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Abstract. We consider the class of 0-semigroups (H, x) that are obtained by adding a zero element to a
group (G, ) so thatforallx,y € Githoldsx*xy # 0 = xxy = xy. These semigroups are called 0-extensions
of (G, ). We introduce a merging operation that constructs a 0-semihypergroup from a 0-extension of (G, -)
by a suitable superposition of the product tables. We characterize a class of 0-simple semihypergroups that
are merging of a 0-extension of an elementary Abelian 2-group. Moreover, we prove that in the finite case
all such 0-semihypergroups can be obtained from a special construction where (H, %) is nilpotent.

1. Introduction

In our preceding paper [6] we discovered a family of 0-semihypergroups having the following property,
among others: for any 0-semihypergroup (H, o) the hyperproduct o is obtained by a superposition of the
product tables of a 0-semigroup (H, x) and a left zero semigroup (H.,-) [16], where H. = H — {0}. Those 0-
semihypergroups originated from a study on semihypergroups having the cardinality of all hyperproducts
not greater than 2 and the fundamental relation f non-transitive. In [6] we obtained a complete description
of the isomorphism classes of that family; if |H.| = #n then the number of these isomorphism classes is the
(n + 1)-th term of the sequence A000070 [17]. The aim of the present work is to analyze algebraic and
combinatorial properties of pairs made by a 0-semigroup (H, x) and a 0-group (H, -) such that the operation
o defined as x o y = {x x y, xy} is associative.

After introducing some basic definitions and notations to be used throughout the paper, in Section 2
we consider 0-semigroups (H, %) that are obtained by adding a zero element to a group (H,,:). These
semigroups are called O-extensions of (H,,-). Moreover, we introduce the merging operation, which
constructs a 0-semihypergroup by a suitable superposition of the product tables of (H, x) and (H,-). In
Section 3 we consider a class of 0-semihypergroups (H, o) that are characterized by being the merging of a
0-extension of an elementary Abelian 2-group. That class is denoted by ®,.

In Section 4, we prove that every (H,0) € §, belongs to one of two subclasses, denoted by ®(, and
®¢s, according to whether 101 = {0,1} or 1 01 = {1}, where 1 is the identity of the group (H.,-). We
denote by & , and &, the subclasses of semihypergroups (H, o) in §o4 and Gy, respectively, such that
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[Tox| =|xol] =|xox| =2, forall x ¢ {0,1}. There is a bijection between the semihypergroups in & , and
those in & .. We show that every §-semihypergroup can be obtained from a semihypergroup in (5 or
G5, by two spec1al constructions described in Propositions 5.3 and 5.5. In Section 5, we study the class G')o(n)
of finite ®¢-semihypergroups of size n. In that case the semihypergroups (H, o) in ®f , are merging of a
nilpotent semigroup (H, x) with an elementary Abelian 2-group. In Proposition 6.1 we show a tight bound
on the nilpotency rank of the semigroup (H, x). Finally, in Section 6, with the help of symbolic computation
software, we determine the number of isomorphism classes in $y(5) and $¢(9). To that goal, we use the
results found in Section 4 and 5. We obtain 41 semihypergroups in $y(5) and 7272 in 6(9).

2. Basic Definitions and Results

Throughout this paper we use just a few basic concepts and definitions that belong to common termi-
nology in semigroup and semihypergroup theory, see [2, 3, 16].

A semigroup (S, ) is said to be nilpotent if there exists r € IN such that [S"| = 1. The minimum positive
integer r such that |S"| = 1 is called nilpotency rank or degree of (S, -).

A semigroup with a zero element 0 is called 0-semigroup.

A right zero semigroup is a semigroup (S, ) such thatxy = y, forallx, y € S. Left zero semigroups are defined
in an analogous way.

A group (G, -) in which every element has order less or equal to two is called elementary Abelian 2-group.

If (G, ) is a group and 0 ¢ G the set G U {0} is a 0-semigroup respect the product x defined as follows:

O0%x0=xx0=0%x=0, xxy=xy, forallx,yeG.

The semigroup (G U {0}, ) is called 0-group.

Let H be a non-empty set, a hyperoperation o on H is a map from H X H to P*(H), where #*(H) denotes
the family of all non-empty subsets of H. If A, B are non-empty subsets of H then A o B = (J,c4 pep 2 © b and
xoA={x}oA Aox=Ao{x}forall x € H.

A semihypergroup is a non-empty set H endowed with an associative hyperproduct o, thatis (xoy)oz =
xo(yoz)forallx,y,ze€H.

If (H, o) is a semihypergroup, an element 0 € H such that x o 0 = {0} (resp., 0 o x = {0}) for all x € H is
called right zero scalar element (resp., left zero scalar element) of (H, o). If 0 is both right and left zero scalar
element, then it is called zero scalar or absorbing element, and (H, o) is said to be a 0-semihypergroup.

A simple semihypergroup is a semihypergroup (H, o) such that Hoxo H = H, for all x € H. A semi-
hypergroup (H, o) with a zero scalar element 0 is called zero-simple if Ho x o H = H, for all x € H — {0}
[12].

Given a semihypergroup (H, o), the relation §* of H is the transitive closure of the relation = U318,
where f; is the diagonal relation in H and, for every integer n > 1, 8, is defined recursively as follows:

xBuy &= Az1,...,20) €H" : {x,y} Cz102p0...02,.

The relations f, f* are called fundamental relations on H [1, 9, 13, 14, 18]. The interested reader can find
all relevant definitions, many properties and applications of fundamental relations, even in more abstract
contexts, alsoin [4, 5, 7, 8, 10, 15].

3. 0-extensions and Mergings

In this section we introduce a class of 0-semigroups that are obtained by adding a zero element to a
group. Furthermore, we provide a construction of 0-semihypergroups by a suitable superposition of the
product tables of one such 0-semigroup with the associated group. Here and in the following we indicate
with 1 the identity of G and we use the notation I, as a shorthand for the set {0,1,...,n}.
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3.1. O-extensions
Definition 3.1. Let (H, %) and (G, -) be respectively a 0-semigroup and a group. We say that (H, ) is a
0-extension of (G, -) if the following conditions are verified:

1.0¢ Gand H=G U {0};

2. Forallx,y € Githoldsx *x y#0 = x %y =xy.

Hereafter, we give some examples of 0-extensions.

Example 3.1. Every 0-group is 0-extension of a group.

Example 3.2. Consider the following operations defined on I,:

*x |0 1 2 *x |0 1 2 *x3 |0 1 2
010 0 O 010 0 O 00 0 O
1 (0 1 2 170 1 2 170 1 0
210 2 O 210 0 O 210 2 0
x4 [0 1 2 x5 [0 1 2 *xs [0 1 2
00 O O 00 0 O 00 0 O
110 1 O 1 (0 0 O 170 0 O
210 0 O 210 0 1 210 0 O

Then, (I, *1), ..., (I2, x¢) are 0-extensions of the group Z,. Moreover, they are pairwise not isomorphic and
none of them is isomorphic to the 0-group obtained from Z,.

Example 3.3. Consider the following operations defined on I4:

cCowmWwolw
coowon
cocoocooo
coo ook
co o olN
oo ow
cococoon

SO O O OO
= WODN RO
SO ONOIDN
B WN - O *

B W N R O %

Then, (I4, %) and (I, *) are O0-extensions of the elementary Abelian 2-group of size 4.

Example 3.4. Let (G, -) be a group and let {H;};; be a family of subgroups of G, with |I| > 2. Moreover, let
{{xi1, xi2}}ier be a family of subsets of G which verifies the following conditions for every i, j € I:

1. {xi1, x} € H;;
2. {xi,xip, xn1xp} N H]' =@ ifi# ]

Considering an element 0 ¢ G, we define the following operation * on the set H = G U {0}:

b ab if {a,b} = {xp1, xpp} for somei € I
0 else.

The set H with the operation * is a 0-extension of the group (G, -).

Now we show a special construction of 0-extensions, that will be largely used in the next section.
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Proposition 3.1. Let (G, ) be an elementary Abelian 2-group and let (H, x) be a 0-extension of (G, -) such that
X*ky=z = xkz=z*kx=Yykz=zxy=0 1)
for all (x, v, z) of distinct elements in H — {0, 1}. On the set H we define the following product: If (a,b) # (1,1) then

0 ifa=b#1
a®b=40 ifeithera=1orb=1 2)
axb otherwise.

Moreover, 1 ® 1 can be defined as 0 or 1, indifferently. Then the product ® defined in (2) is associative and (H, ®) is a
0-extension of the group (G, -).

Proof. Clearly, for every x,y,z € H such that {x, y,z} N {0,1} # @, we have (x® /) ®z = x® (y ®z) = 0. On the
other hand, if {x, y,z} N {0, 1} = @ then we obtain:

e lfx=y=zwehave x®y)®z=x® (y®z) =0.

oelfx=y+#z wehave (*®x)®z =0and x®z = x xz. Clearly, if x xz =0thenx® (x®2z) = 0.
If x x z # 0 then x % z = xz with xz # 1 since x # z and (G, ) is an elementary Abelian 2-group.
Hence x,z,xz are three distinct elements in H — {0,1}. So, by (1) and (2), we have x % (xz) = 0 and
XQ(x®z)=x®(x x2z) =x®(xz) = x x (xz) = 0.

e If x # y = z, as in the preceding case, we obtain that x® ) ® y =x® (y®y) = 0.

e If x # yand y # z, we can distinguish three cases:
Dx®y=z 2)y®z=x 3)x@y+zand yQ®z # x.
In the case 1), we have (x® y) ® z =0 and z = x ® y = x * y = xy. Therefore x # z otherwise y = 1.

Thus, the elements x, y,z are pairwise distinct and, by (1), x * y =z = y %z = 0. In consequence
y®z=0and x®y)®z=x®(y®z) =0.

The case 2) is similar to the case 1). Finally, in the case 3), we have x x y # 1 and y x z # 1 otherwise
l=x%y =xyorl=y*z = yzand we have the contradiction x = y or y = z since (G,) is
an elementary Abelian 2-group. Hence x® y = x k¥ # z, y®z = y * z # x and consequently
@RY®z=(x*xy) kz=x* (Y *xz)=x® (yQ2).

Then (H, ®) is a 0-semigroup. From (2) we havethat x® y #0 = x®y=x*y # 0 = x®y = xy. Hence,
(H, ®) is a 0-extension of (G, -). O

3.2. The Merging Operation

In this subsection we introduce a construction of a 0-semihypergroup from a 0-extension (H, x) of a
group (G, -). The 0-semihypergroup obtained in that way will be called the merging of (H, x) and (G, -).

Let (H, x) be a 0-extension of a group (G, ). We define on the set H the following hyperoperation o: For
every x,y € G let

0o0=00x=x00={0}, xoy={x*yxy} 3)

From (3), we trivially deduce that for every x,y € G we have

xoy:{{xy} ifxxy#0; 4)

{0,xy} ifxxy=0.

We can prove the following result:
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Proposition 3.2. The set H equipped with the hyperproduct defined in (3) is a O-semihypergroup such that [}, z; €
z10...0zpand|z10...02,>1=z10...02, ={0, [, zi}, for every z1,23,...,2, € Gand n > 2.

Proof. Firstly we prove that the hyperoperation o is associative. Let x,y,z € H. If 0 € {x,y,z} then
(xoy) oz =xo0 (yoz) = {0}. Therefore, we suppose that x, y,z € G. By (4), we have that xy € x o y C {0, xy}
and xyz € (xy) o z C {0, xyz}. Hence,

xyz€(xoy)ozC{0,xyloz=002zU (xy) oz =1{0,xyz}
and we deduce that xyz € (x o y) o z C {0, xyz}. Analogously we can prove that xyz € x o (y o z) C {0, xyz}.

Now, we suppose |[(xoy) oz| = 1. By (3), wehave {x x y xz, xyz} C (xoy)oz = {xyz} and so x x y x z = xyz.
Since xyz # 0, we deduce that 0 ¢ {x x ¥ * z,x * ¥,y % z}J. In consequence we obtain y * z = yz and
xXyz = x % (Y * z) = x * (yz) = x(y x z). Thus,

xo(yoz)={x*ykzx*x(yz),x(y *xz),xyz} = {xyz} = (xoy) oz
Analogously, if [x o (y o z)| = 1 then (x o y) oz = x o (y 0 z) = {xyz}.

Now, suppose that |(x o y) o z| = 2. It follows that [x o (y o z)| =2 and so (x o y) oz = x o (y 0 z) = {0, xyz}.
Thus (H, o) is a 0-semihypergroup.

To prove the second part of the claim, let n > 2 and zj,z5,...,z, € G. If n = 2 then the claim is
true by (4). Proceeding by induction, suppose the claim is true for n — 1 > 2. Clearly, we have that

H?:_ll zi€z10...02,.1 C{0, H?:_ll z;} and (]_[1'-’:_11 zj) oz, € {0, [T}, zi}. Hence, we obtain
Z10...02Z,=(210...02,-1)02Z,
€ {0, IS 2} 0 20 = {0} U (ITES 20) 0 20 € {0, TT1L, ).
Therefore, |z10...02,>1 = zy0...02, ={0, [ zi}. O
Definition 3.2. We say that the 0-semihypergroup (H, o) in Proposition 3.2 is the merging of (H, %) with (G, -).
Example 3.5. Consider the following hyperproducts defined on I,:

01 0 1 2 0o 0 1 2 O3 0 1 2
0|0 0 O 010 O 0 0|10 0 O
110 1 2 110 1 2 1/0 1 02
210 2 01 210 02 01 210 2 0,1
og |0 1 2 o5 |0 1 2 o | 0 1 2
0]0 O 0 0j0 O 0 00 O 0
110 1 0,2 110 01 0,2 110 01 0,2
210 02 01 210 02 1 210 02 01

The 0-semihypergroups (I, 01),..., (I, 0¢) are the merging of the 0-semigroups (I, *1),..., (2, *¢) in Ex-
ample 3.2 with Z,. These semihypergroups will be used in the next section to introduce a new class of
0-semihypergroups.

Remark 3.1. Let (H, %) be a 0-extension of an Abelian 2-group (G, -) that verifies the condition (1). By
Proposition 3.1, the semigroup (H, ®) is also a 0-extension of (G, -), where ® is the product defined from *
as in (2). Moreover, let (H, o) be the merging of (H, x) with (G, -) and let (H, ) be the merging of (H, ®) with
(G, ). By Definition 3.2, the hyperproduct e fulfills

{11Cc1e1C{0,1}
xex=1{0,1}
0Oe0=0el1=1e0=0ex=x00={0} )
lex=xe1={0,x}
xeoy={x®yxy}={x*xyxy)
for all x,y € H—{0,1} and x # y. In particular, the hyperproducts o and e may only differ in the values
assumed on the pairs (1, x), (x,1) and (x, x), for all x € G. In the remaining cases we havexoy =x e y.
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4. The Class of ®(-semihypergroups

The six semihypergroups in Example 3.5 belong to the list of fourteen 0-semihypergroups of size 3 where
the relation f is not transitive [12, Thm. 5.6]. In particular, they belong to the family of the fully zero-simple
semihypergroups [6]. We remember that a 0-semihypergroup (H, o) is called fully zero-simple if it fulfills the
following conditions:

1. All subsemihypergroups of (H, o) (H itself included) are zero-simple;
2. the relation f in (H, o) and its restrictions fx to any subsemihypergroup K c H of size > 3 are not
transitive.

Since the relation f is transitive in all semihypergroups of size < 2, it follows that every fully zero-simple
semihypergroup has size > 3. In [6] the authors study the fully zero-simple semihypergrous satisfying
the condition {y} C xoy € {0, y}, for all x, y € H — {0}. In this case, H — {0} is a right zero semigroup [16]
and (H, o) can be regarded as the merging of a 0-semigroup with a right zero semigroup. Moreover, apart
of isomorphisms, the fully zero-simple semihypergroups of size n that verify such condition are exactly
Yo P(k), where p(k) denotes the number of non-increasing partitions of k.

In this section we study the fully zero-simple semihypergroups (H, o) with an element 1 # 0 such that,
for all x € H - {0,1}, the sets {0,1,x} are subsemihypergroups isomorphic to one of semihypergroups in
Example 3.5. Moreover, we show that these semihypergroups can be obtained as merging of a 0-semigroup
with an elementary Abelian 2-group. Firstly, we borrow the following result from Theorem 5.6 in [12].

Theorem 4.1. The semihypergroups in Example 3.5 are all and only the fully zero-simple semihypergroups of size 3
that are merging of a O-extension of Z, with Z,, apart of isomorphisms.

Now we prove the following result:

Proposition 4.1. Let (H, x) be a 0-extension of the group (G,-), with |G| > 2, and let (H, o) be the merging of
(H, %) with (G,-). If for all x € H —{0,1} the set {0,1,x} is a subsemihypergroup of (H, o) isomorphic to one of
semihypergroups (I, 01),..., (I, 0¢) in Example 3.5 then (H, o) is a fully 0-simple semihypergroup. Moreover, (G, -)
is an elementary Abelian 2-group.

Proof. First of all we prove that if K € H is a subsemihypergroup of (H, o) then K is zero-simple. We
suppose that |K| > 2 since the thesis is trivial if |K| = 1. By hypothesis, if there exists x € K — {0, 1} then the
set {0, 1, x} is a subsemihypergroup of (H, o) isomorphic to one semihypergroups in Example 3.5. Hence we
havel e xox CKand 0 € {1,x} o {1,x} € Ko K C K. Thus K = {0,1} or |[K| > 3 with {0,1} ¢ K. In both cases
Kis zero-simple sincex € loxo1land Ko x o K =K, for all x € K —{0}.

Now, we prove that if |K| > 3 then Bk is not transitive. If |[K| = 3, there exists x € H — {0, 1} such that
K =1{0,1,x} and K is isomorphic to one of the semihypergroups in Example 3.5. By Theorem 4.1, the relation
Bk is not transitive. If |[K| > 4 then there exist x,y € K —{0,1} with x # y. The sets {0,1,x} and {0, 1, y} are
subsemihypergroups isomorphic to one of the semihypergroups in Example 3.5. Hence, there exist two
hyperproducts P and Q of elements in {1,x} and {1, y}, respectively, such that {0,x} = P and {0,y} = Q.
Therefore, (x,0) € fx and (0, y) € Pk. If by absurd (x, y) € px then there exists a hyperproduct R of elements
in K such that {x, y} € R, which is impossible by Proposition 3.2. Thus Bk is not transitive and (H, o) is a
fully zero-simple semihypergroup. Finally, since 1 € x o x C {0,1}, by (3) and (4) we have xx = 1 for all
x € G, hence (G, -) is an elementary Abelian 2-group. m]

Let &y be the class of fully zero-simple semihypergroups. We use 0 and H, to denote the zero scalar
element of a semihypergroup (H, o) € & and the set H — {0}, respectively.

Definition 4.1. Let ®( be the subclass of semihypergroups in & with an element 1 € H, such that for all
x € H, the set {0, 1, x} is a subsemihypergroup of (H, o) isomorphic to one of semihypergroups in Example
3.5. A semihypergroup (H, o) € g is called ®y-semihypergroup. Moreover, the family of semihypergroups
{0, 1, x}}xer—(0,1) is the spectrum of (H, o).
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For reader’s convenience, we collect in the following lemma some preliminary results from [6].

Lemma 4.1. If (H, o) € & then we have:

1. If K is a subsemihypergroup of H such that 0 ¢ K then |K| = 1. Moreover, if |K| > 2 then the zero element of K
15 0;

2. for every sequence z1, ..., 2z, in H, we have zy o --- o z, # {0};

3. the set H, endowed with the hyperproduct a o b = (a o b) N H.. is a simple semihypergroup.

Consider the following definition:

Definition 4.2. Let (H, o) € &. The semihypergroup (H,, ©) defined in Lemma 4.1(3) is the residual semihy-
pergroup of (H, o). If (H,, ©) is a group then it is said the residual group of (H, o).

Lemma 4.2. Let (H, o) € ®y. Then we have:

1. [xoyl<2and|xoyl=2=0€xoy, forallx,y € H,;
2. the residual semihypergroup of (H, o) is an elementary Abelian 2-group.

Proof. 1. By considering the hyperproduct tables in Example 3.5, for all x, y € H, we have x o (x o y) =
(xox)oy €{0,1} oy = {0, y}. Hence, by Lemma 4.1(2), we deduce that y € x oa for some a € x o y. Therefore
wehavexoy Cxo(xoa)=(xox)oaC{0,1}oa={0,a}. Hence|xoy|<2and |xoy|=2=0€xo0y.

2. By the previous point and Lemma 4.1(3), (Hx, ©) is a simple semigroup. Moreover, since (H, o) € ®,
by looking at the tables in Example 3.5, for all x € H, we have x o x = {I}and x ¢ 1 = 1 o x = {x}. Hence
(H4, ©) is an elementary Abelian 2-group. O

By the preceding lemma, if (H, o) € ® then x ¢ y is a nonzero singleton, for all x, y € H... By identifying
a singleton with the element itself, we can define on the set H the following operation:

0 ifx=00ry=0;
Xx*xy=40 iflxoyl=2and x,y € Hy; (6)
xoy iflxoyl=1andx,y€ H,.

Note that x o y = {x x y, x ¢ y}. Moreover, we have the following result:

Proposition 4.2. If (H, o) € & then (H, %) defined in (6) is a semigroup that is a 0-extension of the residual group
(H4,9).

Proof. Let x,y,z € H. We have to prove that (x x y) * z = x x (y * z). If 0 € {x, y, z} the thesis is obvious.
Therefore suppose that x, y,z € H,.

If0¢xoyozthenxoy=xoy,(xoy)oz=xoyoz,yoz=yozandxo(yoz)=xoyoz Hencewe
havethat(x x y) xz=(xoy) *kz=x0yoz=x% (Y 0z) =x % (Y % z).

Now, suppose that 0 € x o y o z. There are four options:

1. 0¢xoyand 0 ¢ yoz.
Wehavexoy ={xoyland yoz ={yoz}. Hencex x y = x oy and y x z = y o z. Moreover, since
0 exoyoz,wehave0 € (xoy)ozand 0 € xo(yoz). Consequently, we obtain |[(xoy)oz| = [xo(yoz)| =2
and (xxy)*kz=(xoy) *xz=0=x % (yoz) =x* (Y *2).
2. 0exoyand0¢ yoz.
Wehavexoy ={0,xoyland yoz = yoz. Therefore (x*xy)xz=0%z=0and 0 € xo(yoz) =xo(yoz).
Consequently xo(yoz) = {0,xoyozland x x (y % z) = x*k (yoz) = 0. Hence, (x x y) kz = x * (y xz) = 0.
3. 0¢xoyandO€yoz.
The argument is analogous to the preceding one.
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4. 0exoyandOeyoz.
Wehavexoy={0,xoylandyoz={0,yoz}, hence(x * y) xz=0%z=0=x%x0=x % (y * 2).

Finally, (H, *) is a 0-extension of the residual group (H., ¢) since wehavex x y =xoy & xxy # 0, for
all x,y € H,. ]

Definition 4.3. The 0-semigroup (H, *) in Proposition 4.2 is the semigroup associated to (H, o).

Theorem 4.2. Let (H, o) be a 0-semihypergroup of size > 3. The following conditions are equivalent:

1. (H, 0) € (50,‘

2. there exists an elementary Abelian 2-group (H.,-), with identity 1, and a 0-semigroup (H, %), which is a
O-extension of (H.,-), such that (H, o) is the merging of (H, %) with (H,,-). Moreover, the set {0,1,x} is a
subsemihypergroup of (H, o) isomorphic to one of semilypergroups in Example 3.5, for all x € H — {0, 1}.

Proof. 1. = 2. The claim follows from Lemma 4.2 and Proposition 4.2. In fact, (H, o) is the merging of
the associated semigroup (H, %) with the residual group (H,, ).

2. = 1. By hypothesis and Proposition 3.2, (H, o) is a 0-semihypergroup such that xy € x o y and
[xoyl=2 = xoy={0,xy}, forall x,y € H,. Since (H;, -) is an elementary Abelian 2-group, we have

{0,1,x}0{0,1,x} ={0jUlolUloxUxolUxox={0,1,x},

for all x € H — {0, 1}. Hence the set X = {0, 1, x} is a subsemihypergroup of (H, o), for all x € H — {0,1}. By
hypothesis (X, o) is isomorphic to one of semihypergroups in Example 3.5, for all x € H — {0, 1}. Finally, by
Proposition 4.1 and Definition 4.1, we conclude that (H, o) € 6. ]

4.1. A Special Property of ®g-semihypergroups

In this paragraph we prove a special property of the ®y-semihypergroups that will turn out to be useful
in next sections. We premise a lemma which is valid for all (H, o) € &. Hereafter, if A is a non-empty subset
of Hthenwe define Ry ={xe H|xocACA}land Ly ={xe H|Aox C A}.

Lemma 4.3. Let (H, o) € &o and let A be a non-empty subset of H. If the set Ra (resp., La) is non-empty then it is a
subsemihypergroup of (H, o). Moreover, 0 ¢ A = |Ra| =1 (resp., |La| = 1).

Proof. Let x1,x2 € Ra. For every z € x1 o xp, we have thatzo A C (x; oxp) 0 A =x10(xp0A) Cx; 0 ACA,
hence x1 o x, € R4 and Ry is a subsemihypergroup of (H, o), and analogously for Ls. The last part of the
claim follows from Lemma 4.1(1), since 0 ¢ A = 0 ¢ Rj4. |

From the preceding proposition, we deduce the following results:

Proposition 4.3. Let (H, o) € & and let x, y, z be distinct elements in H—{0, 1} such that x oy = {z}. Then we have
1. xoz={0,y}and zoy = {0,x};

2. zox={0,y}and y oz = {0, x};
3.z0z={0,1};

4. |xoll=1oyl;

5.

[yoll=|zolland|lox| =[1oz|

Proof. 1. Let (H,, ) be the residual group of (H, o). Since x o y = {z}, in (H-, -) we obtain xy = z, y = xz and
x = zy. Therefore in (H, o) we have y € x oz and x € z o y. Now, by absurd, suppose that x o z = {y}. Letting
A ={y,z} we obtain 0 ¢ R4 and x € R4. Hence, by Lemma 4.3, we deduce that |[R4| = 1 and R4 = {x}, which
is impossible because we would have x o x = R4 o R4 = R4 = {x} in (H, o) and xx = 1 in the residual group.
Thus x o z = {0, y}. Analogously we can prove that z o y = {0, x}, by using L4 in place of R4.

2. From item 1., if we suppose that z o x = {y} we obtain the contradiction {z} = xoy = x o (z0ox) =
(xoz)ox =1{0,y} ox 2 {0}. Thenzox = {0, y}. Analogously, if y oz = {x}, we obtain {z} =xoy =(yoz)oy =
yo(zoy)=yo{0,x} 2 {0}, an absurdity. Therefore y o z = {0, x}.
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3.Wehavezoz=(xoy)oz=x0(yoz)=x0{0,x}={0,1}.

4. If, by absurd, we suppose that [x o 1| =2 and |1 o y| = 1 then we have x o 1 = {0,x}, 1 o y = {y}, hence
the following contradiction: {z} =xoy =xo0(loy)=(xo1)oy ={0,x} oy ={0,z}. The case [x 01| =1 and
[1 0 y| = 2 is disproved analogously.

5. We can reason as in the case 4., by using the hyperproductszocl=xoyolandloz=1oxoy. 0O

Corollary 4.1. Let (H,0) € ®g. The associated 0-semigroup (H, x) satisfies the condition (1), thatisx x y =z =
Xkz=z*xx=1Yy*xz=2z%Yy=0,forall distinct elements x,y,z € H— {0, 1}.

Proof. By Proposition 4.2 (H, %) is a 0-extension of the residual group (H,,¢). If x,y,z are distinct
elements in H — {0, 1} such that x x y = z then x ¢ y = z and x o y = {z}. From points 1. and 2. of Proposition
4.3, wehave |xoz| =|zox| =|zoy| = |y o z| = 2 and the claim follows. O

In conclusion, by Theorem 4.2 every (H, o) € ) can be obtained as the merging of a 0-semigroup (H, %)
with a elementary Abelian 2-group (H,, -). By Corollary 4.1, (H, %) fulfills the hypotheses of Proposition 3.1.
Consequently, we can also define of H the product ® in (2); the resulting semigroup (H, ®) is a 0-extension
of (H,), possibly different from (H, x). As pointed out in Remark 3.1, the merging of (H, ®) with (H., ) is
the ®¢-semihypergroup (H, ®) defined by (5).

5. Principal Semihypergroups in ®

In what follows, we denote by ®(n) the subclass of ®y-semihypergroups with size n. Since H, is the
support of an Abelian 2-group it must hold n = 2" + 1 for some integer r.

We note that if (H, o) € 6y and there exists x € H such that {0, 1, x} is a semihypergroup isomorphic to
(I, 05) or (I, 06) in Example 3.5 then all other subsemihypergroups in the spectrum of (H, o) are isomorphic to
(I, 05) or (I, 0g), because in that case 101 = {0, 1}, otherwise we would have the contradiction {0,1} = 101 =
{1}. This fact divides ¢ into two disjoint subclasses, that of the semihypergroups whose spectrum contains
only semihypergroups isomorphic to (I, o5) or (I, o), and that of the semihypergroups whose spectrum
contains only semihypergroups isomorphic to (I, ;) for i = 1,...,4. We denote these two subclasses by
®¢4 and G, according to whether 1 o 1 is a doublet or a singleton, respectively. In particular ©¢4(r) and
®,s(n) are the subclasses of semihypergroups of size n in ®y4 and ¢, respectively. Clearly, by Theorem
4.1 we have 6 4(3) = {(I2, 95), (I2, 06)} and ©¢(3) = {(I,0),i =1,...,4}, up to isomorphisms.

A simple construction of semihypergroups in ®y4 or ®¢, of arbitrary size is obtained as follows.

Example 5.1. Let (G, ) be an elementary Abelian 2-group and let 1 be the identity of G. Let H = G U {0}
where 0 ¢ G and let K, be the set {0, 1, x} for all x € G —{1}. If we equip every set K, with a hyperoperation o,
such that (K, oy) is isomorphic to one of the semihypergroups in ¢ 4(3) (resp., ®os(3)) then we can define
in H the following hyperproduct:

pob aoyb ifa,be K, for some x;
o] =
{0,ab} otherwise.

It is easy to prove that (H, o) € Gy (resp., ).

In this section we will prove some results about semihypergroups (H, o) € ®¢ having the following
property:

[Tox|=|xoll=|xox|=2, for all x ¢ {0, 1}. (7)

Note that if (H, o) fulfills (7) and belongs to ® 4 then all semihypergroups in its spectrum are isomorphic

to (I, 06) in Example 3.5, while if (H, o) € ¢, then its spectrum consists of semihypergroups isomorphic

to (I2, 04). The subclasses of Gy and G4 that contain them are denoted respectively with (‘56/5 and (UM
These semihypergroups play an important role in what follows, because any ®y-semihypergroup can be
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obtained from a ®y-semihypergroup fulfilling (7) by means of a particular construction, as we will prove
subsequently.

We observe that there is a bijection between semihypergroups in ®f , and those in ®f , as claimed
hereafter.

Proposition 5.1. For every (H, o) € O , there exists (H, ®) € ®F _such that x oy = x ey for all pairs (x, y) # (1,1).
The converse is also true.

In the following proposition, to any Gy-semihypergroup we associate a special semihypergroup fulfilling
condition (7).

Proposition 5.2. Let (H, o) € ®¢. Define on H the following hyperproduct:

lex=xe1={0,x} ifxeH-{0,1)
xex=1{0,1} ifxe H-1{0,1} (8)
xey=xo0y otherwise.

Then (H, o) belongs to & . or &7 , depending on whether (H, o) € 6 or (H,0) € G 4.

Proof. By Theorem 4.2, (H, o) is the merging of a 0-semigroup (H, *) with an elementary Abelian 2-group
(H+, ). From Corollary 4.1, the semigroup (H, %) satisfies the condition (1) and so, by Remark 3.1, (H, ®) is a
0-semihypergroup. Now, observe that for every x € H—{0, 1} the set {0, 1, x} is a subsemihypergroup of (H, e)
which is isomorphic to (I, 04) or (I, os) of Example 3.5, depending on whether 11 = {1} or1e1 = {0,1},
respectively. Therefore, again by Theorem 4.2, (H, ®) belongs to & . or Gy ,. O

Definition 5.1. The 0-semihypergroups which belong to &) or & , are called principal semihypergroups. In
particular the 0-semihypergroup (H, ) in Proposition 5.2 is the principal semihypergroup corresponding to
(H,©).

Example 5.2. The following o-semihypergroup (H, ®) is a principal semihypergroup of the class 7 :

1 2 3 4

0 0 0 0

1 02 03 04
02 01 4 03
03 04 01 0,2
0,4 03 02 01

S O O O oo

= W ih—kOle

This semihypergroup is the principal semihypergroup corresponding e.g., to the following semihyper-
groups:

op |0 1 2 3 4 o |0 1 2 3 4
0j0 0 O 0 0 010 O 0 0 0
170 1 2 3 4 110 1 2 3 4
210 2 01 4 03 210 2 01 4 03
310 3 04 01 0,2 310 03 04 01 0,2
410 4 03 02 01 410 04 03 02 01

Next, we will show how it is possible to generate ®4 or ®¢, from (‘56 , or 07, respectively.
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Proposition 5.3. Let (H,e) € ©f , let (H.,") be its residual group, and let (H, x) be its associated 0-semigroup.

Furthermore, let + be any product on H fulfilling the following conditions:

x*xe{0,1} ifxeH-(H*xHUI{1})
_ ; )
x*y=x%y otherwise.
Then (H, %) is a 0-extension of (H.,-). Moreover, the merging of (H, *) with (H, -) belongs to ®g 4.
Proof. Firstly, we prove that  is associative. By hypotheses, for all x € H we have
Oxx=x*x0=1%x=xx1=x%x=0. (10)

Ifa,b,c € Haresuchthat{a,b,c}N{0,1} # @ ora = b = ¢, itis easy to verify that (a*b)*c = a*(b+c). Therefore,
we have to consider only the following cases, with a,b,c ¢ {0, 1}:

l.a=b+#c.
In (H,4, ) we have ac # a and we can distinguish two cases: a * ¢ = 0 and a * ¢ = ac. In the first case,
wehaveax*(a+c) =ax+(a*c)=a=»0 = 0. In the second case, by Corollary 4.1, we obtain a % (ac) = 0
andax(ax*c)=ax*(@*xc)=a=*(ac) =ax% (ac) =0. Hence (a*a)+c C{0,1}*c=0=a=(a=c)and so
(@*a)rc=ax(@=*c)=0.

2.a#b=c
The proof is similar to that one of the preceding point.

3.a=c#b.
Ifaxb # 0 then we havea*b = a % b = ab, with a,b,ab distinct elements in H — {0, 1}. Therefore, by
Corollary 4.1, ab +a = ab x a = 0. Consequently, we obtain (2 * b) *a = 0. Analogously, if b+a # 0 we
obtainax (b*a) =0,thus (a*b)*a=ax=({b=a) =0.

4. a,b,c mutually distinct and ab = c.
Wehaveasb = axb € {0, c}and bxc = bxc € {0,a}. Ifaxb = axb = cthenc € (HxH)—{0}and c*c = cxc = 0.
Moreover, from Corollary 4.1, we have b+c =bxc=0. Hence (a*b)*c=c*c=0=a+0=ax(bxc).
Ifbxc=bx%c=a weobtaina € (Hx H)-{0} anda*a = a*b = 0 as before. Hence, we have
(a+b)xc=0xc=0=axa=a=(b+c). Finally,ifa+b =0 = b+, itis clearly that (a*b)*c =a=+(b+c) = 0.

5. a,b,c mutually distinct and ab # c.
In (H,, ) we have bc # a and for definition (a*b)*c =a=*(b*c) =a x b x c.

Therefore (H, *) is a 0-semigroup. By definition (H, *) is a 0-extension of the residual group (H., ) of (H, e).
Now, let (H, o) be the merging of (H, *) with (H,,-). By Proposition 3.2, (H, o) is a 0-semihypergroup. By
(10), for all x € H, the set {0, 1, x} is a subsemihypergroup of (H, o) isomorphic to (I, o5) or (I, o) in Example
3.5. Finally, by Theorem 4.2, (H, o) € G4. ]

The forthcoming result guarantees that all semihypergroups in ®4 can be obtained by means of the
construction outlined in the preceding proposition.

Proposition 5.4. Let (H, ) be the principal semihypergroup corresponding to (H, o) € ®g4 and let (H.,-) be its
residual group. If (H, =) and (H, x) are the 0-semigroups associated respectively to (H, o) and (H, ®) then the operations
+ and x fulfil conditions (9).

Proof. By definition (6) and (8), for any x,y € H wehavex*y =x* yif x # yorx € {0,1} or y € {0,1}.
Moreover, if x € H x H — {0,1} then there exist a,b ¢ {0,1} such thata # x # band x = a x b = ab. Hence
aob=aeb={x}and xox = {0,1} by Proposition 4.3(3). Since x e x = {0, 1}, we obtain x*x =0 =x % x. In
all remaining cases we have x ¢ H x H U {1} and also x + x € {0, 1}. O

The next proposition is analogous to Proposition 5.3 concerning ®, instead of ®g4. Since the proof
essentially follows the trail of the one of Proposition 5.3, we provide the proof of only one case concerning
the associativity of the hyperproduct, which is specific to ®(s-semihypergroups.
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Proposition 5.5. Let (H,e) € &, let (H.,-) be its residual group, and let (H, %) be its associated 0-semigroup.
Moreover, let * be any product on H fulfilling the following conditions:

(11)

{T+x,x+1} C{0,x} ifx¢{0,1}
X*Y=x*Y otherwise,

provided that, if (x,y) € T = {(a,b) € [H —{0,1}]* | a % b # O} then

x*1=0 < 1xy=0
1+x=0 & 1=*(xy) =0 (12)
y*1=0 < (xy)+1=0.

Then (H, #) is a 0-extension of (H,-). Moreover the merging of (H, *) with (H, -) belongs to ®gs.

Proof. The proof of the associativity of * proceeds analogously to that of Proposition 5.3, by considering
that here 1 x 1 = 1 and the other identities in (10) are still valid. Hereafter we detail the case a = 1 and
b, c # 1 where the condition (12) is employed.

Ifb+xc=0then1*({=*c)=1+0=0=(1%b)=*cbecause1=b € {0,b}.

Ifb+c# 0thenb #c,bxc=b*c="0bc+# 1land (b,c) € T. Therefore, by (12),if 1*b = 0 then 1+ (bc) = 0 and
(1#b)*c = 0%c = 0 = 1%(bc) = 1=(b=c), whileif 1+b = b then 1x(bc) = bc and (1#b)*c = bxc = bc = 1x(bc) = 1+(b*c).
O

Analogously to Proposition 5.4 we have the following result concerning ®( ;. We refrain from including
a complete proof, which requires long but straightforward arguments.

Proposition 5.6. Let (H, ) be the principal semihypergroup corresponding to (H, o) € ®q. If (H,*) and (H, %) are
the 0-semigroups associated respectively to (H, o) and (H, o) then the operations + and  fulfil conditions (11) and
(12).

6. Nilpotency of Associated Semigroups

In this section we consider the 0-semigroups associated to a finite semihypergroup (H, o) € &7 .. By
Corollary 4.1, the associated 0-semigroup (H, *) fulfills conditions (1), (2), and 1 * 1 = 0. Moreover, it is also
easy to prove that for all x, y € H we have

1) x*ky*xx=0,
2) ifx=x*kyorx=y*kxthenx=0.

We observe that if H is finite of size n then (H, ) is nilpotent. Indeed, x % x = 0 for all x € H. Moreover,
if x1,x5,...,x,41 are elements in H, the elements

X1, X1 X X2, ..., X1 %k X2 %k ...k Xp41

arenot distinct. Hence, there exist two integers [, m such that! < m < n+1and xq*xp%- - -kx; = X1 kXp k- - -k Xp,.
Consequently,

X1 KXo K ok X] = X] ok Xp k. kX ok (X K.k X))
=X kXp k... xx%x0=0,

hence (H, %) is nilpotent.
Theorem 6.1. Let H be a finite set of size > 3 and o a hyperproduct on H. The following conditions are equivalent:

1. (H,0) € 6 ;
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2. there exists a nilpotent semigroup (H, %) such that
a) (H, %) is a 0-extension of an elementary Abelian 2-group (H.,-);
b) xx1=1*kx=x*x=0forallx e H,;
¢) (H, o) is merging of (H, %) with (H,, ).

Proof.

1) = 2) Immediate consequence of Theorem 4.2 and the fact that (H, o) belongs to € (336, -

2) = 1) By c) and Proposition 3.2, (H, o) is a 0-semihypergroup. By b), for all x € H,, the set {0,1, x} is
a subsemihypergroup of (H, o) isomorphic to (I, o¢) in Example 3.5. Finally, by a), c) and Theorem 4.2, we
have (H, o) € G’)ad. O

In the following proposition we show a tight bound on the nilpotency rank of (H, x).

Proposition 6.1. Let (H,0) € O ,(n) and let v be the nilpotency rank of its associated semigroup (H, x). Then
(b)) <n-2

Proof. Letq = v—1. By hypothesis, there exist g elements ay, a, . .., a,in H—{0, 1} such thata; *a; x - - -xa,; #
0. Necessarily, these elements are pairwise distinct. We arrange the proof in four steps.

a) Forallie{1,2,...,q— 1} and for all integers k such that 0 < k < g—iwe have a; k@41 % - - -k aix € {0,1}.
Indeed, if a;%a;41 % - -*a;;; = 0 then we obtain the contradiction ay *as - - -xa, = 0. If a;j%a; 1 k- - -*ap; =
1 then in the residual group of (H, o) we have a; - aj41 - aik = 1 and a; = Gj41 -+ Gisk = Big1 * -+ Kk Aje
It follows the contradiction 1 = a; x a4 % -+ *x aj,p = a; x a; = 0.

B) Foralli € {1,2,...,q— 1} and integers r,s such that 0 < r < s < g —i we have a; *x 411 * -+ * a3, #
A * Aip1 * -k Aiys. Indeed, if a; % qj11 %+ Kk Ajyr = a; % Ajp1 * -+ Kk diyg then

Aj K Qi Kok Aigg = A K 202k Ajgy K Aigp] K o0 Kk g
=a; %k -k Aigs X Aigpe1 " K Aigs

=0
=a; %Kk 1*%x0=0,

which is impossible for a).

V) ;% Q1 Kok iy, # 0k Aj Kkap forallie{1,2,...,g-1},i<j,0<r<g-iand0<s<q-j.
Indeed, if a; % - -+ * @, = aj * -+ * aj;s for i < j then

Ak ek jog K @k ek g = 0K - K Qg kK ok iy
=0
=0%a,1 %---kaj, =0,
which is impossible for «).
0) By the preceding points, all the following elements in H — {0, 1} are pairwise distinct:
a,ay...,a;and a; x aj1 * -+ xa;, foralll<i<j<gq.

Thereforeq+ (g -1)+(@-2)+...+2+1= (’7;1) < |H| - 2 and we obtain the proof. o

Remark 6.1. We can exploit a construction found in [11] in order to determine the nilpotent semigroups of
rank 3 which are 0-extensions of a group (G, -) of size > 2. Fix an element 0 ¢ G and a non-empty set A C G
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and let B = (G — A) U {0}. On the set S = G U {0} consider a product ® fulfilling the following condition: for
everyx,y €S

13
0 otherwise. (13)

x@y = {xyorO ifx,y € Aand xy € B;
Forallx,y,z € S, we have that (x® ¥) ® z = x® (y ® z) = 0, and so (S, ®) is a nilpotent 0-semigroup of rank
2 or 3. Clearly (S, ®) is a 0-extension of (G, -). We note that (S, ®) is a nilpotent semigroup of rank 2 if and
onlyif x® y = 0 for all x, y € A, and in particular if A is a subsemigroup of (G, -).

Conversely, if (S, ®) is a nilpotent semigroup of rank 3 which is also a 0-extension of a group (G, -) then
S5®S C S. Thus, putting B=S® S, the set A = G — B is a non-empty subset of G and 0 ¢ A. Moreover, for
all x, y € S we have:

o ifx,yc Athenx®yeBand (x®y#0 = x®y =xy);

eifx¢Aory¢ Athen{x,yyNB#2@and x®y =0.

Therefore the operation ® fulfills the condition (13). The result is true even if the nilpotency rank of (S, ®)
is 2: in that case A = G and B = {0}.

The Theorem 6.1 and the construction described in the remark above characterizes the semigroups
having nilpotency rank 3 associated to a semihypergroup in O .

Theorem 6.2. Let (H, o) be a finite semihypergroup in ©y , and let (H, %) and (H., ") be its associated 0-semigroup
and residual group, respectively. The nilpotency rank of (H, x) is 3 if and only if {0} # H x H C H and

(14)

N xyor0 ifx,ye€ H-(H*H)and xy € H* H;
7o otherwise.

7. Computation of Isomorphism Classes in ®(5) and ®,(9)

In this section we present two results obtained with the help of symbolic computation software. We
determine the number of semihypergroups in $¢(5) and $¢(9), apart of isomorphisms. To these goals, first
we find the semihypergroups in ®; (f) and & ,(f) with t € {5,9} and after, using Propositions 5.3 and 5.5, we
find all the elements in ®¢(5) and $¢(9), up to isomorphisms. Clearly, by Proposition 5.1, it is sufficient to
determine the semihypergroups in & ,(f) because those in & (f) differ only in the hyperproduct1e1 = {1}.
By Theorem 6.1, the characterization of finite semihypergroups in ®7 , is based on the determination of all
nilpotent semigroups (H, %) that are 0-extensions of an Abelian 2-group. Furthermore, by Corollary 4.1,
(H, %) must also fulfil the condition (1).

7.1. Semihypergroups in ©y(5)

The support of semihypergroups in ®; ,(5)is H = {0,1,2,3, 4}, and the residual group (H,, -) is Z3, which
is represented by the following table:

2 3 4

= WO N ==

3
4
1
2

= W N
Wk =N
— N W
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By Theorem 6.1, every semihypergroup (H, ) € &7 ,(5) is the merging of (H, x) with (H, ), where (H, )
verifies the following conditions, for all distinct elements x, y,z € H.:

{ Ilxx=x*x1=x%x=0;

- _ - - — (15)
X*xkYy=z = xkz=zkx=yxz=zxy=0.
By Proposition 6.1, the nilpotency rank of (H, %) is 2 or 3. Obviously, if the rank is 2 we have x x y = 0, for
all x, y € H. If the nilpotency rank is 3, then there exists a product x x y # 0, with x, y € {2,3,4}. By Theorem
6.2 and (15), it is not restrictive to suppose that B = H * H = {0,2} and A = {1,3,4}. In this case, at least
one of the products 3 * 4 and 4 % 3 differs from 0, and sowehave 3 *2=2%x3=4%x2=2%4 =0. Apart
of isomorphisms, we have two nilpotent semigroups with rank 3 which are 0-extension of (H,,-). Their
product tables are the following:

W N = o X
coocooo
co oo o
cooc oo
coocoow
ON OO O
W N = ol X
coocooo
co oo o
coo oo
NO OO olw
ON OO O

By considering also the (trivial) nilpotent semigroup of rank 2, we obtain in ®f ,(5) three semi-hypergroups
which are merging of the preceding nilpotent semigroups with (H,, -), whose products are the following:

o |0 1 2 3 4 o |0 1 2 3 4
0|0 O 0 0 0 0|0 O 0 0 0
140 01 02 03 04 140 01 02 03 04
210 02 01 04 03 210 02 01 04 03
310 03 04 01 0,2 310 03 04 01 2
410 04 03 02 01 410 04 03 02 01
|0 1 2 3 4
0(0 O 0 0 0
1,0 01 02 03 04
210 02 01 04 03
310 03 04 01 2
410 04 03 2 0,1

Using the construction shown in Proposition 5.3, an exhaustive search of all 0-semigroups that extend (H., -)
yields 11 semihypergroup in ®(4(5). In particular, the number of semihypergroups which are obtained
from (H, &), (H, #1) and (H, ;) is 4, 3, and 4, respectively.

The semihypergroups in &; (5) can be determined from those in & ,(5), by applying Proposition 5.1. We
denote such semi-hypergroups with (H, 3), (H, 4) and (H, 5). Analogously to the previous case, by using
Proposition 5.5 we can derive 30 semihypergroup in ®gs. Those obtained from (H, e3), (H, 84) and (H, e5)
are 20, 8, and 2, respectively.

In conclusion, we have the following result:

Theorem 7.1. Up to isomorphisms there exist 11, 30 and 41 semihypergroups in ©g 4(5), ®os(5) and Gy(5), respec-
tively.
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7.2. Semihypergroups in $y(9)

As in the preceding case, first of all we outline the arguments which allow us to determine, up to
isomorphisms, the number of semihypergroups in & ,(9) and ®; (9). The support of semihypergroups in

(56 d(9) isH=1{0,1,2,...,8}, and the residual group (H,, ) is 73, which is represented by the following table:

(16)

LRI UT = WD -
IO U WN R
N0 U1 O W ks~ NN
NUT NN~ B WW
UL NN 00— N W |k
= W N = 00N Ol
WP, NN U oo
N — b= WO U1 oo
— N W U1 O] 0o

By Theorem 6.1, every semihypergroup (H, e) € 67 ,(9) is the merging of the associated nilpotent semigroup
(H, %) with (H,,-), where (H, %) verifies the conditions (15). Moreover, for Proposition 6.1, the nilpotency
rank of (H, x) can be 2 or 3 or 4.

If the nilpotency rank of (H, x) is 4 then there will be at least a nonzero product of three distinct elements
in H—{0, 1}. Itis not restrictive to suppose that2* 3 x5 # 0and so2*3 =4,4%5=8,3x5=7and2*x7 = 8.
Consequently, by (15), we deducethat4 x2 =2 x4 =3%4=4%x3=0,8%x4=4*8=8x5=5%x8=0,
7x3=3%x7=7*%5=5x7=0and8*x2=2%8 =87 =7 %8 =0. Therefore we arrive at the following
partial product table:

*x|0 1 2 3 4 5 6 7 8
0(j0 o 0 00 0 0 0O
110 0 0 0 0O OO O O
210 0 0 4 O 8 0
310 0 0 0 7 0
410 0 0 0 O 8 0
510 0 0 0 0
610 0 0

710 0 0 0 0 0
810 0 O 0 O 0 0

where the empty cells can assume the value 0 or the corresponding value in (16). Extensive computations
performed with the help of a symbolic computation software produced 13 nilpotent semigroups of rank 4,
apart of isomorphisms.

Now we determine the nilpotent semigroups of rank three which are 0-extension of (16). From Theorem
6.2 and (15) we obtain that H * H can be equal to one of the following sets, up to isomorphisms:

Bl = {0/2}/ BZ = {0/213}/ B3 = {01213/4}/ B4 = {012/3/ 5}

For instance, in case B3 the operation * must verify the conditions
2e{5%x6,6%57%x8,8x%7}C{0,2)

co,
3€{5%7,7%5,6%8,8 6} C{0,3}
4e€{5%x8,8%x56%7,7%6}C{0,4}
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and all other products must be 0. Symbolic computations yield np, = 176 nilpotent semigroups of rank 3.
Analogously, using the sets B, B, and B4 we obtain the following numbers: np, = 10, ng, = 36 and np, = 10.
By considering also the nilpotent semigroup of rank 2, we get a total of 246 nilpotent semigroups. This
number is equal to the number of semihypergroups in & ,(9) and, by Proposition 5.1, also the number of
semihypergroups in ; (9), apart of isomorphisms. We collect in the following table the results obtained
for all possible cases arising from Propositions 5.3 and 5.5:

rank 2 3 4
np, ng, ng, np,
6,9, 6, O | 1| 10| 36| 176 | 10| 13
®0,4(9) 10| 265 | 990 | 2495 | 112 | 124
®0,+(9) 264 | 1014 | 1204 | 566 | 110 | 118

In conclusion, we have the following statement.

Theorem 7.2. Up to isomorphisms, there exist 3996, 3276 and 7272 semihypergroups in $g4(9), ©¢(9) and 6o(9),
respectively.

8. Conclusions

In our preceding papers [5, 7, 12] we faced the study of simple semihypergroups where the fundamental
relation § is not transitive, in all subsemihypergroups of size > 3. These semihypergroups, which we called
fully simple, own a right (or left) zero scalar element and all their hyperproducts have size < 2. In finite
case, the number of isomorphism classes of fully simple semihypergroups of size n > 3 is n-th term of the
sequence A000712. Motivated by these results, in [6] we considered a class of simple semihypergroups
having an absorbing element 0 and the relation f not transitive in every subsemihypergroup of size > 3.
These semihypergroups, which we call fully 0-simple, differ substantially from fully simple semihypergroups
since their hyperproducts can have size greater than two. An example is the following:

o|0 1 2 3 4 5 6
010 0 0 0 0 0 0
10 0,2 0,5 0,2 0,2,6 0,134 0,5
210 0,5 0,1,3,4 0,5 0,5 0,2,6 0,1,3,4
310 0,2 0,5 0,2 0,2,6 0,1,3,4 0,5
410 026 0,5 0,2,6 0,2,6 0,1,3,4 0,5
510 01,34 026 0134 01,34 0,5 0,2,6
60 0,5 0,1,3,4 0,5 0,5 0,2,6 0,1,3,4

Still in [6] we analyzed the subclass of fully 0-simple semihypergroups having all hyperproducts of
size < 2. The hyperproduct tables of those semihypergroups can be regarded as the superposition of the
product table of a 0-semigroup and that of either a (right or left) zero semigroup or an elementary Abelian
2-group. In particular, we considered the class Ry of fully 0-simple semihypergroups such that for all pairs
(%, y) of distinct nonzero elements the subset {0, x, y} is a subsemihypergroup whose hyperproduct table
contains the product table of a right zero semigroup. Finally, we proved that the number of isomorphism
classes of semihypergroups in Ry having size n is the n-th term of the sequence A000070.

In the present paper, we deepen the understanding of that superposition of product tables, which we call
merging, see Definition 3.2. Moreover, we define and study the class ®¢ of fully 0-simple semihypergroups
with a particular element 1 # 0 such that, for all x ¢ {0,1}, the subset {0,1,x} is isomorphic to one of
the semihypergroups listed in Example 3.5. Those semihypergroups of size 3 are the only fully 0-simple
semihypergroups which can be obtained by a merging with the group Z,. In particular, we prove that
all semihypergroups in () are obtained as a merging with an elementary Abelian 2-group. Apart of
isomorphisms, there are 41 %y-semihypergroups of size 5 and 7272 of size 9.
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