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Abstract. In the present paper, first we prove some results by using fundamental properties of totally
real statistical submanifolds immersed into holomorphic statistical manifolds. Further, we obtain the
generalized Wintgen inequality for Lagrangian statistical submanifolds of holomorphic statistical manifolds
with constant holomorphic sectional curvature c. The paper finishes with some geometric consequences of
obtained results.

1. Introduction

In 1985, the notion of statistical manifolds has been studied by Amari [1]. The abstract generalizations of
statistical models are considered as the statistical manifolds. The geometry of statistical manifolds lies at a
junction of several branches of geometry (information geometry, affine differential geometry [10] and Hes-
sian geometry [11]). A statistical structure can be considered as a generalization of a Riemannian structure
(a pair of a Riemannian metric and its Levi-Civita connection). It includes the notion of dual connection,
also called conjugate connection. The theory of statistical manifold and its statistical submanifold plays a
role of central importance in many research fields of differential geometry.

Recently, H. Furuhata has constructed complex structure and contact structure on the statistical mani-
folds, and defined a holomorphic statistical manifold (see [5, 6]) and Sasakian statistical manifold (see [7]).
The theory of statistical manifold and its statistical submanifold is a very recent geometry. Therefore, it
attracts the geometers and several interesting results have been obtained by many of them ([2, 3, 6, 7, 9]).

On another hand, in 1999, Wintgen inequality has been conjectured by De Smet, et al. [12] for all
submanifolds Nm of all real space forms Mm+s(c) with constant sectional curvature c, for all dimensions
m ≥ 2 and for all codimensions s ≥ 1. This is also known as the DDVV conjecture and it is proved by Ge
and Tang (2008) and by Lu (2011), independently.

In the present paper, first we study holomorphic statistical manifolds with some examples (see Examples
2.7,2.8 and 2.9). We give some basic results on totally real and Lagrangian statistical submanifolds immersed
into holomorphic statistical manifolds (see Section 3). Then we establish Wintgen inequality for Lagrangian
statistical submanifolds of a holomorphic statistical manifold with constant holomorphic sectional curvature
c (see Theorem 4.1). Also, we obtain a general inequality for totally real statistical submanifold in the same
ambient (see Theorem 4.2). At the end, some immediate consequences are also obtained (see Section 5).
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2. Statistical Manifolds and Statistical Submanifolds

Let∇ be an affine connection on a Riemannian manifold
(
M, g

)
. The affine connection∇

∗

onM satisfying
[6]

Zg(X,Y) = g(∇ZX,Y) + g(X,∇
∗

ZY)

for any X,Y,Z ∈ Γ(TM) is called the dual connection of ∇with respect to g.

Definition 2.1. [6] The statistical manifold
(
M,∇, g

)
is a Riemannian manifold equipped with torsion-free affine

connection ∇ satisfying (∇Xg)(Y,Z) = (∇Yg)(X,Z), for any X,Y,Z ∈ Γ(TM).

Remark 2.2. A pair of affine connections ∇ and ∇
∗

onM satisfies [6]

(∇
∗

)∗ = ∇. (1)

We remark that if (M,∇, g) is a statistical structure, so is (M,∇
∗

, g).

Definition 2.3. [6] Let
(
M,∇, g

)
be a statistical manifold andM be a submanifold ofM. Then

(
M,∇, g

)
is also a

statistical manifold with the induced statistical structure (∇, g) onM from (∇, g) and we call
(
M,∇, g

)
as a statistical

submanifold in
(
M,∇, g

)
.

Let (M,∇, g) be a submanifold with any codimension of a statistical manifold (M,∇, g). The fundamental
equations in the geometry of Riemannian submanifolds are the Gauss and Weingarten formulae and the
equations of Gauss, Codazzi and Ricci (see [15]). In the statistical setting, Gauss and Weingarten formulae
are respectively defined by [6]

∇XY = ∇XY + ζ(X,Y), ∇
∗

XY = ∇∗
X
Y + ζ∗(X,Y),

∇XU = −ΛU(X) + DXU, ∇
∗

XU = −Λ∗
U

(X) + D∗
X
U,

 (2)

for any X,Y ∈ Γ(TM) and U ∈ Γ(T⊥M), where ∇ and ∇
∗

(resp., ∇ and ∇∗) are the dual connections on
M (resp., onM). Also, D and D∗ are the dual connections of a vector bundle T⊥M. The symmetric and
bilinear imbedding curvature tensor ofM inM for ∇ and ∇

∗

are denoted by ζ and ζ∗, respectively.
The relation between ζ (resp., ζ∗) and Λ (resp., Λ∗) is defined by [6]

g(ζ(X,Y),U) = g(Λ∗
U

(X),Y),
g(ζ∗(X,Y),U) = g(ΛU(X),Y),

}
(3)

for any X,Y ∈ Γ(TM) andU ∈ Γ(T⊥M).

Definition 2.4. [9] Let (M,∇, g) be a submanifold with any codimension of a statistical manifold (M,∇, g). Then
M is said to be

(i) totally geodesic with respect to ∇ if ζ = 0.

(i∗) totally geodesic with respect to ∇
∗

if ζ∗ = 0.

(ii) totally tangentially umbilical with respect to ∇ if ζ(X,Y) = g(X,Y)H for any X,Y ∈ Γ(TM). HereH is the
mean curvature vector ofM inM for ∇.

(ii∗) totally tangentially umbilical with respect to ∇
∗

if ζ∗(X,Y) = g(X,Y)H ∗ for any X,Y ∈ Γ(TM). HereH ∗ is
the mean curvature vector ofM inM for ∇

∗

.
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(iii) totally normally umbilical with respect to ∇ if ΛUX = g(H ,U)X for any X ∈ Γ(TM) andU ∈ Γ(T⊥M).

(iii∗) totally normally umbilical with respect to ∇
∗

if Λ∗
U
X = g(H ∗,U)X for any X ∈ Γ(TM) andU ∈ Γ(T⊥M).

The curvature tensors with respect to ∇ and ∇
∗

are denoted by R and R
∗

, respectively. Also, R and R∗

are the curvature tensors with respect to ∇ and ∇∗, respectively. Then the corresponding Gauss, Codazzi
and Ricci equations, respectively, are given by [6]

R(X,Y,Z,W) = R(X,Y,Z,W) + g(ζ(X,Z), ζ∗(Y,W))
− g(ζ∗(X,W), ζ(Y,Z)),

R(X,Y,Z,U) = g((∇Xζ)(Y,Z),U) − g((∇Yζ)(X,Z),U),

R(X,Y,U,Z) = g((∇YΛ)UX,Z) − g((∇XΛ)UY,Z),

R(X,Y,U,V) = R⊥(X,Y,U,V) + g(ζ(Y,ΛUX,V) − g(ζ(X,ΛUY,V),


(4)

for any X,Y,Z,W ∈ Γ(TM) andU,V ∈ Γ(T⊥M).
The curvature tensor fields ofM andM are respectively defined as [6]

S =
1
2

(R + R
∗

),

and

S =
1
2

(R + R∗).

Thus, the sectional curvatureK onM ofM is given by [3]

K(X ∧Y) = g(S(X,Y)Y,X) =
1
2

(g(R(X,Y)Y,X) + g(R∗(X,Y)Y,X)),

for any orthonormal vectors X,Y ∈ T℘M, ℘ ∈ M.

Definition 2.5. [6] Let
(
M,J , g

)
be a Kaehler manifold and ∇ be an affine connection onM. Then

(
M,∇, g,J

)
is

said to be a holomorphic statistical manifold if

(i)
(
M,∇, g

)
is a statistical manifold, and

(ii) a 2−form $ onM, given by

$(X,Y) = g(X,JY),

for any X,Y ∈ Γ(TM), is a ∇−parallel, that is, ∇$ = 0.

For a holomorphic statistical manifold
(
M,J , g

)
, we have the following relation [6]:

∇X(JY) = J∇
∗

XY, (5)

for any X,Y ∈ Γ(TM).

Lemma 2.6. [5] Let (M, g,J) be a Kaehler manifold and a connection ∇ is defined as ∇ := ∇g + K, where K is a
(1, 2)−tensor field satisfying the following conditions:

K(X,Y) = K(Y,X), (6)

g(K(X,Y),Z) = g(Y,K(X,Z)), (7)

and

K(X,JY) +JK(X,Y) = 0, (8)

for any X,Y,Z ∈ Γ(TM). Then (M,∇, g,J) is a holomorphic statistical manifold.



A. N. Siddiqui, M. H. Shahid / Filomat 32:13 (2018), 4473–4483 4476

By using the above Lemma 2.6, we construct the following examples:

Example 2.7. Let us consider a Kaehler manifold (M = {(x1, x2)′ ∈ R2
|x1 > 0, x2 > 0}, g,J), where a Riemanian

metric g and the standard complex structure J onM are defined by

g = x1
{(dx1)2 + (dx2)2

},

and

J∂1 = ∂2, J∂2 = −∂1,

where ∂i = ∂
∂xi for i = 1, 2. Now, for any λ ∈ R, we define a (1, 2)−tensor field K on R2 as follows:

K =

2∑
i, j,l=1

kl
i j∂l ⊗ dxi

⊗ dx j,

where −k1
11 = k2

12 = k2
21 = k1

22 = λ and k2
11 = k1

12 = k1
21 = k2

22 = 0. Then K satisfies all three conditions of Lemma 2.6,
and hence we get a holomorphic statistical manifold (M,∇ := ∇g + K, g,J), where an affine connection ∇ onM is
given by

∇∂1∂1 =
(1

2
(x1)−1

− λ
)
∂1,

∇∂1∂2 = ∇∂2∂1 =
(1

2
(x1)−1 + λ

)
∂2,

∇∂2∂2 = −

(1
2

(x1)−1
− λ

)
∂1.

Example 2.8. Let (g,J) be a Kaehler structure on M. We take a vector field Ω ∈ Γ(TM) and set a tensor field

K1 ∈ Γ(TM
(1,2)

) as follows:

K1(X,Y) =
[
g(JΩ,X)g(JΩ,Y) − g(Ω,X)g(Ω,Y)

]
Ω

+
[
g(JΩ,X)g(Ω,Y) + g(Ω,X)g(JΩ,Y)

]
JΩ, (9)

for any X,Y ∈ Γ(TM). Then, by simple computation, we see that K1 satisfies three conditions of Lemma 2.6, and
hence a holomorphic statistical manifold (M,∇ := ∇g + K1, g,J) is obtained.

Example 2.9. For a Kaehler manifold (M, g,J), we take a vector field Ω ∈ Γ(TM) and set K2 as follows:

K2(X,Y) =
[
g(Ω,JX)g(Ω,JY) − g(Ω,X)g(Ω,Y)

−g(Ω,JX)g(Ω,Y) − g(Ω,X)g(Ω,JY)
]
Ω

+
[
g(Ω,X)g(Ω,Y) − g(Ω,JX)g(Ω,JY)

−g(Ω,JX)g(Ω,Y) − g(Ω,X)g(Ω,JY)
]
JΩ, (10)

for any X,Y ∈ Γ(TM). Then K2 ∈ Γ(TM
(1,2)

) satisfies three conditions of Lemma 2.6 as in Example 2.8, and hence
(M,∇ := ∇g + K2, g,J) becomes a holomorphic statistical manifold.

For any X ∈ Γ(TM) andV ∈ Γ(T⊥M), respectively, we put [15]

JX = GX + LX, (11)
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and

JV = CV + PV, (12)

where GX and CV are tangential partsJX andJV, respectively. And LX and PV are normal parts ofJX
and JV, respectively.

Definition 2.10. [6] A holomorphic statistical manifoldM is said to be of constant holomorphic curvature c ∈ R if
the following curvature equation holds

R(X,Y)Z =
c
4

{
g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX

−g(JX,Z)JY + 2g(X,JY)JZ
}
, (13)

for any X,Y,Z ∈ Γ(TM).

Definition 2.11. [6] A statistical submanifold M of a holomorphic statistical manifold M is called holomorphic
(L = 0 and C = 0) if the almost complex structure J of M carries each tangent space of M into itself whereas it
is said to be totally real (G = 0) if the almost complex structure J of M carries each tangent space of M into its
corresponding normal space.

Definition 2.12. A totally real statistical submanifold of maximal dimension is called Lagrangian statistical sub-
manifold.

3. Totally Real Statistical Submanifolds

In the following, we assume that (M,∇, g,J) is a holomorphic statistical manifold and M(c) is a
holomorphic statistical manifold with constant holomorphic sectional curvature c.

We prove the following:

Theorem 3.1. Let M be a totally real statistical submanifold immersed into M(c). If M is totally umbilical
submanifold with respect to ∇ and ∇

∗

, then sectional curvatureK = c
4 if and only if any one of the following holds:

(i) BothH andH ∗ are perpendicular to each other;

(ii) H = 0;

(iii) H ∗ = 0.

Proof. For any orthonormal vectors X,Y ∈ Γ(TM), the sectional curvatureK ofM is defined as follows

K(X ∧Y) =
1
2

[
g(R(X,Y)X,Y) + g(R∗(X,Y)X,Y)

]
. (14)

Putting curvature tensor fields R and its dual R∗ into (14), we have

K(X ∧Y) =
1
2

[ c
2

+ g(Λζ(Y,X)X,Y) − g(Λζ(X,X)Y,Y)

+g(Λ∗ζ(Y,X)X,Y) − g(Λ∗ζ(X,X)Y,Y)
]

=
1
2

[ c
2

+ g(ζ∗(X,Y), ζ(Y,X)) − g(ζ∗(Y,Y), ζ(X,X))

+g(ζ(X,Y), ζ∗(Y,X)) − g(ζ∗(Y,Y), ζ(X,X))
]

=
c
4

+ g(ζ∗(X,Y), ζ(Y,X)) − g(ζ∗(Y,Y), ζ(X,X)). (15)
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Since,M is totally umbilical submanifold with respect to ∇ and ∇
∗

, then (15) becomes

K(X ∧Y) =
c
4
− g(H ,H ∗).

If we takeK = c
4 , then any one of the following holds:

(i) H ⊥ H ∗, or

(ii) H = 0, or

(iii) H ∗ = 0.

Thus, our assertions follow. Converse part is trivial if any one of the above holds.

Theorem 3.2. LetM be a totally real statistical submanifold immersed intoM. IfM is totally umbilical submanifold
with respect to ∇ and ∇

∗

, then ||H0
||

2 = g(H ,H ∗).

Proof. Since, we have [6]

0 = DXH + D∗
X
H
∗

= ∇XH + ||H||2X + ∇
∗

XH
∗ + ||H ∗||2X.

By taking inner product with unit vector field X onM, we get

0 = g(∇XH ,X) + g(∇
∗

XH
∗,X) + ||H ∗||2 + ||H||2

= Xg(H ,X) − g(H ,∇
∗

XX) +Xg(H ∗,X) − g(H ∗,∇XX) + ||H ∗||2 + ||H||2

= −g(H ,∇∗
X
X +H ∗) − g(H ∗,∇XX +H) + ||H ∗||2 + ||H||2

= ||H
∗
||

2 + ||H||2 − 2g(H ,H ∗).

Hence, we get the desired result.

Theorem 3.3. LetM be a Lagrangian statistical submanifold immersed intoM. IfM is totally umbilical submanifold
with respect to ∇ and ∇

∗

, thenH = H ∗ = 0.

Proof. For any X,Y ∈ Γ(TM), then

∇XJY = −ΛJXY + DXJY. (16)

On the other hand,

∇XJY = J∇
∗

XY

= J

(
∇
∗

X
Y + g(X,Y)H ∗

)
= J∇

∗

X
Y + g(X,Y)JH ∗. (17)

On combining (16) and (17), we find that

0 = g(X,Y)JH ∗ + ΛJXY

= g(X,Y)JH ∗ − g(X,JH)Y

for any X,Y ∈ Γ(TM). Putting X = JH and 0 , Y ⊥ JH in the last equation, we have our assertions.

Theorem 3.4. In an m−dimensional Lagrangian statistical submanifoldM of a holomorphic statistical manifoldM,
the following holds:

S
⊥(X,Y)JZ = (S(X,Y)Z)T

for any X,Y,Z ∈ Γ(TM).
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Proof. For any X,Y,Z,W ∈ Γ(TM), we have

2g(S(X,Y)JZ,JW) = 2g(S⊥(X,Y)JZ,JW) − g(ζ(X,ΛJZY),JW)
+g(ζ(Y,ΛJZX),JW) − g(ζ∗(X,Λ∗

JZ
Y),JW)

+g(ζ∗(Y,Λ∗
JZ
X),JW)

= 2g(S⊥(X,Y)JZ,JW) − g(Λ∗ζ∗(Y,Z)X,W)

+g(Λ∗ζ∗(X,Z)Y,W) − g(Λζ(Y,Z)X,W)

+g(Λζ(X,Z)Y,W).

Thus, we get

g(S⊥(X,Y)JZ,JW) = g(S(X,Y)Z,W).

This is the required assertion.

Theorem 3.5. LetM be a statistical submanifold immersed intoM(c). ThenS(X,Y)TM ⊂ TM for all vector fields
X andY onM if and only ifM is either a holomorphic or a totally real statistical submanifold ofM(c).

Proof. For any vector fields X andY onM andZ ∈ Γ(TM), we have

S(X,Y)Z =
1
2

[
R(X,Y)Z + R

∗

(X,Y)Z
]

=
c
4

[
g(Y,Z)X − g(X,Z)Y + g(JY,Z)JX

−g(JX,Z)JY + 2g(X,JY)JZ
]
. (18)

Now, if we say M is holomorphic statistical submanifold, then we have S(X,Y)Z ∈ Γ(TM). Further, if
we consider M is totally real statistical submanifold, then also S(X,Y)Z ∈ Γ(TM) because g(JY,Z) =

g(JX,Z) = g(X,JY) = 0. Hence, S(X,Y)TM ⊂ TM.
Conversely, we putZ = Y into (18), then we have the following:

S(X,Y)Y =
c
4

[
g(Y,Y)X − g(X,Y)Y + g(JY,Y)JX

−g(JX,Y)JY + 2g(X,JY)JY
]

=
c
4

[
g(Y,Y)X − g(X,Y)Y + 3g(JY,X)JY

]
. (19)

But from the assumption S(X,Y)Y ∈ Γ(TM), the last term of above equation (19), that is, g(JY,X)JY
must be in TM, which means that either g(JY,X) = 0 or JY ∈ Γ(TM). Hence, we conclude that M is
either a holomorphic or a totally real statistical submanifold.

Theorem 3.6. LetM be a statistical submanifold immersed intoM(c). IfM is either a holomorphic or a totally real
statistical submanifold ofM(c), then S(X,Y)T⊥M ⊂ T⊥M for all vector fields X andY onM.

Proof. Since, g(S(X,Y)Z,V) = −g(S(X,Y)V,Z) for any X,Y,Z tangent toM and any V normal toM.
Therefore, the proof follows directly from above Theorem 3.5.
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4. Wintgen Inequality

In [8], Mihai has proved the generalized Wintgen inequality for Lagrnagian submanifolds in complex
space forms. In the same paper, he also has obtained another Wintgen inequality for totally real submani-
folds in same ambient. Motivated by his result, we obtain another Wintgen inequality for an m−dimensional
Lagrangian statistical submanifoldM of a 2m−dimensional holomorphic statistical manifold (M,∇, g,J)
with constant holomorphic sectional curvature c,M(c). For this, we consider {E1, . . . ,Em} is an orthonormal
frame on Mm, then {ξ1 = JE1, . . . , ξm = JEm} is an orthonormal frame in the normal bundle T⊥M. We
need the scalar normal curvature KN [14] and the normalized scalar normal curvature %N [8] ofMm. Both
terms are defined below:

KN =
1
4

[ ∑
1≤a<b≤m

∑
1≤i< j≤m

(
g([Λ∗a,Λb]Ei,E j) + g([Λa,Λ

∗

b]Ei,E j)
)2]

(20)

and

%N =
2

m(m − 1)

√
KN (21)

Now, we prove the following:

Theorem 4.1. In an m−dimensional Lagrangian statistical submanifold M of M
2m

(c), the following inequality
holds:

m(m − 1)%2
N +

c
m(m − 1)

[
||H||

2 + ||H ∗||2
]
≥

( 2
m(m − 1)

% −
c
2

)2

+
4c

m(m − 1)
||H

0
||

2.

Proof. From (20) and (21), we arrive at

%2
N =

1
m2(m − 1)2

[ ∑
1≤a<b≤m

∑
1≤i< j≤m

(
g([Λa,Λ

∗

b]Ei − [Λb,Λ
∗

a]Ei,E j)
)2]
. (22)

For calculating RHS of above equation (22), we use equation (7.101) of [6], that is,

S(X,Y)Z =
c
4
{g(Y,Z)X − g(X,Z)Y}

+
1
2

[
[ΛJX,Λ∗JY]Z− [ΛJY,Λ∗JX]Z

]
(23)

for any X,Y,Z ∈ Γ(TM). Now we consider {E1, . . . ,Em} is an orthonormal frame on Mm, then {ξ1 =
JE1, . . . , ξm = JEm} is an orthonormal frame in the normal bundle T⊥M. Equation (23) gives

% =
cn(n − 1)

4
+ g(H ,H ∗) −

n∑
i=1

Tr(ΛiΛ
∗

i ), (24)

where Λi = ΛJEi , Λ∗i = Λ∗
JEi

. Further, we have [6]

||S||
2 =

c2m(m − 1)
8

− c
m∑

i=1

Tr(ΛiΛ
∗

i ) +
1
4

m∑
a,b=1

m∑
i=1

||([Λa,Λ
∗

b] − [Λb,Λ
∗

a])Ei||
2.
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Obviously,

||S||
2 =

c2m(m − 1)
8

− c
m∑

i=1

Tr(ΛiΛ
∗

i )

+
1
2

∑
1≤a<b≤m

m∑
i=1

||([Λa,Λ
∗

b] − [Λb,Λ
∗

a])Ei||
2. (25)

From (22) and (25), we get

%2
N =

1
m2(m − 1)2

[
2||S||2 −

c2m(m − 1)
4

+ 2c
m∑

i=1

Tr(ΛiΛ
∗

i )
]
.

Using (24) and the above equation becomes

%2
N =

1
m2(m − 1)2

[
2||S||2 −

c2m(m − 1)
4

+
c2m(m − 1)

2
+ 2cg(H ,H ∗) − 2c%

]
. (26)

Since, for any m−dimensional statistical manifold (M,∇, g) the following inequality holds [6]:

||S||
2
≥

2
m(m − 1)

%2. (27)

On combining (26) and (27), we find that

%2
N ≥

1
m(m − 1)

[( 2
m(m − 1)

%
)2

+
c2

4
+

2c
m(m − 1)

g(H ,H ∗) −
2c

m(m − 1)
%
]

=
1

m(m − 1)

[( 2
m(m − 1)

% −
c
2

)2

+
2c

m(m − 1)
g(H ,H ∗)

]
. (28)

From (1), we get 2H0 = H +H ∗ and thus

2g(H ,H ∗) = 4||H0
||

2
− ||H||

2
− ||H

∗
||

2. (29)

Therefore, from (28) and (29), we derive our desired inequality.

A general inequality for totally real statistical submanifolds is as follows:

Theorem 4.2. LetM be an m−dimensional totally real statistical submanifold immersed intoM
2m

(c). Then

% ≥
c
4

+
m

m − 1
g(H ,H ∗) −

1
m(m − 1)

||ζ||||ζ∗||. (30)

Proof. Let {E1, . . . ,Em} be an orthonormal frame ofMm and {Em+1, . . . ,E2m} be an orthonormal frame in the
normal bundle T⊥M. From Proposition 3 of [6], we get

2σ =
c
4

(m(m − 1)) + m2g(H ,H ∗) −
2m∑

a=m+1

m∑
i, j=1

~a
i j~
∗a
i j ,
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where

H =
1
m

2m∑
a=m+1

( m∑
i=1

~a
ii

)
Ea,

H
∗ =

1
m

2m∑
a=m+1

( m∑
i=1

~∗aii

)
Ea,

~a
i j = g(ζ(Ei,E j),Ea),

~∗ai j = g(ζ∗(Ei,E j),Ea).

Further, we apply Cauchy-Buniakowski-Schwarz, we have

2σ ≥
c
4

(m(m − 1)) + m2g(H ,H ∗) − ||ζ||||ζ∗||.

From last inequality, we can easily obtain the following:

% ≥
c
4

+
m

m − 1
g(H ,H ∗) −

1
m(m − 1)

||ζ||||ζ∗||.

This is the desired inequality.

5. Some Geometric Applications

In this section, we provide some immediate statistical significance of obtained results in the previous
section.

If a statistical submanifoldM of statistical manifoldM is minimal, that is, H0 = 0, then H +H ∗ = 0.
Thus, we have the following corollary follows from Theorem 3.2:

Corollary 5.1. LetM be a minimal totally real statistical submanifold immersed intoM. IfM is totally umbilical
submanifold with respect to ∇ and ∇

∗

, then any one of the following holds:

(i) BothH andH ∗ are perpendicular to each other;

(ii) H = 0;

(iii) H ∗ = 0.

By using Theorem 3.4, we can easily obtain the following corollary:

Corollary 5.2. LetM be a Lagrangian statistical submanifold immersed intoM. Then S = 0 if and only if S⊥ = 0.

Wintgen inequality for minimal statistical submanifold is directly from Theorem 4.1:

Corollary 5.3. In an m−dimensional minimal Lagrangian statistical submanifold M of M
2m

(c), the following
inequality holds:

m(m − 1)%2
N +

c
m(m − 1)

[
||H||

2 + ||H ∗||2
]
≥

( 2
m(m − 1)

% −
c
2

)2

.

Corollary 5.4. Let M be an m−dimensional Lagrangian statistical submanifold immersed into M
2m

(c). Suppose
that

(i) %N = 0 and
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(ii) % =
cm(m−1)

4 .

Then c ≤ 0.

Remark 5.5. The proof of above Corollary 5.4 follows directly from equation (28).

Now, we observe the following consequences of Theorem 4.2:

Corollary 5.6. Let M be an m−dimensional totally real statistical submanifold immersed into M
2m

(c). If M is
totally umbilical and totally geodesic with respect to ∇ and ∇

∗

, then % ≥ c
4 .

Remark 5.7. In the above Corollary 5.6, we haveM is totally umbilical and totally geodesic with respect to∇ and∇
∗

,
that is, for anyX,Y ∈ Γ(TM), 0 = ζ(X,Y) = g(X,Y)H , which givesH = 0. Similarly, 0 = ζ∗(X,Y) = g(X,Y)H ∗

impliesH ∗ = 0. Hence, an inequality (30) reduces to % ≥ c
4 .

Corollary 5.8. Let M be an m−dimensional totally real statistical submanifold immersed into M
2m

(c). If % = c
4 ,

thenM is not totally geodesic with respect to ∇ and ∇
∗

.
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