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Abstract. Let A = I − PQT, where P and Q are two n × 2 complex matrices of full column rank such that
det(QTP) = 0. We find all the commuting solutions of the quadratic matrix equation AXA = XAX.

1. Introduction

We consider the solutions of the following quadratic matrix equation

AXA = XAX, (1)

where both the given A and the unknown X are n×n complex matrices. The above equation has been called
the Yang-Baxter-like matrix equation[4, 6–8]. The equation (1) has its origin in the classical Yang-Baxter
equation obtained from Yang [19], which is used to study the many-body problem in 1967, and then by
Baxter [2] independently for a lattice model in 1972, which is related to the quantum Yang-Baxter equation.
In the past decades, the Yang-Baxter equation has been extensively investigated by mathematicians in knot
theory, braid group theory and quantum group theory as well as physicists (see, e.g., [1, 10–12, 18, 25–
27, 29] and the references therein). The quadratic matrix equation (1) has been studied using linear algebra
techniques in the past few years; see, e.g., [3, 4, 6–8, 28] for more details.

The Yang-Baxter-like matrix equation has two trivial solutions X = 0 and X = A, but finding nontrivial
solutions of (1) is not easy for an arbitrary matrix A. Since solving this equation is equivalent to solving
a polynomial system of n2 quadratic equations with n2 variables. We limit the task to only finding the
solutions that commute with A. Some solutions can be obtained in [6] when the matrix A is a special class
of Jordan forms, and a more general result was proved in [9] when the matrix A is a class of diagonalizable
matrices, but the general solution has still never been obtained for arbitrary matrices A. In a recent paper
[20], the author have found all the solutions of (1), where the given n × n complex matrix A = PQT, with
two n × 2 matrices P and Q, with the assumption that QTP is singular. However, in this paper we intend to
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find all the commuting solutions of (1), where A = I − PQT and QTP is singular. We would like to find all
the solutions X of (1) satisfying AX = XA, and such solutions are called the commuting solutions.

In the paper [6], it was proved that solving the Yang-Baxter-like matrix equation for any given matrix
A is equivalent to solving the same equation, where the matrix A in the equation is replaced by a matrix
similar to A, and all the solutions of the two equations are similar with the same similarity matrix. Because
any matrix is similar to its Jordan form matrix, solving equation (1) for the given A can be reduced to solving
the same equation with the Jordan form of A. We denote the Jordan form of the matrix as J. We shall solve
the following simpler Yang-Baxter-like matrix equation

JYJ = YJY. (2)

From [20] we can get it in a similar way

J = dia1(I,Λ), (3)

such that Λ is one of the following three matrices

Λ1 ≡

 1 1 0
0 1 1
0 0 1

 ,Λ2 ≡

 1 1 0
0 1 0
0 0 1 − λ

 , λ , 0; Λ3 ≡


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , (4)

and the diagonal block I in (3) is either (n − 3) × (n − 3) or (n − 4) × (n − 4) accordingly. For each of the three
cases of J, there is a corresponding nonsingular matrix W = [w1, · · · ,wn], which makes

A = I − PQT = WJW−1.

This paper is organized as follows. Our main result will be presented in the next three sections. We
present three examples of our solution result in Section 5.

2. Solutions of equation in the case of Λ = Λ1

In this and subsequent sections we assume that the known matrix A in equation (1) is I − PQT, where
P and Q are two n × 2 complex matrices of full column rank such that det(QTP) = 0, and P = [p1, p2],
Q = [q1, q2]. Let J be the Jordan form of A given by (3), where the diagonal block I is either (n − 3) × (n − 3)
and Λ = Λ1 or Λ2 defined by (4), or the diagonal block I is (n − 4) × (n − 4) and Λ = Λ3 in (4). In the current
section, we will research all the commuting solutions of (1) when J = dia1(I,Λ1), and the other two cases
that J = dia1(I,Λ2) and J = dia1(I,Λ3) will be investigated in section 3 and 4, respectively.

As indicated in section 1, it is well known that solving the quadratic matrix equation (1) is equivalent
to solving the equation (2) with J the Jordan form of A, so we just focus on solving (2). To solve the
corresponding simplified Yang-Baxter-like matrix equation

JYJ = YJY.

Let Y be partitioned into the 2 × 2 block matrix in the same way as J

Y =

(
M Z

WT T

)
, (5)

where M is (n − 3) × (n − 3), Z = [z1, z2, z3] and W = [w1,w2,w3] are (n − 3) × 3, and T is 3 × 3. Let

T =

 t11 t12 t13
t21 t22 t23
t31 t32 t33

 .
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Then (5) becomes

Y =


M z1 z2 z3
wT

1 t11 t12 t13

wT
2 t21 t22 t23

wT
3 t31 t32 t33

 , (6)

and J can be written as

J =


In−3

1 1
1 1

1

 .
Theorem 2.1 Suppose A = I − PQT is such that Λ = Λ1 in its Jordan form (3) with det(QTP) = 0. Then

all the commuting solutions of (1) are X = WYW−1 with Y partition as (6), such that M is an arbitrary
(n − 3) × (n − 3) projection matrix.

(i)When t11 = 0, then t12 = 0, the vectors z3 and wT
1 belong to the range space of M, and t13 = wT

1 z3.
(ii)When t11 = 1, then t12 = 1, the vectors z3 and wT

1 belong to the null space of M, and t13 = −wT
1 z3.

Proof: All the commuting solutions of (2) must satisfy

JY = YJ.

Then the above matrix equation equivalent to the system

z2 = z1 + z2,
z3 = z2 + z3,
wT

1 + wT
2 = wT

1 ,
wT

2 + wT
3 = wT

2 ,
t11 + t21 = t11,
t12 + t22 = t11 + t12,
t23 + t13 = t12 + t13,
t21 + t31 = t21,
t22 + t32 = t21 + t22,
t23 + t33 = t22 + t23,
t32 = t31 + t32,
t33 = t32 + t33.

From the first four equations above, we can solve z1 = 0, z2 = 0, wT
2 = 0, wT

3 = 0, respectively. We can obtain
t21 = t32 = 0 from the fifth, the twelfth and the ninth equations. We can solve t31 = 0 from t21 + t31 = t21. We
can get t11 = t22 = t33 from the two equations of the sixth and the tenth. Then t12 = t23 from t23 + t13 = t12 + t13.
Substituting them into Y, then

Y =


M 0 0 z3
wT

1 t11 t12 t13
0 0 t11 t12
0 0 0 t11

 .
Thus, the matrix equation (2) is equivalent to

M2 = M,
Mz3 = (1 − t11)z3,
wT

1 M = (1 − t11)wT
1 ,

t2
11 = t11,

t2
11 + 2t11t12 = 2t11 + t12,

wT
1 z3 = t11 + 2t12 + t13 − 2t11t13 − 2t11t12 − t2

12,
t2
11 + 2t11t12 = t12 + 2t11.

(7)
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From the above fourth equation we can know either t11 = 0 or t11 = 1. Therefore we have the following
result.

(i) When t11 = 0, from the fifth equation above we can solve t12 = 0, then we obtain the following system
from (7) 

M2 = M,
Mz3 = z3,
wT

1 M = wT
1 ,

wT
1 z3 = t13,

which is the first statement of Theorem 2.1.
(ii) When t11 = 1, then t12 = 1, and (7) is reduced to

M2 = M,
Mz3 = 0,
wT

1 M = 0,
wT

1 z3 = −t13,

where w1 and z3 are two (n−3)−dimensional complex vectors and the second case of Theorem 2.1 is proved.

3. Solutions of equation in the case of Λ = Λ2

We now consider the second case that the Jordan form of the matrix A is J = dia1(I,Λ2). That is to say, J
can be written as

J =


In−3

1 1
1

1 − λ

 ,
and Y is partitioned as (6). We solve the equation (2).

Theorem 3.1 Suppose A = I − PQT is such that Λ = Λ2 in its Jordan form (3) with det(QTP) = 0. Then
all the commuting solutions of (1) are X = WYW−1 with Y partition as (6), such that M is an arbitrary
(n − 3) × (n − 3) projection matrix, t33 is either 0 or 1 − λ.

(i) When t11 = 0, then the vectors z2 and wT
1 belong to the range space of M, and t12 = wT

1 z2.
(ii) When t11 = 1, then the vectors z2 and wT

1 belong to the null space of M, and t12 = 1 − wT
1 z2.

Proof: All the commuting solutions of (2) must satisfy

JY = YJ.

Then the above matrix equation is equivalent to the following system

z1 + z2 = z2,
(1 − λ)z3 = z3,
wT

1 + wT
2 = wT

1 ,
(1 − λ)wT

3 = wT
3 ,

t11 + t21 = t11,
t11 + t12 = t12 + t22,
(1 − λ)t13 = t13 + t23,
t21 + t22 = t22,
(1 − λ)t23 = t23,
(1 − λ)t31 = t31,
(1 − λ)t32 = t31 + t32.
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From the first equation above, z1 = 0. Since λ , 0, from the second equation, z3 = 0. Similarly, from the
two equations of the third and the fourth, we can obtain wT

2 = 0, wT
3 = 0, respectively. The two equations

(1 − λ)t13 = t13 + t23 and (1 − λ)t23 = t23 imply t23 = t13 = 0. The two equations (1 − λ)t31 = t31 and
(1 − λ)t32 = t31 + t32 imply t31 = t32 = 0. So t21 = 0 from t11 + t21 = t11 and t11 = t22 since t11 + t12 = t12 + t22.
Substituting them into Y, then

Y =


M 0 z2 0
wT

1 t11 t12 0
0 0 t11 0
0 0 0 t33

 .
Thus, the matrix equation JYJ = YJY becomes

M2 = M,
Mz2 = (1 − t11)z2,
wT

1 M = (1 − t11)wT
1 ,

t2
11 = t11,

wT
1 z2 = t12 + 2t11 − 2t11t12 − t2

11,
(1 − λ)t2

33 = (1 − λ)2t33.

(8)

The fourth equation of (8) indicates that either t11 =0 or t11 =1. The equation of (1−λ)t2
33 = (1−λ)2t33 implies

either t33 =0 or t33 = 1 − λ.

(i) When t11 = 0, then (8) is simplified to 
M2 = M,
Mz2 = z2,
wT

1 M = wT
1 ,

wT
1 z2 = t12,

which proves the first statement of Theorem 3.1.

(ii) When t11 = 1, and the system (8) is reduced to
M2 = M,
Mz2 = 0,
wT

1 M = 0,
wT

1 z2 = 1 − t12,

where either t33 =0 or t33 = 1 − λ, w1 and z2 are two (n − 3)−dimensional complex vectors and the second
statement of Theorem 3.1 is proved.

4. Solutions of equation in the case of Λ = Λ3

Unlike the previous two cases, both Λ1 and Λ2 are 3× 3 matrices. In this section we will study the third
case Λ3 is a 4 × 4 matrix. To solve the equation (2), We define the rank of matrix M as r(M).

The splitting of Y is the same as (5), but M is (n − 4) × (n − 4), Z = [z1, z2, z3, z4] and W = [w1,w2,w3,w4]
are (n − 4) × 4, T is 4 × 4.
Let

T =


t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

 .
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The (5) can be written as

Y =


M z1 z2 z3 z4
wT

1 t11 t12 t13 t14

wT
2 t21 t22 t23 t24

wT
3 t31 t32 t33 t34

wT
4 t41 t42 t43 t44

 , (9)

and similarly, J can be written as

J =


In−4

1 1
1

1 1
1

 .
All the commuting solutions of (2) must satisfy

JY = YJ.

Then the above matrix equation becomes
M z1 z1 + z2 z3 z3 + z4
wT

1 t11 t11 + t12 t13 t13 + t14

wT
2 t21 t21 + t22 t23 t23 + t24

wT
3 t31 t31 + t32 t33 t33 + t34

wT
4 t41 t41 + t42 t43 t43 + t44

 =


M z1 z2 z3 z4

wT
1 + wT

2 t11 + t21 t12 + t22 t13 + t23 t14 + t24

wT
2 t21 t22 t23 t24

wT
3 + wT

4 t31 + t41 t32 + t42 t33 + t43 t34 + t44

wT
4 t41 t42 t43 t44

 .
From the two equations of z1 + z2 = z2 and z3 + z4 = z4, we can obtain z1 = 0, z3 = 0, respectively. We can
solve wT

2 = 0 from wT
1 = wT

1 + wT
2 , so wT

4 = 0 from wT
3 = wT

3 + wT
4 and t21 = t23 = t41 = t43 = 0 from equating

entries (2,2), (2,4), (4,2), (4,4) of both sides in above system. Then t11 = t22 from t11 + t12 = t12 + t22. t13 = t24
from t13 + t14 = t14 + t24, so t31 = t42 from t31 + t32 = t32 + t42 and t33 = t44 since t33 + t34 = t34 + t44.
Then (9) becomes

Y =


M 0 z2 0 z4
wT

1 t11 t12 t13 t14
0 0 t11 0 t13

wT
3 t31 t32 t33 t34

0 0 t31 0 t33

 .
Thus, the equation (2) is equivalent to the system

M2 = M,
Mz2 + t11z2 + t31z4 = z2,
Mz4 + t13z2 + t33z4 = z4,
wT

1 M + t11wT
1 + t13wT

3 = wT
1 ,

wT
3 M + t31wT

1 + t33wT
3 = wT

3 ,
t2
11 + t13t31 = t11,

t11t13 + t13t33 = t13,
wT

1 z4 + t11t14 + t11t13 + t12t13 + t13t34 + t13t33 + t14t33 = 2t13 + t14,
t11t31 + t31t33 = t31,
wT

3 z2 + t31t12 + t11t31 + t11t32 + t32t33 + t31t33 + t31t34 = 2t31 + t32,
t2
33 + t13t31 = t33,

wT
1 z2 + t2

11 + 2t11t12 + t13t32 + t13t31 + t14t31 = 2t11 + t12,
wT

3 z4 + t31t14 + t13t31 + t13t32 + 2t34t33 + t2
33 = 2t33 + t34.

(10)

By observing the above equations, the equation t11t13 + t13t33 = t13 implies either t13 = 0 or t11 + t33 = 1 and
the equation t11t31 + t31t33 = t31 implies either t31 = 0 or t11 + t33 = 1. We consider the first case t11 + t33 = 1,
which leads to the following proposition.
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Proposition 4.1. Suppose A = I − PQT is such that Λ = Λ3 in its Jordan form (3) with det(QTP) = 0. Then all the
commuting solutions of (1) are X = WYW−1 with Y partition as (9), such that M is an arbitrary (n − 4) × (n − 4)
projection matrix, the vectors S, ST belong to the null space of I −M and the vectors T, TT belong to the null space of
M, when t11 + t33 = 1,

(i) t13 = 0, t31 , 0, then t11 = 0 or 1, t33 = 1 − t11 and t31 is an arbitrary non-zero complex number, t12 and t32
are two arbitrary complex numbers.

If t11 = 0, then t33 = 1, z4 belongs to the null space of M and wT
1 belongs to the range space of M, the vectors of

z4 and wT
1 satisfy wT

1 z4 = 0, z2 = t31z4 + S, wT
3 = −t31wT

1 + TT, t14 =
t12−wT

1 z2

t31
and t34 = 1 − t31t14 − wT

3 z4.

If t11 = 1, then t33 = 0, z4 belongs to the range space of M and wT
1 belongs to the null space of M, the vectors of

z4 and wT
1 satisfy wT

1 z4 = 0, z2 = −t31z4 + T, wT
3 = t31wT

1 + ST, t14 =
1−t12−wT

1 z2

t31
and t34 = t31t14 + wT

3 z4.

(ii) t13 = t31 = 0, then t11 = 0 or 1, t33 = 1 − t11, t14 and t32 are two arbitrary complex numbers.

If t11 = 0, then t33 = 1, z2, wT
1 belong to the range space of M and z4, wT

3 belong to the null space of M, the
vectors of z4, wT

1 , z2 and wT
3 , which satisfy the two equations of wT

1 z4 = 0 and wT
3 z2 = 0, t12 = wT

1 z2 and t34 = 1−wT
3 z4.

If t11 = 1, then t33 = 0, z2, wT
1 belong to the null space of M and z4, wT

3 belong to the range space of M,
the vectors of z4, wT

1 , z2 and wT
3 , which satisfy the two equations of wT

1 z4 = 0 and wT
3 z2 = 0, t12 = 1 − wT

1 z2 and
t34 = wT

3 z4.

(iii)t13 , 0, t31 = 0, then t11 = 0 or 1, t33 = 1 − t11 and t13 is an arbitrary non-zero complex number, t14 and t32
are two arbitrary complex numbers.

If t11 = 0, then t33 = 1, z2 belongs to the range space of M and wT
3 belongs to the null space of M, the vectors of

z2 and wT
3 satisfy wT

3 z2 = 0, z4 = −t13z2 + T, wT
1 = t13wT

3 + ST, t12 = t13t32 + wT
1 z2 and t34 = 1 − t13t32 − wT

3 z4.

If t11 = 1, then t33 = 0, z2 belongs to the null space of M and wT
3 belongs to the range space of M, the vectors of

z2 and wT
3 satisfy wT

3 z2 = 0, z4 = t13z2 + S, wT
1 = −t13wT

3 + TT, t12 = 1 − t13t32 − wT
1 z2 and t34 = t13t32 + wT

3 z4.

(iv)t13 , 0, t31 , 0, t11 and t13 are two arbitrary non-zero complex numbers, t12 and t14 are two arbitrary complex
numbers, w1 and z2 are two (n − 4)−dimensional complex vectors, then t33 = 1 − t11, t31 =

t11(1−t11)
t13

, z4 =
(t33I−M)z2

t31
,

wT
3 =

wT
1 (t33I−M)

t13
, t34 = 1 − t12 −

wT
1 z4

t13
and t32 =

t11+t12−2t11t12−t14t31−wT
1 z2

t13
.

Proof: When t11 + t33 = 1, the system (10) becomes the following form after some simplifications.



t11 + t33 = 1,
t2
11 + t13t31 = t11,

t2
33 + t13t31 = t33,

M2 = M,
Mz2 = (1 − t11)z2 − t31z4,
Mz4 = (1 − t33)z4 − t13z2,
wT

1 M = (1 − t11)wT
1 − t13wT

3 ,
wT

3 M = (1 − t33)wT
3 − t31wT

1 ,
wT

1 z2 + 2t11t12 + t13t32 + t14t31 = t11 + t12,
wT

3 z4 + t31t14 + t13t32 + 2t34t33 = t33 + t34,
wT

1 z4 = t13(1 − t12 − t34),
wT

3 z2 = t31(1 − t12 − t34).

(11)

From the first three equations of (11) indicate that t11t33 = t13t31.

(i) When t13 = 0, t31 , 0, we can get either t11 = 0 or t11 = 1 from the second equation in above system.
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If t11 = 0, then t33 = 1. The (11) can be written as

M2 = M,
Mz4 = 0,
wT

1 M = wT
1 ,

wT
1 z4 = 0,

Mz2 = z2 − t31z4,
wT

3 M = −t31wT
1 ,

wT
1 z2 + t14t31 = t12,

wT
3 z4 + t31t14 = 1 − t34,

wT
3 z2 = t31(1 − t12 − t34).

(12)

From the above system, we can know that for any the vectors of z4 and wT
1 , which satisfy z4 belongs to the

null space of M, wT
1 belongs to the range space of M and wT

1 z4 = 0. From the second equation of (12), we
can obtain (I −M)z4 = z4, then r(I −M) = r(I −M, z4). The fifth equation of the system above is simplified
to (I −M)z2 = t31z4, and such the solution vector z2 must exist. z2 = z0 + S, where z0 is a special solution
to the equation (I −M)z2 = t31z4 and S is a fundamental system of solutions to the equation (I −M)z2 = 0.
Obviously z0 can be taken as t31z4 and S satisfies the equation of (I −M)S = 0, thus

z2 = t31z4 + S.

Similarly to the idea above, r(M) = r(M,wT
1 ) can be obtained from the equation of wT

1 M = wT
1 . Then the

solution vector wT
3 of the equation wT

3 M = −t31wT
1 can be written as

wT
3 = −t31wT

1 + TT,

where−t31wT
1 is a special solution to the equation wT

3 M = −t31wT
1 and TT is a fundamental system of solutions

to the equation wT
3 M = 0, TT satisfies the equation of TTM = 0. Substituting z2 and wT

3 into the last equation
of (12), we can get

−t2
31wT

1 z4 − t31wT
1 S + t31TTz4 + TTS = t31(1 − t12 − t34).

The above equation is simplified to −t31wT
1 S + t31TTz4 = t31(1− t12 − t34). Since t31 , 0, t31 can be an arbitrary

non-zero complex number. For any t12 we can solve t14 =
t12−wT

1 z2

t31
from the seventh equation of (12). The

equation wT
3 z4 + t31t14 = 1− t34 implies t34 = 1− t31t14 −wT

3 z4. Since t32 does not appear at all in the case, it is
a free variable in all the commuting solutions.

When t13 = 0, t31 , 0, t11 = 1, then t33 = 0. The (11) becomes

M2 = M,
Mz4 = z4,
wT

1 M = 0,
wT

1 z4 = 0,
Mz2 = −t31z4,
wT

3 M = wT
3 − t31wT

1 ,
wT

1 z2 + t14t31 = 1 − t12,
wT

3 z4 + t31t14 = t34,
wT

3 z2 = t31(1 − t12 − t34).

Through observation, we can easily find that it is similar to the above situation, so I will just give some
brief explanations. For any the vectors of z4 and wT

1 , which satisfy z4 belongs to the range space of M, wT
1

belongs to the null space of M and wT
1 z4 = 0.

z2 = −t31z4 + T,



H.-H. Yin et al. / Filomat 32:13 (2018), 4591–4609 4599

where −t31z4 is a special solution to the equation Mz2 = −t31z4 and T is a fundamental system of solutions
to the equation Mz2 = 0.

wT
3 = t31wT

1 + ST,

where t31wT
1 is a special solution to the equation wT

3 (I − M) = t31wT
1 and ST is a fundamental system of

solutions to the equation wT
3 (I −M) = 0. From the last three equations in above, we can solve t31, which

is an arbitrary non-zero complex number, t14 =
1−t12−wT

1 z2

t31
and t34 = wT

3 z4 + t14t31, where t32 and t12 are two
arbitrary complex numbers, which is the proof of the first case of Proposition 4.1.

(ii) When t13 = t31 = 0, we can solve t11 = 0 or t11 = 1 from the equation of t2
11 + t13t31 = t11. If t11 = 0,

then t33 = 1. The system of (11) becomes 

M2 = M,
Mz2 = z2,
Mz4 = 0,
wT

1 M = wT
1 ,

wT
3 M = 0,

wT
1 z4 = 0,

wT
3 z2 = 0,

wT
1 z2 = t12,

wT
3 z4 = 1 − t34.

Through the above system, For any the vectors of z2, z4, wT
1 and wT

3 , which satisfy z2, wT
1 belong to the range

space of M, z4, wT
3 belong to the null space of M, wT

1 z4 = 0 and wT
3 z2 = 0. we can solve t34 = 1 − wT

3 z4 and
t12 = wT

1 z2 from the last two equations in above.
When t13 = t31 = 0, t11 = 1, then t33 = 0. The system (11) is reduced to

M2 = M,
Mz2 = 0,
Mz4 = z4,
wT

1 M = 0,
wT

3 M = wT
3 ,

wT
1 z4 = 0,

wT
3 z2 = 0,

wT
1 z2 = 1 − t12,

wT
3 z4 = t34.

Similar to the above, For any the vectors of z2, z4, wT
1 and wT

3 , which satisfy z4, wT
3 belong to the range space

of M, z2, wT
1 belong to the null space of M, wT

1 z4 = 0 and wT
3 z2 = 0. The last two equations of the system

above imply t34 = wT
3 z4, t12 = 1 − wT

1 z2. Clearly the above two systems does not involve t14, t32, so they are
free variables in all commuting solutions, which is the second statement of Proposition 4.1.

(iii) When t13 , 0, t31 = 0, the second equation of (11) indicates that either t11 = 0 or t11 = 1. If t11 = 0,
then t33 = 1. The (11) now can be written as

M2 = M,
Mz2 = z2,
wT

3 M = 0,
wT

3 z2 = 0,
Mz4 = −t13z2,
wT

1 M = wT
1 − t13wT

3 ,
wT

1 z2 + t13t32 = t12,
wT

3 z4 + t13t32 = 1 − t34,
wT

1 z4 = t13(1 − t12 − t34).

(13)
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From the above system, we can know that for any the vectors of z2 and wT
3 , which satisfy z2 belongs to the

range space of M, wT
3 belongs to the null space of M and wT

3 z2 = 0. The equation of Mz2 = z2 indicates that
r(M) = r(M, z2), so the solution vector z4 of equation Mz4 = −t13z2 must exist and can be expressed as

z4 = −t13z2 + T,

where −t13z2 is a special solution to the equation Mz4 = −t13z2, T is a fundamental system of solutions to the
equation Mz4 = 0 and T satisfies the equation of MT = 0. From the third equation in above, we can obtain
wT

3 (I −M) = wT
3 , so r(I −M) = r(I −M,wT

3 ). Then the solution vector wT
1 of the equation wT

1 (I −M) = t13wT
3

can be written as

wT
1 = t13wT

3 + ST,

where t13wT
3 is a special solution to the equation wT

1 (I − M) = t13wT
3 and ST is a fundamental system of

solutions to the equation wT
1 (I −M) = 0. ST satisfies the equation of ST(I −M) = 0. Substituting z4 and wT

1
into the last equation in above, since t13 , 0, t13 can be an arbitrary non-zero complex number. From the
seventh and the eighth equations of (13), we can solve t12 = wT

1 z2 + t13t32, t34 = 1− t13t32 −wT
3 z4, respectively,

where t32 and t14 are two arbitrary complex numbers.

When t13 , 0, t31 = 0, t11 = 1, then t33 = 0. The system (11) are simplified to



M2 = M,
Mz2 = 0,
wT

3 M = wT
3 ,

wT
3 z2 = 0,

Mz4 = z4 − t13z2,
wT

1 M = −t13wT
3 ,

wT
1 z2 + t13t32 = 1 − t12,

wT
3 z4 + t13t32 = t34,

wT
1 z4 = t13(1 − t12 − t34).

The observation show that when t11 = 1, it is very similar to the above case. So I don’t give the detailed
proof process, and I only give some conclusions. For any the vectors of z2, wT

3 , which satisfy z2 belongs to
the null space of M, wT

3 belongs to the range space of M and wT
3 z2 = 0.

z4 = t13z2 + S,

where t13z2 is a special solution to the equation (I −M)z4 = t13z2 and S is a fundamental system of solutions
to the equation (I −M)z4 = 0, S satisfies the equation of (I −M)S = 0.

wT
1 = −t13wT

3 + TT,

where−t13wT
3 is a special solution to the equation wT

1 M = −t13wT
3 and TT is a fundamental system of solutions

to the equation wT
1 M = 0, TT satisfies the equation of TTM = 0. From the last three equations in above,

we can obtain t13 is an arbitrary non-zero complex number, t34 = wT
3 z4 + t13t32 and t12 = 1 − t13t32 − wT

1 z2,
where t14 and t32 are three arbitrary complex numbers, which is the proof of the third case of Proposition 4.1.
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(iv) When t13 , 0, t31 , 0, we can get either t11 , 0 or 1. The (11) becomes

t11 + t33 = 1,
t2
11 + t13t31 = t11,

t2
33 + t13t31 = t33,

M2 = M,
(t33I −M)z2 = t31z4,
(t11I −M)z4 = t13z2,
wT

1 (t33I −M) = t13wT
3 ,

wT
3 (t11I −M) = t31wT

1 ,
wT

1 z2 + 2t11t12 + t13t32 + t14t31 = t11 + t12,
wT

3 z4 + t31t14 + t13t32 + 2t34t33 = t33 + t34,
wT

1 z4 = t13(1 − t12 − t34),
wT

3 z2 = t31(1 − t12 − t34).

For any t11 , 0, 1, t13 , 0, the first three equations of the above system indicate that t33 = 1 − t11 and
t31 =

t11(1−t11)
t13

. From the fifth equation in above, we can solve z4 =
(t33I−M)z2

t31
, where z2 is any complex

(n − 3)−dimensional complex vector. For any wT
1 , the seventh equation of the above system implies

wT
3 =

wT
1 (t33I−M)

t13
. Let’s substitute the values of t31, z4 and wT

3 into the two equations of the sixth and the eighth,
so we can verify that both of these equations are satisfied. From the eleventh equation in above system, we

can obtain t34 = 1 − t12 −
wT

1 z4

t13
. substituting t34, z4 and wT

3 into the last equation, which is always satisfied.
By substituting t33, t34, wT

3 and z4 into the ninth equation and the tenth equation, we will find that these

two equations are the same. So we can solve t32 =
t11+t12−2t11t12−t14t31−wT

1 z2

t13
, where t12 and t14 are two arbitrary

complex numbers and the last statement of Proposition 4.1 is proved.
We now consider the next case t13 = 0 and t31 = 0, which leads to the next proposition.

Proposition 4.2. Suppose A = I − PQT is such that Λ = Λ3 in its Jordan form (3) with det(QTP) = 0. Then all the
commuting solutions of (1) are X = WYW−1 with Y partition as (9), such that M is an arbitrary (n − 4) × (n − 4)
projection matrix, when t13 = t31 = 0, and

(i)t11 = t33 = 0, then the vectors z2, z4,wT
1 , wT

3 belong to the range space of M, and t12 = wT
1 z2, t14 = wT

1 z4,
t32 = wT

3 z2, t34 = wT
3 z4.

(ii)t11 = t33 = 1, then the vectors z2, z4,wT
1 , wT

3 belong to the null space of M, and t12 = 1 − wT
1 z2, t14 = −wT

1 z4,
t32 = −wT

3 z2, t34 = 1 − wT
3 z4.

Proof: When t13 = 0 and t31 = 0. Substituting them into (10) and after simple simplification, it becomes
the following form

M2 = M,
Mz2 = (1 − t11)z2,
Mz4 = (1 − t33)z4,
wT

1 M = (1 − t11)wT
1 ,

wT
3 M = (1 − t33)wT

3 ,
wT

1 z2 = 2t11 + t12 − 2t11t12 − t2
11,

wT
1 z4 = t14 − t11t14 − t33t14,

wT
3 z2 = t32 − t11t32 − t32t33,

wT
3 z4 = 2t33 + t34 − 2t33t34 − t2

33,
t2
11 = t11,

t2
33 = t33.

(14)

The equation t2
11 = t11 indicates that either t11 = 0 or t11 = 1, and the last equation above indicates that either

t33 = 0 or t33 = 1. Therefore we have the following result.
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When t11 = t33 = 0, then the above system is reduced to

M2 = M,
Mz2 = z2,
Mz4 = z4,
wT

1 M = wT
1 ,

wT
3 M = wT

3 ,
wT

1 z2 = t12,
wT

1 z4 = t14,
wT

3 z2 = t32,
wT

3 z4 = t34,

which is the first statement of Proposition 4.2.
When t11 = t33 = 1, then the system of (14) becomes

M2 = M,
Mz2 = 0,
Mz4 = 0,
wT

1 M = 0,
wT

3 M = 0,
wT

1 z2 = 1 − t12,
wT

1 z4 = −t14,
wT

3 z2 = −t32,
wT

3 z4 = 1 − t34,

where z2, z4, w1 and w3 are four complex (n− 4)−dimensional complex vectors and the second statement of
Proposition 4.2 is proved.

When t11 = 0 and t33 = 1 or when t11 = 1 and t33 = 0, which belong to the case of proposition 4.1 (ii), so
we don’t discuss them here.

When t13 = 0, t11 + t33 = 1 or when t31 = 0, t11 + t33 = 1, which belong to the cases of proposition 4.1 (i),
(iii), respectively, so we don’t discuss them here.

Summarizing all of the above cases gives the main result.
Theorem 4.1 Suppose A = I − PQT is such that Λ = Λ3 in its Jordan form (3) with det(QTP) = 0. Then

all the commuting solutions of (1) are X = WYW−1 with Y partition as (9), such that M is an arbitrary
(n − 4) × (n − 4) projection matrix. Then the following are true:

(i)If t11 + t33 = 1, all the commuting solutions of (1) are given by proposition 4.1.
(ii)If t13 = t31 = 0, all the commuting solutions of (1) are given by proposition 4.2.

5. Illustrating examples

In this section we give a few examples to illustrate our results.

Example 1. Let P =


0 1
1 0
0 0
0 −1

, QT =

(
1 0 0 0
0 0 1 0

)
, and

A = I − PQT =


1 0 −1 0
−1 1 0 0
0 0 1 0
0 0 1 1

 ,
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then A = WJW−1, where

W =


0 0 −1 0
0 1 0 0
0 0 0 1
1 0 1 0

 and J =


1

1 1
1 1

1

 .
By Theorem 2.1, we have the following conclusions:

All the commuting solutions of (1) are X = WYW−1, in which Y = 0,
1 0 0 z3

wT
1 0 0 wT

1 z3
0 0 0 0
0 0 0 0

 ,


0 0 0 z3
wT

1 1 1 −wT
1 z3

0 0 1 1
0 0 0 1

 ,


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 ,
where z3 and wT

1 are two arbitrary complex numbers.

Example 2. Let P =


0 0
0 1
0 2
1 0
0 0

, QT =

(
1 0 0 0 0
0 0 −1 0 1

)
, and

A = I − PQT =


1 0 0 0 0
0 1 1 0 −1
0 0 3 0 −2
−1 0 0 1 0
0 0 0 0 1

 ,
then A = WJW−1, where

W =


0 0 0 1 0
−1/2 0 0 0 1/2

0 1 0 0 1
0 0 −1 0 0
0 1 0 0 0

 and J =


1

1
1 1

1
3

 .
Form the first equation of (8) we can know that M is any 2 × 2 projection matrix. By solving the equation
M2 = M, we see that M = 0, I, and  1±

√
1−4bc
2 b
c 1∓

√
1−4bc
2

 ,∀ b, c,

where z2, wT
1 are two vectors, z2 = [z21, z22]T, w1 = [wT

11,w
T
12]T.

By Theorem 3.1, all the commuting solutions of (1) are as follows:
When it’s the first case of theorem 3.1, then all the commuting solutions of (1) are X = WYW−1 in which Y =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 t33

 ,


1 0 0 z21 0
0 1 0 z22 0

wT
11 wT

12 0 wT
11z21 + wT

12z22 0
0 0 0 0 0
0 0 0 0 t33

 ,


1±
√

1−4bc
2 b 0 1±

√
1−4bc
2c z22 0

c 1∓
√

1−4bc
2 0 z22 0

1±
√

1−4bc
2b wT

12 wT
12 0 1±

√
1−4bc

2bc wT
12z22 0

0 0 0 0 0
0 0 0 0 t33


.
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When it’s the second case of theorem 3.1, then all the commuting solutions of (1) are X = WYW−1 in which
Y = 

0 0 0 z21 0
0 0 0 z22 0

wT
11 wT

12 1 1 − wT
11z21 − wT

12z22 0
0 0 0 1 0
0 0 0 0 t33

 ,


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 t33

 ,


1±
√

1−4bc
2 b 0 −

1∓
√

1−4bc
2c z22 0

c 1∓
√

1−4bc
2 0 z22 0

−
1∓
√

1−4bc
2b wT

12 wT
12 1 1 − 1∓

√
1−4bc

2bc wT
12z22 0

0 0 0 1 0
0 0 0 0 t33


,

where b and c are two arbitrary complex numbers, t33 is either 0 or 3 in all the commuting solutions above.

Example 3. Let P =



0 1
1 0
0 0
0 −1
0 0
0 0


, QT =

(
1 0 1 1 0 0
0 0 1 0 0 0

)
, and

A = I − PQT =



1 0 −1 0 0 0
−1 1 −1 −1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


,

then A = WJW−1, where

W =



0 0 0 1 −1 −1
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 1 0 0 0 0
1 0 0 0 0 0


and J =



1
1

1 1
1

1 1
1


.

Form the first equation of (10) we can know that M is any 2 × 2 projection matrix. Similar to example two
in above, we can get M = 0, I, and  1±

√
1−4bc
2 b
c 1∓

√
1−4bc
2

 ,∀ b, c,

where z2, z4, wT
1 and wT

3 are four vectors, z2 = [z21, z22]T, z4 = [z41, z42]T w1 = [wT
11,w

T
12]T, w3 = [wT

31,w
T
32]T.

By Theorem 4.1, all the commuting solutions of (1) are as follows:
When it is a case of proposition 4.1(i), then all the commuting solutions of (1) are X = WYW−1 in which Y =

0 0 0 t31z41 0 z41
0 0 0 t31z42 0 z42
0 0 0 t12 0 t12/t31
0 0 0 0 0 0
βT

1 βT
2 t31 t32 1 1 − t12t31 − βT

1 z41 − βT
2 z42

0 0 0 t31 0 1


,
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1 0 0 α1 0 0
0 1 0 α2 0 0

wT
11 wT

12 0 t12 0
t12−wT

11α1−wT
12α2

t31

0 0 0 0 0 0
−t31wT

11 −t31wT
12 t31 t32 1 1 − t12 + wT

11α1 + wT
12α2

0 0 0 t31 0 1


,



1±
√

1−4bc
2 b 0 z21 0 −

1∓
√

1−4bc
2b z42

c 1∓
√

1−4bc
2 0 t31z42 + α2 0 z42

1±
√

1−4bc
2b wT

12 wT
12 0 t12 0 t14

0 0 0 0 0 0
wT

31 −t31wT
12 + βT

2 t31 t32 1 t34
0 0 0 t31 0 1


;

where wT
31 = −

t31(1±
√

1−4bc)wT
12+(1∓

√
1−4bc)βT

2
2b , z21 =

t31(−1±
√

1−4bc)z42+(1±
√

1−4bc)α2
2c , t14 =

2bct12−(1±
√

1−4bc)wT
12α2

2bct31
and t34 =

1 − t12 −
1∓
√

1−4bc
2bc βT

2 z42 + 1±
√

1−4bc
2bc wT

12α2.

0 0 0 β1 0 0
0 0 0 β2 0 0

wT
11 wT

12 1 t12 0
1−t12−wT

11β1−wT
12β2

t31

0 0 0 1 0 0
t31wT

11 t31wT
12 t31 t32 0 1 − t12 − wT

11β1 − wT
12β2

0 0 0 t31 0 0


,



1 0 0 −t31z41 0 z41
0 1 0 −t31z42 0 z42

0 0 1 t12 0 1−t12
t31

0 0 0 1 0 0
αT

1 αT
2 t31 t32 0 1 − t13 + αT

1 z41 + αT
2 z42

0 0 0 t31 0 0


,



1±
√

1−4bc
2 b 0 z21 0 1±

√
1−4bc
2c z42

c 1∓
√

1−4bc
2 0 −t31z42 + β2 0 z42

−
1∓
√

1−4bc
2b wT

12 wT
12 1 t12 0 t14

0 0 0 1 0 0
wT

31 t31wT
12 + αT

2 t31 t32 0 t34
0 0 0 t31 0 0


,

where z21 = −
t31(1±

√
1−4bc)z42+(1∓

√
1−4bc)β2

2c , wT
31 =

t31(−1±
√

1−4bc)wT
12+(1±

√
1−4bc)αT

2
2b , t14 =

2bc(1−t12)−(1∓
√

1−4bc)wT
12β2

2bct31
and

t34 = 1 − t12 −
1∓
√

1−4bc
2bc wT

12β2 + 1±
√

1−4bc
2bc αT

2 z42.
When it is a case of proposition 4.1(ii), then all the commuting solutions of (1) are X = WYW−1 in which Y =

0 0 0 0 0 z41
0 0 0 0 0 z42
0 0 0 0 0 t14
0 0 0 0 0 0

wT
31 wT

32 0 t32 1 1 − wT
31z41 − wT

32z42
0 0 0 0 0 1


,



1 0 0 z21 0 0
0 1 0 z22 0 0

wT
11 wT

12 0 wT
11z21 + wT

12z22 0 t14
0 0 0 0 0 0
0 0 0 t32 1 1
0 0 0 0 0 1


,
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1±
√

1−4bc
2 b 0 1±

√
1−4bc
2c z22 0 −

1∓
√

1−4bc
2c z42

c 1∓
√

1−4bc
2 0 z22 0 z42

1±
√

1−4bc
2b wT

12 wT
12 0 1±

√
1−4bc

2bc wT
12z22 0 t14

0 0 0 0 0 0
−

1∓
√

1−4bc
2b wT

32 wT
32 0 t32 1 1 − 1∓

√
1−4bc

2bc wT
32z42

0 0 0 0 0 1


;



0 0 0 z21 0 0
0 0 0 z22 0 0

wT
11 wT

12 1 1 − wT
11z21 − wT

12z22 0 t14
0 0 0 1 0 0
0 0 0 t32 0 0
0 0 0 0 0 0


,



1 0 0 0 0 z41
0 1 0 0 0 z42
0 0 1 1 0 t14
0 0 0 1 0 0

wT
31 wT

32 0 t32 0 wT
31z41 + wT

32z42
0 0 0 0 0 0


,



1±
√

1−4bc
2 b 0 −

1∓
√

1−4bc
2c z22 0 1±

√
1−4bc
2c z42

c 1∓
√

1−4bc
2 0 z22 0 z42

−
1∓
√

1−4bc
2b wT

12 wT
12 1 1 − 1∓

√
1−4bc

2bc wT
12z22 0 t14

0 0 0 1 0 0
1±
√

1−4bc
2b wT

32 wT
32 0 t32 0 1±

√
1−4bc

2bc wT
32z42

0 0 0 0 0 0


.

When it is a case of proposition 4.1(iii), then all the commuting solutions of (1) are X = WYW−1 in which
Y = 

0 0 0 0 0 β1
0 0 0 0 0 β2

t13wT
31 t13wT

32 0 t13t32 t13 t14
0 0 0 0 0 t13

wT
31 wT

32 0 t32 1 1 − t13t32 − wT
31β1 − wT

32β2
0 0 0 0 0 1


,



1 0 0 z21 0 −t13z21
0 1 0 z22 0 −t13z22
αT

1 αT
2 0 t13t32 + αT

1 z21 + αT
2 z22 t13 t14

0 0 0 0 0 t13
0 0 0 t32 1 1 − t13t32
0 0 0 0 0 1


,



1±
√

1−4bc
2 b 0 1±

√
1−4bc
2c z22 0 z41

c 1∓
√

1−4bc
2 0 z22 0 −t13z22 + β2

wT
11 t13wT

32 + αT
2 0 t12 t13 t14

0 0 0 0 0 t13

−
1∓
√

1−4bc
2b wT

32 wT
32 0 t32 1 t34

0 0 0 0 0 1


,

where z41 = −
t13(1±

√
1−4bc)z22+(1∓

√
1−4bc)β2

2c , wT
11 =

t13(−1±
√

1−4bc)wT
32+(1±

√
1−4bc)αT

2
2b , t12 = t13t32 + 1±

√
1−4bc

2bc αT
2 z22 and

t34 = 1 − t13t32 −
1∓
√

1−4bc
2bc wT

32β2.

0 0 0 z21 0 t13z21
0 0 0 z22 0 t13z22
βT

1 βT
2 1 1 − t13t32 − βT

1 z21 − βT
2 z22 t13 t14

0 0 0 1 0 t13
0 0 0 t32 0 t13t32
0 0 0 0 0 0


,
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1 0 0 0 0 α1
0 1 0 0 0 α2

−t13wT
31 −t13wT

32 1 1 − t13t32 t13 t14
0 0 0 1 0 t13

wT
31 wT

32 0 t32 0 t13t32 + wT
31α1 + wT

32α2
0 0 0 0 0 0


,



1±
√

1−4bc
2 b 0 −

1∓
√

1−4bc
2c z22 0 z41

c 1∓
√

1−4bc
2 0 z22 0 t13z22 + α2

wT
11 −t13wT

32 + βT
2 1 t12 t13 t14

0 0 0 1 0 t13
1±
√

1−4bc
2b wT

32 wT
32 0 t32 0 t34

0 0 0 0 0 0


,

where z41 =
t13(−1±

√
1−4bc)z22+(1∓

√
1−4bc)α2

2c , wT
11 = −

t13(1±
√

1−4bc)wT
32+(1∓

√
1−4bc)βT

2
2b , t12 = 1 − t13t32 −

1∓
√

1−4bc
2bc βT

2 z22 and

t34 = t13t32 + 1±
√

1−4bc
2bc wT

32α2.
When it is a case of proposition 4.1(iv), then all the commuting solutions of (1) are X = WYW−1 in which
Y = 

M 0 z2 0 z4
wT

1 t11 t12 t13 t14
0 0 t11 0 t13

wT
3

t11(1−t11)
t13

t32 1 − t11 t34

0 0 t11(1−t11)
t13

0 1 − t11

 ,

where M = 0, I, and  1±
√

1−4bc
2 b
c 1∓

√
1−4bc
2

 ,
z4 =

t13((1−t11)I−M)z2
t11(1−t11) , t32 =

t13(t11+t12−2t11t12)−t14t11(1−t11)−t13wT
1 z2

t2
13

, wT
3 =

wT
1 ((1−t11)I−M)

t13
and t34 = 1 − t12 −

wT
1 z4

t13
in the above

case.
When it is a case of proposition 4.2(i), then all the commuting solutions of (1) are X = WYW−1 in which
Y = 0, 

1 0 0 z21 0 z41
0 1 0 z22 0 z42

wT
11 wT

12 0 wT
11z21 + wT

12z22 0 wT
11z41 + wT

12z42
0 0 0 0 0 0

wT
31 wT

32 0 wT
31z21 + wT

32z22 0 wT
31z41 + wT

32z42
0 0 0 0 0 0


,



1±
√

1−4bc
2 b 0 1±

√
1−4bc
2c z22 0 1±

√
1−4bc
2c z42

c 1∓
√

1−4bc
2 0 z22 0 z42

1±
√

1−4bc
2b wT

12 wT
12 0 1±

√
1−4bc

2bc wT
12z22 0 1±

√
1−4bc

2bc wT
12z42

0 0 0 0 0 0
1±
√

1−4bc
2b wT

32 wT
32 0 1±

√
1−4bc

2bc wT
32z22 0 1±

√
1−4bc

2bc wT
32z42

0 0 0 0 0 0


.
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When it is a case of proposition 4.2(ii), then all the commuting solutions of (1) are X = WYW−1 in which Y =

1
1

1 1
1

1 1
1


,



0 0 0 z21 0 z41
0 0 0 z22 0 z42

wT
11 wT

12 1 1 − wT
11z21 − wT

12z22 0 −wT
11z41 − wT

12z42
0 0 0 1 0 0

wT
31 wT

32 0 −wT
31z21 − wT

32z22 1 1 − wT
31z41 − wT

32z42
0 0 0 0 0 1


,



1±
√

1−4bc
2 b 0 −

1∓
√

1−4bc
2c z22 0 −

1∓
√

1−4bc
2c z42

c 1∓
√

1−4bc
2 0 z22 0 z42

−
1∓
√

1−4bc
2b wT

12 wT
12 1 1 − 1∓

√
1−4bc

2bc wT
12z22 0 −

1∓
√

1−4bc
2bc wT

12z42
0 0 0 1 0 0

−
1∓
√

1−4bc
2b wT

32 wT
32 0 −

1∓
√

1−4bc
2bc wT

32z22 1 1 − 1∓
√

1−4bc
2bc wT

32z42
0 0 0 0 0 1


.

Where S = [α1, α2]T, T = [β1, β2]T, ST = [αT
1 , α

T
2 ] and TT = [βT

1 , β
T
2 ] are four any vectors, b and c are two

arbitrary complex numbers in all the commuting solutions above.
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