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Abstract. In this article, we explore a certain kind of two-level trade credit in order to reflect the real-life
situations. With this objective in view, we consider the case when the supplier offers two-level trade credit
for the retailer for settling the account. If the retailer pays off all accounts at the end of the first credit period,
then he/she can utilize the sales revenue to earn interest until the inventory cycle time. On the other hand,
if the retailer cannot pay off the unpaid balance at the end of the first credit period, then he/she can decide
to pay off the unpaid balance either after the end of the first credit period or after the second credit period.
Here, in this situation, the retailer reduces the financed loan from constant sales and revenue received
gradually and he/she still can utilize the sales revenue to earn interest when he/she pays off all accounts.
Maximizing the profit is used as the objective to develop the inventory model. Based upon the obtained
properties of the optimal solution, two theorems are developed to determine the optimal replenishment
policy. Finally, computational developments are presented in order to illustrate numerically the main
theoretical results which are proven in this article by using some mathematical solution procedures.

1. Introduction and Motivation

The policy of trade credit is widespread and represents an important component of a company’s finance.
Especially small businesses, with limited financing opportunities, may be financed by their suppliers rather

2010 Mathematics Subject Classification. Primary 91B24, 93C15; Secondary 90B30.
Keywords. Inventory models and optimization; Economic order quantity (EOQ); Optimal ordering strategy; Permissible delay in

payments; Two-Level trade credits; Inventory cycle time; Supply chain system; Optimal replenishment policy; Mathematical solution
procedures.

Received: 20 November 2017; Accepted: 17 May 2018
Communicated by Dragan S. Djordjević
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than by financial institutions (see, for details, [30]). In addition, the supplier is usually willing to offer
the retailer a certain credit period without interest to promote the market competition. Furthermore, the
delay in the payment by the supplier is a kind of price discount, since paying later indirectly reduces
the purchase cost and it encourages the retailer to increase their quantity. Goyal [12] first developed an
economic order quantity (EOQ) model when a supplier offers its retailer a permissible delay in payments.
Chung and Liao [3] and Chang et al. [1] extended the EOQ models for deteriorating items when the
supplier offers a permissible delay in payments to the purchaser if the order quantity is greater than a
predetermined quantity. Chung and Liao [4] considered an inventory system for deteriorating items under
the permissible delay in payment and the discounted cash-flows (DCF) approach. More recently, Musa and
Sani [29] explored some inventory ordering policies of delayed deteriorating items under permissible delay
in payments. Liao et al. [24] extended Goyal’s model [12] in order to allow for deteriorating items with
two warehouses under an order-size-dependent trade credit. Several interesting and relevant trade-credit
results can be found in the investigations by Liao (see [18], [19] and [20]), Huang and Liao [16], Teng and
Lou [39], Liao and Huang [23], Liao et al. (see [22] and [25]), and Yang et al. [42], and in the references cited
in each of these earlier works (see also several other related recent works such as [2], [5] to [11], [26], [27],
[33], [34] and [40]).

Huang [14], Liao [21] and Teng [36] explored some inventory models under two levels of the trade-
credit policy in which the supplier offers the retailer a permissible delay period M, and the retailer (in turn)
provides his/her customers a permissible delay period N in order to stimulate the demand. Huang and
Hsu [15] developed an inventory model under this two-level trade-credit policy by incorporating partial
trade-credit option for the customers of the retailer. Kreng and Tan [17] and Ouyang et al. [32] developed an
EOQ model for deteriorating items under supplier’s up-stream trade credit linked to the ordering quantity.
Liao et al. [28] explored an EOQ model for deteriorating items with capacity constraints under two levels
of the trade-credit policy. Many other related developments can be found in the works by Teng and Chang
[37], Ouyang and Chang [31], and Yen et al. [41], and indeed also in the references cited therein.

The inventory models, which were investigated in the above-mentioned works, did not consider the
progressive payment scheme. Goyal et al. [13] explored the notion of progressive credit period as follows:

(i) If the retailer settles the outstanding amount by the first period M1, then the supplier does not charge
any interest.

(ii) If the retailer pays after M1, but before the second period M2 offered by the supplier, then the supplier
charges the retailer an interest on the unpaid balance at the rate Ic1 .

(iii) If the retailer settles the account after M2, then he/she will have to pay an interest at the rate Ic2 on the
unpaid balance (Ic2 > Ic1 ).

Soni and Shah [35] explored the optimal ordering policy for the retailer under a stock-dependent demand
and two progressive credits periods. Teng et al. [38] extended the work of Soni and Shah [35] in order
to obtain the retailer’s optimal ordering policy for stock-dependent demand when the supplier offers a
progressive permissible delay in payments.

In our present study, we attempt to extend the existing literature related to inventory models with
delay in payments to a more general case. We shall establish an inventory system in which the supplier
offers a kind of two levels of trade credit to settle the retailer’s accounts. Herein, if the retailer pays off
all accounts at the end of the first credit period, then he/she can utilize the sales revenue to earn interest
throughout the inventory cycle. On the other hand, if the retailer cannot pay off the unpaid balance at the
end of the first credit period, then he/she can decide to pay off the unpaid balance either after the end of
the first credit period or after the second credit period. With this arrangement in mind, the retailer reduces
the financed loan from constant sales and revenue received gradually and he/she still can utilize the sales
revenue to earn interest when he/she pays off all accounts. The maximization of the average profit per
unit of time is taken as the objective function to study the retailer’s optimal ordering policy in this article.
Based on the obtained properties of the optimal solution, two theorems are developed to determine the
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optimal replenishment policy. Finally, we shall present the computational developments corresponding to
each of the main theoretical results which are proven in this article by using some mathematical solution
procedures.

2. Notations, Conventions and Assumptions

The following notations, conventions and assumptions will be used in developing the mathematical
model in this article.

Assumptions Made:

(1) The demand for the item is constant with time.

(2) Shortages are not allowed.

(3) Replenishment rate is infinite.

(4) When M > T, the supplier does not charge the retailer any interest and the retailer earns interest on the
sales revenue up to the permissible period M.

(5) When M 5 T, there are three cases to occur as follows. Firstly, if the retailer pays by M, the supplier does
not charge any interest to the retailer and the retailer can continuously utilize the sales revenue to earn
interest throughout the inventory cycle time T. Secondly, if the retailer cannot pay off the balance up to
the permissible period M, but before the period N, then the supplier charges the retailer an interest at
the rate of I1 on the unpaid balance. At the same time, the retailer must utilize the sales revenue to pay
off the remaining amount owed to the supplier. Once the retailer pays off all accounts, he/she still can
utilize the sales revenue to earn interest throughout the inventory cycle time T. Thirdly, if the retailer
pays after the period N, then the supplier charges the retailer an interest at the rate of I2 (I2 > I1) on the
unpaid balance.

(6) Time horizon is infinite.

Notations Used:
D the demand rate per year
h the inventory holding cost rate excluding the interest charges rate.
p the selling price per unit
C the purchasing cost per unit C < p
M the first offered credit period in settling the account without extra charges
N the second permissible credit period in settling the account with interest

charge of I2 on the unpaid balance and N > M
I1 the interest charged per $ in stocks per year by the supplier when the retailer

pays during [M,N]
I2 the interest charged per $ in stocks per year by the supplier when the retailer

pays during [N,T]
(I2 > I1)

Ie the interest earned per $ per year (I1 > Ie)
S the ordering cost per order
T the inventory cycle time (the decision variable)
π(T) the total relevant profit per year

W∗
p
C

M +
pIe

2C
N2

W
p
C

N +
pIe

2C

[
M2 + (N −M)2

]
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3. Formulation of the Mathematical Model

According to the above assumptions, conventions and notations, the elements comprising of the annual
total relevant profit of the retailer are listed below:

(1) Annual ordering cost =
S
T

(2) Annual stock-holding cost (excluding interest charged) =
hD
2

T

(3) According to the assumptions (4) and (5), there are four cases to occur in the interest payable and/or the
interest earned per year: (i) T 5M; (ii) M < T 5W∗; (iii) W∗ < T 5W; and (iv) W < T.

Case 1. T 5M
In this case, since the credit period M is not less than T, the retailer has no interest paid, so that the

interest payable in each order cycle is zero. In addition, the retailer uses the sales revenue to earn interest
during the interval [0,M]. For this situation, there are two elements to discuss in the interest earned as

follows: Firstly, the retailer’s interest earned is
pIeDT2

2
in the interval [0,T]; Secondly, the retailer earns

interest given by (
pIeDT +

pI2
e DT2

2

)
(M − T)

during the period from T to M. Consequently, the total interest earned per year is given by

pIeDT
2

+

[(
pIeD +

pI2
e DT
2

)
(M − T)

]
= pIeD

[T
2

+
(
1 +

IeT
2

)
(M − T)

]
.

Case 2. M < T 5W∗

In this case, since T 5 W∗, that is, the retailer has enough money in his/her accounts to pay off the total
purchase cost at time M and he/she decides to pay off the balance, so no interest payable is paid for the
items as well. In addition, there are three elements to discuss in the interest earned as follows: Firstly,
during the period from 0 to M, the retailer earns interest on the average sales revenue; Secondly, after time
M, the retailer still earns interest on the average sales revenue by selling the items until the end of the
replenishment cycle time; Thirdly, the retailer utilizes the sales revenue to earn interest during the period
from M to T. Hence, in this case, the total interest earned is given by

pIeDM2

2T
+

pIeD(T −M)2

2T
+

Ie

T

(
pDM +

pIeD
2

M2
− CDT

)
(T −M).

Case 3. W∗ < T 5W
In this case, since W∗ < T, that is, the retailer’s accumulated sales revenue is less than the total purchase

cost at time M. On the other hand, we have T 5 W, that is, the retailer decides to gradually reduce the
amount of the loan due to constant sales and the revenue received and he/she pays off the total purchase
cost before or on N. Thereafter, the supplier starts to charge the retailer the unpaid balance given by

L1 = CDT − pDM −
pIeDM2

2

with the interest rate I1 at time M, so the interest payable per year in this case is given by

I1

2pDT

[
CDT − pDM

(
1 +

IeM
2

)]2

.
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Additionally, there are two elements to discuss in the interest earned as follows: Firstly, the retailer’s

earned interest on the average sales revenue is given by
pIeDM2

2
during the interval [0,M]; Secondly, the

retailer continuously sells products and uses the revenue to earn interest during the period from

M +


CDT − pDM −

pIeDM2

2
pD


to T. Furthermore, the total interest earned is given by

pIeDM2

2T
+

pIeD
2T

T −M −
CDT − pDM −

pIeDM2

2
pD


2

.

Case 4. W < T
In this case, we have W < T, that is, the retailer has not enough money in his/her account to pay off the

total purchase cost at time M and he/she decides to pay off the balance after time N. Furthermore, there are
two elements to discuss in the interest payable as follows: Firstly, the supplier starts to charge the retailer
the unpaid balance L1 with interest at the rate I1 during the interval [M,N]; Secondly, the retailer pays the
amount given by [

pD(N −M) +
pIeD

2
(N −M)2

]
at N, so the supplier starts to charge the retailer the unpaid balance given by

L2 = CDT −
[
pDM +

pIeD
2

M2

]
−

(
pD(N −M) +

pIeD
2

[
M2 + (N −M)2

])2

with interest at the rate I2 at time N. Furthermore, the interest charged per year in this case is given by

I1(N −M)D
T

[
CT − pM

(
1 +

IeM
2

)]
+

I2D
2pT

(
CT − pN −

pIe

2

[
M2 + (N −M)2

])2

.

Similarly, the retailer earns interest on the average sales revenue during the interval [0,M], so that the

total interest earned is given by
pIeD
2T

M2.
As mentioned earlier, the total annual profit for the retailer can be expressed as follows:

π(T) =



π1(T) if 0 < T 5M (1a)

π2(T) if M < T 5W∗ (1b)

π3(T) if W∗ < T 5W (1c)

π4(T) if W < T, (1d)

where

π1(T) = (p − C)D −
S
T
−

hDT
2

+ pIeD
[T

2
+

(
1 +

IeT
2

)
(M − T)

]
, (2)
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π2(T) = (p − C)D −
S
T
−

hDT
2

+
pIeDM2

2T
+

pIeD
2T

(T −M)2

+
Ie

T

(
pDM +

pIeDM2

2
− CDT

)
(T −M)

= −
S
T
−

hDT
2

+
1
T

[(
pDM +

pIeDM2

2
− CDT

)
[1 + Ie(T −M)]

]
+

pD
T

(T −M) +
pIeD
2T

(T −M)2, (3)

π3(T) = (p − C)D −
S
T
−

hDT
2

+
pIeDM2

2T
−

I1

2pDT

[
CDT − pDM

(
1 +

IeM
2

)]2

+
pIeD
2T

T −M −
CDT − pDM −

pIeDM2

2
pD


2

(4)

and

π4(T) = (p − C)D −
S
T
−

hDT
2

+
pIeDM2

2T
−

I1(N −M)
T

[
CDT − pDM

(
1 +

IeM
2

)]
−

I2

2pDT

(
CDT − pDN −

pIeD
2

[
M2 + (N −M)2

])2

. (5)

4. Determination of the Optimal Inventory Cycle Time T

First of all, it follows from Eqs. (2) to (5) that

π1(M) = π2(M), π2(W∗) = π3(W∗) and π3(W) > π4(W).

Hence, clearly, π(T) is continuous on (0,∞) except at T = W.
Next, by using Eqs. (2) to (5), we also find that

π
′

1(T) =
1

2T2

[
2S −D(h + pIe − pI2

e M)T2
− 2pI2

e DT3
]
, (6)

π
′

2(T) =
1

2T2

[
2S + pI2

e DM3
−D(h − pIe + 2CIe)T2

]
, (7)

π
′

3(T) =
1

2T2

[
2S +

pI2
e DM4

4
(I1 − Ie) + pDM2(I1 − Ie) + pDI1IeM3

+ D
(

C2(Ie − I1)
p

− (h − pIe + 2CIe)
)

T2

]
(8)

and
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π
′

4(T) =
1

2T2

{
2S − hDT2

− pIeDM2
− 2I1(N −M)pDM

(
1 +

IeM
2

)
−

I2

pD

C2D2T2
−

(
pDN +

pIeD
2

[
M2 + (N −M)2

])2 }, (9)

so that we have

π
′′

1 (T) = −
2S
T3 − pI2

e D < 0, (10)

π
′′

2 (T) = −
2S
T3 −

pI2
e DM3

T3 < 0, (11)

π
′′

3 (T) =
2S
T3 −

pDI2
e M4(I1 − Ie)

4T3 −
pDM2(I1 − Ie)

T3 −
pDI1IeM3

T3 < 0 (12)

and

π
′′

4 (T) = −
2S
T3 +

pIeDM2

T3 +
2I1(N −M)

T3 pDM
(
1 +

IeM
2

)

−

I2pD
(
N +

Ie

2

[
M2 + (N −M)2

])2

T3 . (13)

If we now define G by

G = −2S + pIeDM2 + 2I1(N −M)pDM
(
1 +

IeM
2

)
− I2pD

(
N +

Ie

2

[
M2 + (N −M)2

])2

, (14)

then Eqs. (6) to (14) imply the following results.

Lemma 1. Each of the following convexity and monotonicity properties holds true.

(1) The functions π1(T), π2(T) and π3(T) are concave on T > 0.

(2) The function π4(T) is concave on T > 0 if G 5 0. Furthermore, the function π4(T) is decreasing on T > 0 if
G > 0.

Proof. We prove the assertions of Lemma 1 as follows.

(1) Eqs. (10), (11) and (12) imply that the functions π1(T), π2(T) and π3(T) are concave on T > 0.

(2) If G 5 0, Eq. (13) implies that the function π4(T) is concave on T > 0.

(3) If G > 0, Eq. (9) reveals that π
′

4(T) < 0 when T > 0, and hence that the function π4(T) is decreasing on
T > 0.

Incorporating the above arguments, we have completed the proof of Lemma 1.

In addition to the results asserted by Lemma 1, we have the following results:
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Lemma 2. Each of the following assertions holds true.

(1) If h − pIe + 2CIe > 0, then T∗2 exists.

(2) If h − pIe + 2CIe 5 0, then

(a) π
′

2(T) > 0 and π2(T) is increasing on T > 0.

(b) T∗2 does not exist.

Proof. The proof of Lemma 2 follows readily from Eqs. (7) and (11).

Next, by applying Eqs. (6) to (9), we get

π
′

1(M) =
δ1

2M2 < π
′

2(M) =
δ2

2M2 , (15)

π
′

2(W∗) = π
′

3(W∗) =
δ3

2W∗2 , (16)

π
′

3(W) =
δ4

2W
2 (17)

and

π
′

4(W) =
δ5

2W
2 , (18)

where

δ1 = 2S −D(h + pIe + pI2
e M)M2, (19)

δ2 = 2S + pI2
e DM3

−D(h − pIe + 2CIe)M2, (20)

δ3 = 2S + pI2
e DM3

−D(h − pIe + 2CIe)W∗2, (21)

δ4 = 2S +
pI2

e DM4

4
(I1 − Ie) + pDM2(I1 − Ie) + pDI1IeM3

+ D
(

C2(Ie − I1)
p

− (h + 2CIe − pIe)
)

W
2

(22)

and

δ5 = 2S − pIeDM2
− 2I1(N −M)pDM

(
1 +

IeM
2

)
−DhW

2
. (23)

Furthermore, it is easily observed that

δ1 < δ2, δ2 > δ3 > δ4 and δ2 > δ5.

In addition, we let T∗i denote the optimal solution of πi(T) on T > 0 if T∗i exists for i = 1, 2, 3, 4.
By means of the above arguments, we are led to the following results.

Lemma 3. If δ5 = 0, then each of the following assertions holds true:

(1) G < 0;



J.-J. Liao et al. / Filomat 32:12 (2018), 4195–4207 4203

(2) T∗4 exists;

(3) T∗4 =W;

(4) π4(T) is concave on T > 0.

Proof. Our demonstration of Lemma 3 runs as follows.
First of all, if δ5 = 0, then

−pIeDM2
− 2I1(N −M)pDM

(
1 +

IeM
2

)
−DhW

2
= −2S (24)

and

G = −2S + pIeDM2 + 2I1(N −M)pDM
(
1 +

IeM
2

)
− I2pD

(
N2 +

Ie

2

[
M2 + (N −M)2

])2

5 D
(
h +

C2

p
I2

)
W < 0. (25)

Eqs. (24) and (25) demonstrate that Lemma 3 holds true.

Obviously, if T∗i exists for i = 1, 2, 3, 4, we find from Eqs. (10) to (13) that

π
′

i(T)



> 0 if 0 < T 5 T∗i (26a)

= 0 if T = T∗i (26b)

< 0 if T > T∗i , (26c)

which means that the function πi(T) is increasing on (0,T∗i ] and decreasing on [T∗i ,∞) (for i = 1, 2, 3, 4). The
objective is to find the optimal inventory cycle time T∗ in order to maximize the average profit per unit time
π(T) of the retailer. In fact, Eqs. 1(a) to 1(d) imply that

π(T∗) = max
{
π1(T∗1), π2(T∗2), π3(T∗3), π4(T∗4)

}
, (27)

where

π1(T∗1) = max {π1(T) : 0 < T 5M} , (28)

π2(T∗2) = max {π2(T) : M 5 T 5W∗
} , (29)

π3(T∗3) = max
{
π3(T) : W∗ 5 T 5W

}
(30)

and

π4(T∗4) = max
{
π4(T) : W 5 T

}
. (31)

From the mathematical analytic arguments which we have detailed above, we can easily deduce the
following results.
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Theorem 1. Suppose that δ4 5 δ5. Then the optimal inventory cycle time T∗ that maximizes the annual total profit
π(T) is given as follows:

(1) If δ5 = 0, δ4 = 0, δ3 = 0, δ2 = 0 and δ1 = 0, then T∗ is W or T∗4 associated with the most profit.

(2) If δ5 = 0, δ4 = 0, δ3 = 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1, W or T∗4 associated with the most profit.

(3) If δ5 = 0, δ4 < 0, δ3 = 0, δ2 = 0 and δ1 = 0, then T∗ is T∗3 or T∗4 associated with the most profit.

(4) If δ5 = 0, δ4 < 0, δ3 = 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1, T∗3 or T∗4 associated with the most profit.

(5) If δ5 = 0, δ4 < 0, δ3 < 0, δ2 = 0 and δ1 = 0, then T∗ is T∗2 or T∗4 associated with the most profit.

(6) If δ5 = 0, δ4 < 0, δ3 < 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1, T∗2 or T∗4 associated with the most profit.

(7) If δ5 < 0, δ4 < 0, δ3 = 0, δ2 = 0 and δ1 = 0, then T∗ is T∗3.

(8) If δ5 < 0, δ4 < 0, δ3 = 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1 or T∗3 associated with the most profit.

(9) If δ5 < 0, δ4 < 0, δ3 < 0, δ2 = 0 and δ1 = 0, then T∗ is T∗2.

(10) If δ5 < 0, δ4 < 0, δ3 < 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1 or T∗2 associated with the most profit.

(11) If δ5 < 0, δ4 < 0, δ3 < 0, δ2 < 0 and δ1 < 0, then T∗ is T∗1.

Proof. The results asserted by Theorem 1 follow readily from Eqs. (19) to (23), (26a), (26b) and (26c).

Theorem 2. Suppose that δ4 > δ5. Then the optimal inventory cycle time T∗ that maximizes the annual total profit
π(T) is given as follows:

(1) If δ5 = 0, δ4 = 0, δ3 = 0, δ2 = 0 and δ1 = 0, then T∗ is W or T∗4 associated with the most profit.

(2) If δ5 = 0, δ4 = 0, δ3 = 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1, W or T∗4 associated with the most profit.

(3) If δ5 < 0, δ4 = 0, δ3 = 0, δ2 = 0 and δ1 = 0, then T∗ is W.

(4) If δ5 < 0, δ4 = 0, δ3 = 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1 or W associated with the most profit.

(5) If δ5 < 0, δ4 < 0, δ3 = 0, δ2 = 0 and δ1 = 0, then T∗ is T∗3.

(6) If δ5 < 0, δ4 < 0, δ3 = 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1 or T∗3 associated with the most profit.

(7) If δ5 < 0, δ4 < 0, δ3 < 0, δ2 = 0 and δ1 = 0, then T∗ is T∗2.

(8) If δ5 < 0, δ4 < 0, δ3 < 0, δ2 = 0 and δ1 < 0, then T∗ is T∗1 or T∗2 associated with the most profit.

(9) If δ5 < 0, δ4 < 0, δ3 < 0, δ2 < 0 and δ1 = 0, then T∗ is T∗1.

Proof. The results asserted by Theorem 2 follow immediately from Eqs. (19) to (23), (26a), (26b) and (26c).
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5. Computational Developments

In this section, we present some potentially useful numerical results which are based upon the theoretical
results derived in Section 4 (see Table 1 and Table 2 below).
Table 1 below would result upon setting I1 = 0.111, I2 = 0.12, h = 2 and M = 0.1 in Theorem 1.

Table 2 below would result upon setting I1 = 0.111, I2 = 0.12, h = 2 and M = 0.1 in Theorem 2.
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6. Concluding Remarks and Observations

In this paper, we have considered a potentially useful kind of two-level trade credit to reflect the real-life
situations in which the supplier offers two levels of trade credit and the retailer can decide to pay off the
unpaid balance either after the period M, but before the period N, or after the period N when the retailer
cannot pay off the unpaid balance at the end of the period M. Our main results (Theorem 1 and Theorem 2
in Section 4) characterize the optimal solution under different sets of conditions. Finally, we have presented
the computational developments corresponding to each of the main theoretical results which are proven in
this article by using some mathematical solution procedures.

The mathematical model, which we have considered in this article, can indeed be further extended in
several ways. For example, we can extend the constant demand rate to be a function of the time or the
price. Additionally, we can extend the model to include trade credits linked to the order quantity.
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