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Abstract. In this paper, some new partially ordered Banach spaces are introduced. Based on those new
partially ordered Banach spaces and applying some fixed point theorems, we present a new approach to
the theory of nonlinear sequential fractional differential equations. An example illustrating our approach
is also discussed.

1. Introduction

Fractional differential equations have attracted huge attention in the past few years because of their
unique physical properties and their potential in the modeling of many physical phenomena and also in
various field of science and engineering [11, 15–17]. During last years, the study of such kind of problems
have received much attention from both theoretical and applied point of view [10, 22, 25–27].

Initial and boundary value problems of fractional order have extensively been studied by several
researchers in recent years. A variety of results ranging from the theoretical aspects of existence and
uniqueness of solutions to the analytic and numerical methods for finding solutions have appeared in the
literature, see [1–4, 7, 12, 14, 18, 19, 25, 28–30] and the references therein.

In this paper, we consider the initial value problem of the nonlinear sequential fractional differential
equation

D
2αu(x) = f (x,u(x),Dαu(x)), x ∈ (0,T], (1)

lim
x→0

x1−αu(x) = u0, lim
x→0

x1−α
D
αu(x) = u1, (2)

where 0 < α ≤ 1, 0 < T < ∞. The D2α is the sequential fractional derivative presented by Miller and Ross
[20] {

D
αu = Dαu,
D

kαu = Dα
D

(k−1)αu, (k = 2, 3, · · · ), (3)

where Dα is the classical Riemann-Liouville fractional derivative of order α.
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Problem (1)-(2) is of interest because it appears in mathematical models of physical phenomena. A clas-
sical example is Langevin equation which is widely used to describe the evolution of physical phenomena
in fluctuating environments and the steady nonlinear fractional advection-dispersion equation [8, 9, 13].
Another example for an application of problem (1)-(2) is the Basset equation which describes the forces that
occur when a spherical object sinks in a incompressible viscous fluid [5, 6].

Our main aim is to prove existence and uniqueness of solution for (1)-(2). This is done in Section 4.
Our main tool is the fixed point theorems which are applied in the appropriate partially ordered sets as
well as iterative methods, whose description can be found in [21, 24], and which we recall in Section 2. As
essential tools for our reasoning we need a partially ordered set involving fractional derivatives to compare
the solutions. To this end, we will introduce in Section 3 the appropriate weighted spaces of continuous
functions and equip them with a partial order. The advantage and importance of this method arises from
the fact that it is a constructive method that yields monotone sequences that converge to the unique solution
of (1)-(2).

2. Preliminaries

Here, we recall several known definitions and properties from fractional calculus theory. For details,
see [7, 17, 23].

Definition 2.1. The Riemann-Liouville fractional integral Iα of order α > 0 of a function u : (0,T) → R is defined
by

Iαu(x) :=
1

Γ(α)

∫ x

0
(x − ζ)α−1u(ζ)dζ,

provided the right-hand side is defined for almost every x ∈ (0,T). We note that for u ∈ L1(0,T) we have that
Iαu ∈ L1(0,T).

Definition 2.2. The Riemann-Liouville fractional derivative Dα of order 0 < α ≤ 1 of a function u : (0,T) → R is
defined by

Dαu(x) =
d
dx

I1−αu(x) =
1

Γ(1 − α)
d

dx

∫ x

0
(x − ζ)−αu(ζ)dζ,

provided the right-hand side is defined for almost every x ∈ (0,T).

Lemma 2.3. Let α, β ≥ 0. If u ∈ L1(0,T), then IαIβu = Iα+βu almost everywhere on (0,T).

Lemma 2.4. Let α ≥ 0. If u ∈ L1(0,T), then DαIαu = u almost everywhere on (0,T).

Lemma 2.5. Assume that u ∈ C(0,T] ∩ L1(0,T) with a fractional derivative of order 0 < α ≤ 1 that belongs to
C(0,T] ∩ L1(0,T). Then

IαDαu(x) = u(x) + cxα−1,

for some c ∈ R.

Now we present the fixed point theorems which play main role in our discussion. For details, see [21].

Definition 2.6. Let (X,�) is a partially ordered set and A : X→ X. We say that A is non-decreasing if x � y implies
A(x) � A(y).

Definition 2.7. Let (X,�) is a partially ordered set and x, y ∈ X. We say that x and y are comparable if either x � y
or y � x (or both, in which case x = y).
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Theorem 2.8. (Partially Fixed Point Theorem). Let (X,�) be a partially ordered set and let d be a metric on X
such that (X, d) is a complete metric space. Furthermore, let A : X→ X be a continuous and non-decreasing mapping
such that

∃ 0 ≤ k < 1 : d(A(x),A(y)) ≤ kd(x, y), ∀ y � x, (4)
∃x0 ∈ X : x0 � A(x0). (5)

Then A has a fixed point.

Theorem 2.9. Assume the hypotheses of Theorem 2.8, except the continuity of A. Moreover, we assume that if a
non-decreasing sequence xn → x in X, there exists a subsequence {xnk } of {xn} such that every term is comparable to
x. Then A has a fixed point.

Theorem 2.10. Let all the conditions of Theorem 2.8 (resp. Theorem 2.9) be fulfilled and let the following condition
holds:

For every x, y ∈ X, there exists z ∈ X which is comparable to x and y.

Then A has a unique fixed point x̄. Moreover, for every x ∈ X, limn→∞ An(x) = x̄.

3. Partially Ordered Spaces

Hereafter we suppose α and Dα are as in (3). Now we introduce the following weighted continuous
spaces and equip them with a partially order.

Definition 3.1. We introduce the weighted spaces of continuous functions

C1−α[0,T] = {u ∈ C(0,T] : x1−αu ∈ C[0,T]},

with the norm ‖u‖C1−α[0,T] = max0≤x≤1 |x1−αu(x)|.

Definition 3.2. We define the following spaces of functions

Cα1−α[0,T] = {u ∈ C1−α[0,T] : Dαu ∈ C1−α[0,T]},

with the norm

‖u‖Cα1−α[0,T] = ‖u‖C1−α[0,T] + ‖Dαu‖C1−α[0,T].

We show below in Theorem 3.6 that Cα1−α[0,T] is complete.

Lemma 3.3. Let α > 0 and 0 < γ < 1. If u ∈ Cγ[0,T], then Iαu ∈ Cγ−α[0,T]. Moreover, the following inequality
holds:

|Iαu(x)| ≤ ‖u‖Cγ[0,T]
Γ(1 − γ)

Γ(1 + α − γ)
xα−γ,

for every x ∈ (0,T].

Proof. See [15].

Consequently, from Lemma 3.3, we have the following property.

Lemma 3.4. For α > 0 and 0 < γ < 1, Iα is linear and continuous from Cγ[0,T] to Cγ[0,T]. Precisely, the following
inequality holds:

‖Iαu‖Cγ[0,T] ≤ Tα
Γ(1 − γ)

Γ(1 + α − γ)
‖u‖Cγ[0,T].
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Lemma 3.5. Assume that u ∈ Cα1−α[0,T] and limx→0 x1−αu(x) = u0. Then

IαDαu(x) = u(x) − u0xα−1,

for every x ∈ (0,T].

Proof. Since C1−α[0,T] ⊆ C(0,T]∩ L1(0,T), from Lemma 2.5, we have IαDαu(x) = u(x) + cxα−1 for some c ∈ R.
Therefore, c = x1−αIαDαu(x) − x1−αu(x). Taking the limit as x → 0, we have c = −u0. It is important to note
that limx→0 x1−αIαDαu(x) = 0, because of Lemma 3.3.

Theorem 3.6. The space Cα1−α[0,T] is a Banach space.

Proof. Let {un} be a Cauchy sequence in Cα1−α[0,T], then {un} and {Dαun} are Cauchy sequences in C1−α[0,T].
It follows that

un
C1−α
−→ u , Dαun

C1−α
−→ u(α).

As {un} ⊆ Cα1−α[0,T], using Lemma 3.5 we get

IαDαun(x) = un(x) +
(

lim
x→0

x1−αun(x)
)
xα−1,

for every n ∈ N. Now, from the continuity of Riemann-Liouville fractional integral operator from Cγ[0,T]
to Cγ[0,T], we deduce

Iαu(α) = u(x) +
(

lim
n→∞

lim
x→0

x1−αun(x)
)
xα−1

= u(x) +
(

lim
x→0

lim
n→∞

x1−αun(x)
)
xα−1,

the last equality following from the uniformly convergent of {x1−αun}. Therefore, we have

Iαu(α) = u(x) +
(

lim
x→0

x1−αu(x)
)
xα−1.

Finally, using Lemma 2.4, we immediately get that u(α) = Dαu, and hence the result.

Definition 3.7. We define the following order relation for Cα1−α[0,T],

u � v ⇐⇒ x1−αu(x) ≤ x1−αv(x), x1−α
D
αu(x) ≤ x1−α

D
αv(x), x ∈ [0,T].

Lemma 3.8. (Cα1−α[0,T],�) is a partially ordered set and every pair of elements has a lower bound and an upper
bound.

Proof. It is easy to see that Cα1−α[0,T] is a partially ordered set. Now we prove that every pair of elements in
Cα1−α[0,T] has a lower bound and an upper bound. Let u, v ∈ Cα1−α[0,T] and define

w(x) = Iα min{Dαu(·),Dαv(·)}(x) + min{u0, v0}xα−1,

and

w(x) = Iα max{Dαu(·),Dαv(·)}(x) + max{u0, v0}xα−1,

where u0 = limx→0 x1−αu(x) and v0 = limx→0 x1−αv(x). Then from Lemma 3.3 and Lemma 2.4, we have
w ∈ Cα1−α[0,T] and w ∈ Cα1−α[0,T]. On the other hand, it is easy to see that limx→0 x1−αw(x) = min{u0, v0} and
limx→0 x1−α

D
αw(x) = min{u1, v1}where

u1 = lim
x→0

x1−α
D
αu(x), v1 = lim

x→0
x1−α
D
αv(x).
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Silmilarly, we have limx→0 x1−αw(x) = max{u0, v0} and limx→0 x1−α
D
αw(x) = max{u1, v1}. Owing to the

monotonicity of Riemann-Liouville fractional integral Iα and using Lemma 3.5, we have

w(x) ≤ IαDαu(x) + min{u0, v0}xα−1

= u(x) − u0xα−1 + min{u0, v0}xα−1

≤ u(x),

on (0,T]. Similarly, we get w(x) ≤ v(x) on (0,T]. The same argument implies w(x) ≥ v(x) and w(x) ≥ v(x) on
(0,T]. Finally, from Lemma 2.4 and utilizing the fact thatDαxα−1 = 0, we have

D
αw(x) = min{Dαu(·),Dαv(·)}(x),

and

D
αw(x) = max{Dαu(·),Dαv(·)}(x),

on (0,T]. Therefore, we get

D
αw(x) ≤ Dαu(x), D

αw(x) ≤ Dαv(x),

and

D
αw(x) ≥ Dαu(x), D

αw(x) ≥ Dαv(x),

on (0,T]. Therefore w and w are a lower bound and an upper bound of {u, v}, respectively.

4. Weighted Cauchy Type Problem

In this section, we intend to give an existence and uniqueness result for the initial value problem (1)-(2).

Definition 4.1. A function u ∈ Cα1−α[0,T] is called a lower solution of the initial value problem (1)-(2), ifD2αu(x) ≤
f (.,u(.),Dαu(.))(x) for every x ∈ (0,T] and

lim
x→0

x1−αu(x) ≤ u0, lim
x→0

x1−α
D
αu(x) ≤ u1.

To prove the main results, we need the following assumptions:

(H1) f : [0,T] × R2
→ R be a function such that for every u ∈ Cα1−α[0,T], f (.,u(.),Dαu(.))(x) ∈ Cγ[0,T] for

some 0 ≤ γ < 1.
(H2) f is non-decreasing in all its arguments except for the first argument and

f (x,u, v) − f (x, ũ, ṽ) ≤ L1(u − ũ) + L2(v − ṽ),

for some L1,L2 > 0 whenever x ∈ (0,T] and u ≥ ũ, v ≥ ṽ.

Theorem 4.2. Assume that (H1)-(H2) hold. Then there exists 0 < δ ≤ T such that the existence of a lower solution
for (1)-(2) in Cα1−α[0, δ] provides the existence of a unique solution u ∈ Cα1−α[0, δ] for (1)-(2).

Proof. We choose δ > 0 such that the inequality

L = max{L1,L2}

(
δ2α Γ(α)

Γ(3α)
+ δα

Γ(α)
Γ(2α)

)
< 1,

holds. Now we define A : Cα1−α[0, δ]→ Cα1−α[0, δ] by

Au(x) = u0xα−1 + u1
Γ(α)
Γ(2α)

x2α−1 + I2α f (·,u(·),Dαu(·))(x).
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It is obvious that u is a solution of problem (1)-(2) if and only if u is a fixed point of the operator A.
First, we show that for any u ∈ Cα1−α[0, δ], we have Au ∈ Cα1−α[0, δ]. Since

Au(x) = u0xα−1 + u1
Γ(α)
Γ(2α)

x2α−1 + I2α f (·,u(·),Dαu(·))(x),

and

D
αAu(x) = u1xα−1 + Iα f (·,u(·),Dαu(·))(x),

it is sufficient to verify that Iα f (·,u(·),Dαu(·))(x) ∈ C1−α[0, δ]. By Lemma 3.3, Iα f (·,u(·),Dαu(·))(x) ∈
Cγ−α[0, δ] ⊂ C1−α[0, δ] which implies Au ∈ Cα1−α[0, δ]. So the operator A is well defined. For simplicity,
we define the function N f : [0,T]→ R as follows

N f u(x) := f (·,u(·),Dαu(·))(x).

Now let u, ũ ∈ Cα1−α[0, δ] with u � ũ . From the non-decreasing assumption of f in all its arguments
except for the first and using the monotonicity of Riemann-Liouville fractional integral operator, we obtain

Au(x) = u0xα−1 + u1
Γ(α)
Γ(2α)

x2α−1 + I2α f (·,u(·),Dαu(·))(x)

≤ u0xα−1 + u1
Γ(α)
Γ(2α)

x2α−1 + I2α f (·, ũ(·),Dαũ(·))(x)

= Aũ(x),

and

D
αAu(x) = u1xα−1 + Iα f (·,u(·),Dαu(·))(x)

≤ u1xα−1 + Iα f (·,u(·),Dαu(·))(x)
= D

αAũ(x),

on (0, δ]. On the other hand, for any x ∈ (0, δ] and for any u ∈ Cα1−α[0, δ], we can prove that∣∣∣∣x1−αI2αN f u(x)
∣∣∣∣ ≤ ‖N f u‖Cγ[0,T]

Γ(1 − γ)
Γ(1 + 2α − γ)

x1+α−γ
−→
x→0

0,

and ∣∣∣∣x1−αIαN f u(x)
∣∣∣∣ ≤ ‖N f u‖Cγ[0,T]

Γ(1 − γ)
Γ(1 + α − γ)

x1−γ
−→
x→0

0.

Therefore,

lim
x→0

x1−αAu(x) = u0 = lim
x→0

x1−αAũ(x),

and

lim
x→0

x1−α
D
αAu(x) = u1 = lim

x→0
x1−α
D
αAũ(x).

This proves that A is a non-decreasing operator. Also, for ũ � u, we have∥∥∥∥Au(x) − Aũ(x)
∥∥∥∥

Cα1−α[0,δ]
=

∥∥∥∥I2α
(
N f u(·)(x) −N f ũ(·)(x)

)
(x)

∥∥∥∥
Cα1−α[0,δ]

≤ L1

∥∥∥∥I2α
(
u(·) − ũ(·)

)
(x)

∥∥∥∥
Cα1−α[0,δ]

+ L2

∥∥∥∥I2α
D
α
(
u(·) − ũ(·)

)
(x)

∥∥∥∥
Cα1−α[0,δ]

= L1

∥∥∥∥I2α
(
u(·) − ũ(·)

)
(x)

∥∥∥∥
C1−α[0,δ]

+ L1

∥∥∥∥Iα
(
u(·) − ũ(·)

)
(x)

∥∥∥∥
C1−α[0,δ]

+L2

∥∥∥∥I2α
D
α
(
u(·) − ũ(·)

)
(x)

∥∥∥∥
C1−α[0,δ]

+ L2

∥∥∥∥IαDα
(
u(·) − ũ(·)

)
(x)

∥∥∥∥
C1−α[0,δ]
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≤ L1δ
2α Γ(α)

Γ(3α)

∥∥∥∥u − ũ
∥∥∥∥

C1−α[0,δ]
+ L1δ

α Γ(α)
Γ(2α)

∥∥∥∥u − ũ
∥∥∥∥

C1−α[0,δ]

+L2δ
2α Γ(α)

Γ(3α)

∥∥∥∥Dαu −Dαũ
∥∥∥∥

C1−α[0,δ]
+ L2δ

α Γ(α)
Γ(2α)

∥∥∥∥Dαu −Dαũ
∥∥∥∥

C1−α[0,δ]

≤ max{L1,L2}

(
δ2α Γ(α)

Γ(3α)
+ δα

Γ(α)
Γ(2α)

) ∥∥∥∥u − ũ
∥∥∥∥

Cα1−α[0,δ]

= L
∥∥∥∥u − ũ

∥∥∥∥
Cα1−α[0,δ]

Take a monotone non-decreasing sequence {un} ⊆ Cα1−α[0, δ] converging to u. Therefore, the sequences
x1−αun and x1−α

D
αun converge uniformly to functions x1−αu and x1−α

D
αu on [0, δ], respectively. Then, for

every x ∈ [0, δ], we get

x1−αu1(x) ≤ x1−αu2(x) ≤ · · · ≤ x1−αun(x) ≤ · · · ,

and

x1−α
D
αu1(x) ≤ x1−α

D
αu2(x) ≤ · · · ≤ x1−α

D
αun(x) ≤ · · · ,

and the convergence of these sequences of real numbers to x1−αu(x) and x1−α
D
αu(x), respectively, implies

x1−αun(x) ≤ x1−αu(x), f or all x ∈ [0, δ], n ∈N,

and

x1−α
D
αun(x) ≤ x1−α

D
αu(x), f or all x ∈ [0, δ], n ∈N,

therefore, the limit is an upper bound for all the terms un in the sequence, i.e. un � u for n ∈N.
Let u be a lower solution for (1)-(2) in Cα1−α[0, δ]. Indeed, we haveD2αu(x) ≤ f (·,u(·),Dαu(·))(x) for every

x ∈ (0,T] and

lim
x→0

x1−αu(x) ≤ u0, lim
x→0

x1−α
D
αu(x) ≤ u1.

Therefore, by Lemma 3.5 and the monotonicity of Riemann-Liouville fractional integral operator, we deduce

x1−α
D
αu(x) = x1−α

([
lim
x→0

x1−α
D
αu(x)

]
xα−1 + IαD2αu(x)

)
≤ u1 + x1−αIαD2αu(x)

≤ u1 + x1−αI2α f (·, ũ(·),Dαũ(·))(x)
= x1−α

D
αAu(x),

and

x1−αu(x) = x1−α
([

lim
x→0

x1−αu(x)
]
xα−1 + IαDαu(x)

)
≤ u0 + x1−αIαDαu(x)

= u0 + x1−α
(
Iα

([
lim
x→0

x1−α
D
αu(x)

]
xα−1 + IαD2αu(x)

))
= u0 +

[
lim
x→0

x1−α
D
αu(x)

] Γ(α)
Γ(2α)

xα + x1−αI2α
D

2αu(x)

= u0 + u1
Γ(α)
Γ(2α)

xα + x1−αI2α
D

2αu(x)

= x1−αAu(x).

Therefore, u � Au. Thus an application of the Theorem 2.10, together with Lemma 3.8, yields the existence
and uniqueness of the solution of u ∈ Cα1−α[0, δ] of the problem (1)-(2). Moreover, the unique solution of
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(1)-(2) can be obtained as limn→∞ Anu for every u ∈ Cα1−α[0, δ]. In particular, the unique solution u ∈ Cα1−α[0, δ]
of (1)-(2) can be obtained as limn→∞ un(x) where

un(x) = u0xα−1 + u1
Γ(α)
Γ(2α)

x2α−1 + I2α f (·,un−1(·),Dαun−1(·))(x),

where u0(x) = u(x).

Example 4.3. Let us consider the following linear initial value problem
D

2αu(x) − κ1xαDαu(x) − κ2u(x) = x−γ, x ∈ (0,T],

limx→0 x1−αu(x) = a, limx→0 x1−α
D
αu(x) = b,

(6)

where 0 < α ≤ 1, T ≥ 1, a, b, κ1, κ2 ≥ 0, max{κ1, κ2} <
(

Γ(α)
Γ(3α) +

Γ(α)
Γ(2α)

)−1
and γ < 1. In this case, it is easy to see that

the conditions (H1)-(H2) hold. On the other hand, u0(x) = axα−1 + b Γ(α)
Γ(2α) x

2α−1 is a lower solution of (6). Therefore,
using Theorem 4.2, the initial value problem (6) has a unique solution in Cα1−α[0, 1]. Furthermore, to solve (6), we
can apply the method of successive approximations by setting

un(x) = u0(x) + κ1I2α
(
xαDαun−1(x)

)
+ κ2

(
I2αun−1(x)

)
+ I2αx−γ, (n ∈N).

We can now form the first few successive approximations as follows

u1(x) = axα−1 + b
Γ(α)
Γ(2α)

x2α−1

+bκ1
Γ(2α)
Γ(4α)

x4α−1 + aκ2
Γ(α)
Γ(3α)

x3α−1 + bκ2
Γ(α)
Γ(4α)

x4α−1 +
Γ(1 − γ)

Γ(1 − γ + 2α)
x2α−γ. (7)

Similarly,

u2(x) = axα−1 + b
Γ(α)
Γ(2α)

x2α−1

+κ1

(
b

Γ(2α)
Γ(4α)

x4α−1 + bκ1
Γ(2α)
Γ(3α)

Γ(4α)
Γ(6α)

x6α−1 + aκ2
Γ(α)
Γ(2α)

Γ(3α)
Γ(5α)

x5α−1

+bκ2
Γ(α)
Γ(3α)

Γ(4α)
Γ(6α)

x6α−1 +
Γ(1 − γ + α)
Γ(1 − γ + 2α)

Γ(2α)
Γ(4α)

x4α−γ

)
+κ2

(
a

Γ(α)
Γ(3α)

x3α−1 + b
Γ(α)
Γ(4α)

x4α−1 + bκ1
Γ(2α)
Γ(6α)

x6α−1 + aκ2
Γ(α)
Γ(5α)

x5α−1

+bκ2
Γ(α)
Γ(6α)

x6α−1 +
Γ(1 − γ)

Γ(1 − γ + 4α)
x4α−γ

)
+

Γ(1 − γ)
Γ(1 − γ + 2α)

x2α−γ. (8)

It is interesting to point out that un, n = 1, 2 of (7) and (8) serve as approximate solutions of increasing accuracy as
n→∞.

Remark 4.4. In a similar way, we can deal with the following initial value problem of the nonlinear sequential
fractional differential equation, more general than those in (1)-(2), are defined by

D
nαu(x) = f (x,u(x),Dαu(x),D2αu(x), · · · ,D(n−1)αu(x)), x ∈ (0,T], (9)

lim
x→0

x1−α
D

kαu(x) = uk, (k = 0, · · · ,n − 1), (10)

where 0 < α ≤ 1.
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We could carry out a similar argument to prove the existence and uniqueness results for problem (9)- (10).
We do not try to give here an account of the extremely wide details on this topic, we only confine ourself to
introduce the necessary spaces of appropriate order on them, and omit the full details of the processes.

Definition 4.5. For 0 < α ≤ 1, we define the following space

Cnα
1−α[0,T] = {u ∈ C1−α[0,T] : Dkαu ∈ C1−α[0,T], k = 1, 2, · · · ,n − 1},

equipped with the norm

‖u‖Cnα
1−α[0,T] =

n−1∑
k=0

‖D
kαu‖C1−α[0,T].

Definition 4.6. We define the following order relation for Cnα
1−α[0,T],

u � v ⇐⇒ x1−α
D

kαu(x) ≤ x1−α
D

kαv(x), x ∈ [0,T], k = 0, 1, · · · ,n − 1.

Theorem 4.7. Let 0 < α ≤ 1. Then the space Cnα
1−α[0,T] is a Banach space and (Cnα

1−α[0,T],�) is a partially ordered
set and every pair of elements has a lower bound and an upper bound.

Definition 4.8. A function u ∈ Cnα
1−α[0,T] is called a lower solution of the initial value problem (9)-(10), ifDnαu(x) ≤

f (·,u(·),Dαu(·),D2αu(·), · · · ,D(n−1)αu(·))(x) for every x ∈ (0,T] and

lim
x→0

x1−α
D
αu(x) ≤ uk, k = 0, 1, · · · ,n − 1.

To prove the main results, we need the following assumptions:

(H3) f : [0,T] ×Rn
→ R be a function such that for every u ∈ Cnα

1−α[0,T],

f (·,u(·),Dα u(·),D2αu(·), · · · ,D(n−1)αu(·))(x) ∈ Cγ[0,T],

for some 0 ≤ γ < 1.
(H4) f is non-decreasing in all its arguments except for the first argument and there exist L > 0 such that

f (x,u1, · · · ,un) − f (x, ũ1, · · · , ũn) ≤ L
n∑

i=1

(ui − ũi) ui ≥ ũi, i = 1, 2, · · · ,n.

Theorem 4.9. Assume that (H3)-(H4) hold. Then there exists 0 < δ ≤ T such that the existence of a lower solution
for (9)-(10) in Cnα

1−α[0, δ] provides the existence of a unique solution u ∈ Cnα
1−α[0, δ] for (9)-(10).
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36 (2000) 1413-1423.
[10] A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, 1997.
[11] K. Diethelm, The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin, 2010.
[12] K. Diethelm, N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002) 229-248.
[13] H. Fazli, F. Bahrami, On the steady solutions of fractional reaction-diffusion equations, Filomat, 31 (2017) 1655-1664.
[14] H. Fazli, J.J. Nieto, F. Bahrami, On the existence and uniqueness results for nonlinear sequential fractional differential equations,

Appl. Comput. Math. 17(1) (2018) 36-47.
[15] K.M. Furati, A Cauchy-type problem with a sequential fractional derivative in the space of continuous functions, Bound. Value

Probl. 2012 (2012), 1-14.
[16] R. Hilfer, Applications of fractional calculus in physics. World Sci. Publishing, River Edge 2000.
[17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland

Mathematics Studies, vol. 204, Elsevier Science B. V, Amsterdam, 2006.
[18] M. Klimek, M. Blasik, Existence-uniqueness of solution for a class of nonlinear sequential differential equations of fractional

order, Cent. Eur. J. Math. 10(6) (2012) 1981-1994.
[19] Q. Li, H. Su, Z. Wei, Existence and uniqueness result for a class of sequential fractional differential equations, J. Appl. Math.

Comput. 38 (2012) 641-652.
[20] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York,

1993.
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