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Abstract. In this paper we introduce an operator associated with Srivastava-Tomovski generalization of
the Mittag-Leffler function. By using this operator and the virtue of differential subordination, we define a
new family of multivalent analytic functions. Some novel properties such as inclusion relation, Hadamard
product and the Fekete-Szeg6 inequality of this new family are discussed.

1. Introduction
Let A(p) denote the class of functions of the form
f@=2"+) aupa (peN) (1.1)
n=2

which are analyticin U ={z:z€ C and |[z] <1}. Forp =1, we write A := A(1). The Hadamard product
(or convolution) of two functions

fi@)=2"+) a2 e Ap) (=1,2)

n=2

is given by
(fl * fZ)(z) =2+ Z ﬂn+p—1,1an+p—1,22n+p_1 = (fz * fl)(Z)
n=2

Throughout this paper, unless otherwise indicated, we assume that

a,B,7,keC,  Re(a) >max{0,Re(k) -1} and Re(k) > 0.
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Recently, Srivastava and Tomovski [18] defined a generalized Mittag-Leffler function Ey (z) as follows:

EV () = Z r((y)”"z (1.2)

an + Bn!’

where (x),, is the Pochhammer symbol

I'(x+n)
I'(x)

and (x9) = 1. They proved that the function ek (z) defined by (1.2) is an entire function in the complex
y p o ‘B y p

() =

=x(x+1)---(x+n-1) melN;, xeQ)

z-plane. The function EZ’};(Z) is called Srivastava-Tomovski generalization of the Mittag-Leffler function.

For f € A(p), we introduce the following new operator HZII; 1 A(p) — Alp) associated with the
Srivastava-Tomovski generalization of the Mittag-Leffler function by

k I+ ﬁ) vk
Bt/ @ == 7 1(;5;#(2 F(ﬁ)) /@

I'(y + nk)I'(a + B) -
Z T(y + Ol(an + pul "771% 0 (1.3)
Note that H" ; f(z) = f(z). From (1.3) we easily have the following identity:
2(HAf@) = (V ) Hf(2) - ( +1- p)HV AfG). (1.4)

It should be remarked in passing that the Fox-Wright hypergeometric function ;W is much more general
than many of the extensions of the Mittag-Leffler function. The study of the more complicated and general
case of the Srivastava-Wright operator (see [18, 4]), defined by the Fox-Wright function ,Ws, is a recent
interesting topic in Geometric Function Theory. Many properties of the Srivastava-Wright operator can be
found in a number of recent works [1, 2, 3,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and the references therein.

Suppose that f and g are analytic in U. We say that the function f is subordinate to g and write f < g or
f(2) < 9(z) (z € U), if there exists a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 (z € U),
such that f(z) = g(w(z)) (z € U). If g is univalent in U, then the following equivalence relationship holds
true:

f@)<9@z) (zel) & f(0)=g0) and f(U)cg(U).
Let P be the class of functions ¢ with ¢(0) = 1, which are analytic and convex univalent in U. A function

f € Ais said to be in the class S*(p) if Re(z}[(/g)) > p(z € U)forsomep (p <1). When0 < p <1, S )

is the class of starlike functions of order p in U. A function f € A is said to be prestarlike of order p in U
if m + f(z) € S*(p) (p < 1). We denote this class by R(p) (see [9]). Clearly, a function f € A is in the

class R(0) if and only if f is convex univalent in U and R (%) =8 (%) :
Definition. A function f € A(p) is said to be in the class QZ:];(A; @) if it satisfies first-order differential
subordination:

(1= NP H @) + 22 i (HAF@) <o), (15)

where A € Cand ¢ € P.
Lemma 1 ([7]). Let g be analytic in U and h be analytic and convex univalent in U with h(0) = ¢(0). If

9) + izg'(z) <h(2),
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where Reu > 0 and y # 0, then
— Z
9(z) < h(z) = puz f 1 h)dt < h(z) (1.6)
0

and 1 is the best dominant of (1.6).
Lemma 2 ([9]). Let p < 1, f € S*(p) and g € R(p). Then, for any analytic function F in U,

g+ (fF) (
g f
where co(F(U)) denotes the closed convex hull of F(U).

Lemma 3 ([6]). If g(z) = 1+ c1z + 2> + - -+ is an analytic function with positive real part in U and p is a
complex number, then |c; — ‘LLC%| < 2max{1; [2u - 1J}.

))’

2. Properties of the class QZ’;(A; P)

Theorem 1. Let 0 < Ay < Ay. Then QZ:’;(/\Z,@) c Q7 ﬁ(/\l,(p)
Proof. Let

9(z) = 2 PHf(2) @.1)

for f € ol ﬁ(Az, @). Then the function g is analytic in U and g(0) = 1. Differentiating both sides of (2.1), we
have

(1-A)zPH Af) A2 pn (HVk f(z)
=g(z) + %29’(2) < ¢(2). (2.2)

Hence, by an application of Lemma 1, we have g(z) < ¢(z) (z € U). Now, by noting that 0 < % < 1and that
@ is convex univalent in U, it follows that

(1- Az PH ﬁf(z)+ M pa (Hyﬁf(z)

- 2a-az H’”"f(z>+ 2 (1) ) (1 2o

<@p(z) (zel).

Thus f € QZ’Z(M ;@) and the proof of Theorem 1 is completed.
Theorem 2. Let 0 < y1 < yp and k = 1. Then Q7; 1()\ @) C leﬁ (A; ).

Proof. Put
g(z)=z+ Z ;3: 12” (z e U). (2.3)
Then g € A and
19" T (24
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We can see from (2.4) that

*g(z)eS*(l—E) S*(l—)ﬁ)

_z
(1 -2)r 2

for 0 < y1 < y2, which implies that g € R( - %2)
Let f € Qyz 1()\ ¢). Then we have

(1—A)z-"H2;j;f<z>+ 2 (H )

a,f
!7(2) g(z) * (Z¢(Z))
+1P(z) = Tz (2.5)
where
¥(z) = (1= Nz PH f(2) + z T (HE ) < 9. (2.6)

Since the function z belongs to S*( 72) and ¢ is convex univalent in U, it follows from (2.5), (2.6) and
Lemma 2 that

(1= Nz PHY f(z) + &z*i’“ (H f@) < 0@).

Thus f € Q’] 1(/\ @). The proof of Theorem 2 is completed.
Theorem 3. Let Re (g (ZZ)) 1 (z € U), where the function g is given by

2k (y1)nk .
g(z) =z + Z TR0 S2ICT 1Nk (z € 1)).

Then Qy‘6 (A 0) cQ 1ﬁ (A; ).
Proof. For f € A(p), it is easy to verify that

TPHfE) = (@) (=7Hf@) 27)

and
= (b e) = (D)« () ) @8

Let f € QZ}’;{(/\;@). Then from (2.7) and (2.8) we deduce that

(1= )z PH f(z) + A (HI @)
_9(2) _g(z)* (ZEU(Z))
B TH’D(Z)_ g(z) *z

where

Y@ = (1= NP HE o) + PR (H f@) < ).

In view of the assumptions of Theorem 3, the function £ ( ) has the following Herglotz representation:

9@ _ f W ), 2.9)
|

z d=1 1 — Xz
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where pi(x) is a probability measure defined on the unit circle |x| = 1 and flxlzl du(x) = 1. Since ¢ is convex
univalent in U, it follows from (2.7) to (2.9) that

(1= Nz PH); "f<z>+ 7 (Hy f @)

= Y(xz)du(x) < @(2).

[x]=1

This shows that f € Qy (A; @). The proof of Theorem 3 is completed.
Theorem 4. Let —1 S B<A<1,A>0ando>1.1Iff € o (/\ 1+AZ) then

a,f\"" 1+Bz
1/6
HYf (@) i o
ap 4 /g_l(l—Au)
o >(Aj(; ur T3, du| . (2.10)
The result is sharp.
Proof. Let
Hy k f (2)
9@ =—>

for f € ka (A, i:‘;ﬁ) Then the function g(z) = 1 + byz + byz? + - -+ is analytic in U. By a simple calculation

we have from (1.5) that
1+Az

1+Bz’

A
9(z) + ;Zg’(Z) <

Now an application of Lemma 1 leads to

L Zﬂ-1(1+_Af)
g(z)<AZ\£t\ YT dt

ﬁf(z pf ’1(1+Auw(z))du 2.11)

1 + Buw(z)

or

where w(z) is analytic in U with w(0) = 0 and [w(z)| < 1 (z € U).
In view of -1 < B < A <1and A > 0, it follows from (2.11) that

Hyf@) p
zF ” A j(: "

Therefore, with the aid of the elementary inequality Re (wl/ 5) > (Rew)"? for Rew > 0 and & > 1, the

inequality (2.10) follows directly from (2.12).
To show the sharpness of (2.10), we take f € A(p) defined by

>

1(1-Au
1(1 _Bu)du >0 (zel). (2.12)

Z,I;f(z) pf b 1+Auz)du

' 1+Buz

For this function, we find that

1+ Az

(1= NP Hf@) + 22 (H @) = 5
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f(z) P v 1 Au
ﬁ B
f 1 Bu

as z — —1. The proof of Theorem 4 is completed.
Theorem 5. Let v, B, y, k and A be positive real numbers. Let ¢(z) =1+ Bz + Byz? + - € P with By #0. Iff

given by (1.1) belongs to the class QZ;(A; @), then

and

du

2
Ap+2 — uap+1

6pI'(y + k)I'(3a + B) maxd [By]
= (p + 20)I(y + 30T (a + B) !

2upB2(p + 20T (y + I (y + 3k)(T(2a + p))?
3(p + AT (o + BT (Ba + B)(T(y + 2k))?

;|B2 —

} (2.13)

forueC.
Proof. If f € o'k ﬁ(/\ @), then there is a Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 in
U such that

(1- )z PH) 2@ +2 A (H f(z)) P(w(z)). (2.14)
Define the function g by
g(z) = 1 tzwug; =l+cz+ez?+---. (2.15)

Since w is a Schwarz function, we see that Re(g(z)) > 0 and g(0) = 1. Therefore,

_ (99 -1
(p(W(Z)) - (p(g(Z) + 1)
2 2

By substituting (2.16) in (2.14), we have

1- )L)z”’HZ:; f(z) + %z”” (HZ:Z f(z))' =1+ %z +|=

From this equation, we get
pBlclf()/ + k)F(2a + ﬁ)

= g+ DTy + 20T (@ + )

and 5 )
- 3pI'(y + kI (Ga + B) oo % . %
P2 g+ 20Ty + 30T+ p) | P 2 2 |
Therefore
) 3pBiI'(y + K)I'(Bar + B) )

T2 = M0y = 1 2T (y + 30T (@ + ) R @17)

where
1 upBi1(p + 20)I(y + K)[(y + 3k) ([T 2a + p))?
t=3 (1 B, ) T T3+ )T + AT Ga + BIT( + 20)? (2.18)

Our result now follows by an application of Lemma 3. This completes the proof of Theorem 5.
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