulas (19)-(20) represent a

nested sums formula. For s = 1, we show easily that Expressions (17)-(18) represent a particular case of
(19)-(20).

Now in a similarly way to Formulas (6)-(7), the result of Proposition 2.3 can be used to establish that
the Appell polynomials {An(x)}n≥0, can be expressed only in terms of Bernoulli polynomials. Indeed,
a straightforward computation using the substitution of the determinental expansion (15)-(16) of xn in
Expression (2), permits us to get the formulas An(x) =

∑n
k=0 αn−k

∑k+1
j=0 Λ j,k,n × Ek− j+1, j+1(x), where Λ j,k,n =

1
2k+1(k + 1)

(n
k
)(k+1

j
)

and the Ek− j+1, j+1(x) are as in (12), and

An(x) =

n∑
k=0

αn−k

n+2∑
j=k

∆ j,k,n ×Gk− j+2, j(x),

where ∆ j,k,n =
1

2k+1(k + 1)(k + 2)
(n

k
)(k+2

j
)

and the Gk− j+2, j(x) are as in (14).
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Remark 2.5. Expression (11) shows that an expansion of the xn in terms of Bernoulli polynomials, can be
also established. On the other hand, the expansion of xn in terms of Euler and Genocchi polynomials can
be also obtained, taking into account the well known formulas,

B(x) =

n∑
k=0,k,1

(
n
k

)
BkEn−k(x) =

n∑
k=0,k,n−1

(
n
k

)
Bn−kEk(x), (21)

where the Bm are the Bernoulli numbers (see [9]). Moreover, by using (21) and the well known closed

relation between Genocchi and Euler polynomials, namely En(x) =
1

n + 1
Gn+1(x) and Gn(x) = nEn−1(x) (see,

for example, [10, p. 5707, Lemma 1]), we derive the following expansion

B(x) =

n∑
k=0,k,1

βn,kBkGn−(k−1)(x) =

n∑
k=0,k,n−1

ηn,kBn−kGk+1(x),

where βn,k =

(
n
k

)
1

n − (k − 1)
and ηn,k =

(
n
k

)
1

k + 1
.

3. On a Class of Appell Polynomials of Euler-Genocchi Type

This section is devoted to a class of Appell polynomials, which generalizes the classical Euler En(x)
and Genocchi Gn(x) polynomials. Some important results (of this class) are established, by considering the
determinental approach studied in the preceding section. Let r ≥ 1 be an integer and {A(r)

n (x)}n≥0 the class
of polynomials defined by the generating function,

2tr−1

et + 1
ext =

∞∑
n=0

A(r)
n (x)

tn

n!
. (22)

Differentiation of both sides of (22) with respect to x and equalising the coefficients corresponding to

the powers tn (in both sides), lead to
d

dx
A(r)

n (x) = nA(r)
n−1(x). Hence, the polynomials A(r)

n (x) are Appell

polynomials. Since for r ≥ 2 the summation start from r − 1, then we have A(r)
j (x) = 0 for 0 ≤ j ≤ r − 2.

Such kind of generalization of Appell polynomials has been considered for Bernoulli polynomials in [11].
Particularly, we show easily that the Euler and Genocchi polynomials are given by En(x) = A(1)

n (x) and
Gn(x) = A(2)

n (x), respectively. We present the following determinantal identity.

Proposition 3.1. For every integer n ≥ r − 1 (r ≥ 1), the following formula is satisfied,

xn =
1

2n+1
∏r

j=1(n + j)

n+r∑
k=0

(
n + r

k

) ∣∣∣∣∣∣ Bn−(k−r)(x + 1) A(r)
k (x)

Bn−(k−r)(x) A(r)
k (x + 1)

∣∣∣∣∣∣ . (23)

Proof. The proof is based on the similar process of the proof of Proposition 2.1. That is, set T(x, t) =
2tr−1

et + 1
ext t

et − 1
ext, then taking into account the series product, a straightforward computation implies that,

T(x + 1, t) − T(x, t) =

∞∑
n=0

n∑
k=0

(
n
k

) ∣∣∣∣∣∣ Bn−k(x + 1) A(r)
k (x)

Bn−k(x) A(r)
k (x + 1)

∣∣∣∣∣∣ tn

n!
.

On the other hand, we have

T(x + 1, t) − T(x, t) = 2tre2xt =

+∞∑
n=0

2n+1xn tn+r

n!
=

+∞∑
n=0

2n−r+1xn−r tn

(n − r)!
.

By equalising the two preceding power series we easily get the result.
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By combining the Expressions (10) and (23) we can arrive at a new addition formula related to Appell
polynomials A(r)

n (x) (n ≥ 0).

Theorem 3.2. Let {A(r)
n (x)}n≥0 be the class of Appell polynomials given by (22), with r ≥ 1. Then, for every n ≥ r−1,

the following formula holds,

An(x + y) =

n∑
k=0

An−k(y)
k+r∑
j=0

Ωr, j,k,n ×

∣∣∣∣∣∣∣ Bk− j+1(x + 1) A(r)
j (x)

Bk− j+1(x) A(r)
j (x + 1)

∣∣∣∣∣∣∣ , (24)

where Ωr, j,k,n =
1

2k+1
∏r

i=1(k + i)

(
n
k

)(
k + r

j

)
.

Note that A(r)
j (y) ≡ 0, for 0 ≤ j ≤ r − 2, thus we have An−k(y) ≡ 0 for 0 ≤ n − k ≤ r − 2. For r = 1 and r = 2,

respectively, Formula (24) is nothing else but Formulas (8) and (9), respectively. Expression (24) can be also
generalized using the notion of nested sums formula (see [1, 5, 14]). That is, we set

W(r)
k,n(x) =

n+r∑
j=k

Ω(r)
j,k,n(x) ×

∣∣∣∣∣∣∣ Bk− j+1(x + 1) A(r)
j (x)

Bk− j+1(x) A(r)
j (x + 1)

∣∣∣∣∣∣∣ ,
where Ω(r)

j,k,n(x) =
1

2k+1
∏r

i=1(k + i)

(
n
k

)(
k + r

j

)
. Therefore, (24) takes the form A(r)

n (x + y) =
∑n

k=0 A(r)
n−k(y)W(r)

k,n(x).

On a same way, as for Expression (17) the generalization of Formula (24) is given as follows,

A(r)
n (

s∑
i=1

xi + y) =

n∑
k1=0

n−k1∑
k2=0

· · ·

n−
∑s−1

i=1 ki∑
ks==0

A(r)
n−

∑s
i=1 ki

(y)Y(r)
k1,...,ks;n

(x1, . . . , xs), (25)

where Y(r)
k1,...,ks;n

(x1, . . . , xs) =W(r)
k1,n

(x1)W(r)
k2,n−k1

(x2) · · ·W(r)
ks,n−

∑s−1
i=1 ki

(xs), for every integer n ≥ 1 and real numbers

x1,. . . ,xs, y. For r = 1 we can show that (25) is nothing else but (19), and when s = 1 in (25) we easily recover
Formula (24). On the other hand, the substitution of (23) in (2) brings us; through a direct computation, to
the following general results.

Theorem 3.3. Let {An(x)}n≥0 be a sequence of Appell polynomials given by (2), and {A(r)
n (x)}n≥0 be the class of Appell

polynomials defined by (22), with r ≥ 1. Then, for every n ≥ r − 1, the following formula holds,

A(r)
n (x) =

n∑
k=0

αn−k

k+r∑
j=0

Ω(r)
j,k,n(x) ×

∣∣∣∣∣∣∣ Bk− j+1(x + 1) A(r)
j (x)

Bk− j+1(x) A(r)
j (x + 1)

∣∣∣∣∣∣∣ .
Let k ≥ r − 1 (r ≥ 1), n ≥ 0 be two integers and {A(r)

n (x)}n≥0 be the class of Appell polynomials given by
(22). In the sequel of this section Θ(r)

m,k(x, y) denotes the expression

Θ(r)
m,k(x, y) =

∣∣∣∣∣∣ Bm(x + 1) A(r)
k (y)

Bm(x) A(r)
k (y + 1)

∣∣∣∣∣∣ .
The family of determinants {Θ(r)

m,k(x, y)}m,k≥0, appearing in results of the preceding sections, satisfy some

interesting identities. These identities are useful for computing them recursively. Indeed, since 2tre(x+y)t

et+1 =
2trext

et+1 .e
yt and eyt =

∑+∞
k=0 yk tk

k! , Expression (22) and formula of series product, imply that we have A(r)
k (y + z) =∑k

j=0
(k

j
)
y jA(r)

k− j(z). A straightforward computation, using the former formula, allows us to formulate the
following property.
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Proposition 3.4. Let r ≥ 1 and {A(r)
n (x)}n≥0 (r ≥ 1) be the class of Appell polynomials given by (22). Then, we have∣∣∣∣∣∣ Bm(x + 1) A(r)

k (z + y)
Bm(x) A(r)

k (z + y + 1)

∣∣∣∣∣∣ =

k∑
j=0

(
k
j

)
y j

∣∣∣∣∣∣∣ Bm(x + 1) A(r)
k− j(z)

Bm(x) A(r)
k− j(z + 1)

∣∣∣∣∣∣∣ ,
where x, y, z are reals numbers and m, k are integers. In other words, the class of determinants Θ(r)

m,k(x, y) satisfy the
following additive relation,

Θ(r)
m,k(x, z + y) =

k∑
j=0

(
k
j

)
y jΘ(r)

m,k− j(x, z).

In particular, for y = (s − 1)x and z = x we come to the corollary,

Corollary 3.5. Let r ≥ 1 and {A(r)
n (x)}n≥0 be the class of Appell polynomials defined as in (22). Then, for every real

number x we have∣∣∣∣∣∣ Bm(x + 1) A(r)
k (sx)

Bm(x) A(r)
k (sx + 1)

∣∣∣∣∣∣ =

k∑
j=0

γk, j(s)xk− j

∣∣∣∣∣∣∣ Bm(x + 1) A(r)
j (x)

Bm(x) A(r)
j (x + 1)

∣∣∣∣∣∣∣ , (26)

where m, k, s are integers and γk, j(s) =
(k

j
)
(s − 1)k− j. In other words, we have

Θ(r)
m,k(x, sx) =

k∑
j=0

(s − 1)k− j
(
k
j

)
xk− jΘ(r)

m, j(x, x).

For y = (s − t)x and z = tx we get the corollary,

Corollary 3.6. Let r ≥ 1 and {A(r)
n (x)}n≥0 (r ≥ 1) be the class of Appell polynomials defined as in (22). Then, for

every real number x, we have∣∣∣∣∣∣ Bm(x + 1) A(r)
k (sx)

Bm(x) A(r)
k (sx + 1)

∣∣∣∣∣∣ =

k∑
j=0

γk, j,s,t(x)

∣∣∣∣∣∣∣ Bm(x + 1) A(r)
j (tx)

Bm(x) A(r)
j (tx + 1)

∣∣∣∣∣∣∣ , (27)

where m, k, t, s and s ≥ t are integers and γk, j,s,t(x) =
(k

j
)
(s − t)k− jxk− j. In other words, we have

Θ(r)
m,k(x, sx) =

k∑
j=0

(s − t)k− j
(
k
j

)
xk− jΘ(r)

m, j(x, tx).

In fact, considering the properties of the nested sums (see [1, 5, 14]), we can see that Proposition 3.4 and its
Corollaries 3.5, 3.6 are special cases of the following general theorem.

Theorem 3.7. Let r ≥ 1 and {A(r)
n (x)}n≥0 be the class of Appell polynomials given by (22). Then, for every real x, x1,

. . . , xp, y (p ≥ 1) and integers m, n, we have

Θ(r)
m,n(x,

p∑
i=1

xi + y) =

n∑
j1=0

n− j1∑
j2=0

· · ·

n−
∑p−1

i=1 ji∑
jp=0

Γn,m, j1,..., jp (x1, ..., xp; x, y), (28)

such that Γn,m, j1,..., jp (x1, ..., xp; x, y) =
( n

j1, j2,..., jp

)
x j1

1 · · ·x
jp
p Θ(r)

m,n−
∑p

i=1 ji
(x, y), where the summation takes place over all

integers j1, j2, . . . , jp such that

(
n

j1, j2, . . . , jp

)
=


n!

j1! j2! · · · jp!
, for j1 + · · · + jp = n;

0, otherwise,
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which are called the multinomial coefficients [6, p.41] and(
n

j1, j2, . . . , js

)
=

(
n
j1

)(
n − j1

j2

)
· · ·

(
n −

∑s−1
i=1 ji

js

)
.

For general properties concerning multinomial coefficients see [4]. When s = 1 we show easily that (28) is
nothing else but formula of Proposition 3.4. Now for p = s − 1 and x = x1 = · · · = xp = y we can deduce the
following combinatorial identity,

Θ(r)
m,n(x, sx) =

n∑
j1=0

n− j1∑
j2=0

. . .

n−
∑s−2

i=1 ji∑
js−1=0

Πn,m, j1,..., jp (x1, ..., xp; x), (29)

where Πn,m, j1,..., jp (x1, ..., xp; x) =
( n

j1, j2,..., js−1

)
x
∑s−1

i=1 jiΘ(r)
m,n−

∑s−1
i=1 ji

(x, x), and comparing (26) and (29) we obtain the

identity,

k∑
j=0

(
k
j

)
(s − 1)k− jxk− jΘ(r)

m, j(x, x) =
∑

j1+ j2+···+ js−1=n

Πn,m, j1 ,..., jp (x1, ..., xp; x).

Using (28) for p = s − t, x = x1 = · · · = xp and y = tx, we can derive the following combinatorial identity,

Θ(r)
m,n(x, sx) =

n∑
j1=0

n− j1∑
j2=0

. . .

n−
∑s−(t+1)

i=1 ji∑
js−t=0

Hn; j1,..., js−t (x)Θ(r)
m,n−

∑s−t
i=1 ji

(x, tx), (30)

whereHn; j1,..., js−t (x) =
( n

j1, j2,..., js−t

)
x
∑s−t

i=1 ji , and comparing (27) and (30), we obtain the identity,

k∑
j=0

(
k
j

)
(s − t)k− jxk− jΘ(r)

m, j(x, tx) =
∑

j1+···+ js−t=n

Hn; j1 ,..., js−t (x)Θ(r)
m,n−

∑s−t
i=1 ji

(x, tx).

4. Concluding Remarks and Perspective

In this paper we have developed a series of identities involving a determinantal form. This determinantal
form, elaborated from a simple calculation process, allowed us to express the Appell polynomials with the
aid of Bernoulli, Euler and Genocchi polynomials. Moreover, some addition formulas are established. As
far as we know, our formulas are not current in the literature.

Several studies and generalisations of Bernoulli, Euler and Genocchi polynomials have been proposed
in the literature. Our perspective is to go deeper into our work, taking into account results of these studies.
Especially, we are interested in the elaboration of a recursive and combinatorial process for some classes of
Appell polynomials. Therefore, we can perform several identities established in Sections 2 and 3.
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