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Abstract. The object of the present paper is to study Ricci solitons on η-Einstein contact manifolds. As a
consequence of the main result we deduce some important corollaries.

1. Introduction

In 1982, R. S. Hamilton [25] introduced the notion of Ricci flow to find a canonical metric on a Riemannian
manifold. The Ricci flow is an evolution equation for metrics on a Riemannian manifold defined as follows:

∂
∂t
1i j = −2Ri j. (1)

Ricci solitons are special solutions of the Ricci flow equation (1) of the form 1i j = σ(t)ψ∗t1i j with the initial
condition 1i j(0) = 1i j, where ψt are diffeomorphisms of M and σ(t) is the scaling function.
A Ricci soliton is a generalization of an Einstein metric. We follow the notion of Ricci soliton according to
[14]. On the manifold M, a Ricci soliton is a triple (1,V, λ) with 1, a Riemannian metric, V a vector field,
called potential vector field and λ a real scalar such that

£V1 + 2S + 2λ1 = 0, (2)

where £ is the Lie derivative and S is the Ricci tensor. Metrics satisfying (2) are interesting and useful in
physics and are often referred as quasi-Einstein metrics ([8],[9]).

Theoretical physicists have also been looking into the equation of Ricci soliton in relation with string
theory. The initial contribution in this direction is due to Friedan [22] who discusses some aspects of it.
The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and positive.
If the vector field V is the gradient of a potential function − f , then 1 is called a gradient Ricci soliton and
equation (2) takes the form

∇∇ f = S + λ1,

where ∇ denotes the Levi-Civita connection.
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A Ricci soliton on a compact manifold has constant curvature in dimension 2 (Hamilton [25]), and also in
dimension 3 (Ivey [26]). For details we refer to Chow and Knoff [15]. We also recall the following significant
result of Perelman [31]: A Ricci soliton on a compact manifold is a gradient Ricci soliton.
Since the last two decades, the geometry of Ricci solitons has been the focus of attention of many mathemati-
cians. In particular, it has become more important after Grigory Perelman solved the Poincare conjecture.
An Einstein manifold is a trivial example of a gradient Ricci soliton with constant potential function and
therefore it is called a trivial Ricci soliton. There exist many non-trivial examples of Ricci solitons compact
as well as non-compact ([15],[26], [27]).
There are two aspects of the study of Ricci solitons, one looking at the influence on the topology by the
Ricci soliton structure of the Riemannian manifold ([19],[37]) and the other looking at its influence on its
geometry ([20], [21]).
On the other hand, the roots of contact geometry lie in differential equations as in 1872 Sophus Lie intro-
duced the notion of contact transformation as a geometric tool to study systems of differential equations.
This subject has multiple connections with the other fields of pure mathematics , and substantial applica-
tions in applied areas such as mechanics, optics, phase space of dynamical system, thermodynamics and
control theory.
In a recent paper Wang et al. [34] studied Ricci solitons on three dimensional η-Einstein almost Kenmotsu
manifolds. Also Ghosh [24] studied η-Einstein Kenmotsu metric as a Ricci soliton. However Ricci soliton
on η-Einstein contact metric manifold have not been studied. Also Ricci solitons and gradient Ricci solitons
on some kinds of almost contact metric manifolds of dimension three were studied by many authors. For
instances, De et al. [18] and Turan et al. [33] investigated Ricci solitons and gradient Ricci solitons on three-
dimensional normal almost contact metric manifolds and three-dimensional trans- Sasakian manifolds
respectively. Moreover, A. Ghosh [23] and J. T. Cho [10] classified Ricci solitons on three-dimensional Ken-
motsu manifolds respectively. In addition, Ricci solitons on f-Kenmotsu manifolds and N(k)-quasi-Einstein
manifolds were also studied by C. Calin and M. Crasmareanu [14] and M. Crasmareanu [13] respectively

In a recent paper J.T. Cho [12] studied Ricci solitons on almost contact geometry and proved that a three
dimensional contact Ricci soliton (1, ξ) is Sasakian and of constant curvature +1. Ricci solitons have been
studied by several authors such as ([6], [10], [11], [12], [17], [34], [35]) and many others. Motivated by these
circumstances, in this paper we study Ricci solitons on η-Einstein contact manifolds.
In a contact metric manifold M(2n+1)(φ, ξ, η, 1), the (1, 1) tensor field h is defined by h = 1

2 £ξφ. During the last
five decades the notion of locally symmetric manifolds have been weakened by many authors in several
ways to a different extent such as recurrent manifolds introduced by Walker [36].
In a contact metric manifold the (1, 1) tensor field h is said to be recurrent if it satisfies the condition

(∇Xh)(Y) = η(X)hY,

where η is the 1-form of the contact metric manifold.
A contact manifold is said to be η-Einstein if the Ricci tensor S of type (0, 2) satisfies the condition

S(X,Y) = α1(X,Y) + βη(X)η(Y), (3)

where α, β are non-constant smooth function. Such a structure in a Riemannian manifold is called quasi-
Einstein. Mantica et al. ([29], [30]) have obtained the physical interpretation of quasi-Einstein manifold in
perfect fluid space-time.
The paper is organized as follows: After introduction in section 2 we discuss some preliminaries of contact
metric manifolds. Section 3 is devoted to study our main result. Our main Theorem can be presented as
follows:

Main Theorem:

Theorem 1.1. Let the metric 1 of an η-Einstein connected contact metric manifold be a Ricci soliton (1,V). If the
tensor h is recurrent, then the manifold is an Einstein manifold.

As a consequence of the main Theorem we obtain the following corollary:
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Corollary 1.2. Let the metric 1 of an η-Einstein connected contact metric manifold be a Ricci soliton (1,V). If the
tensor h is recurrent, then V is a homothetic vector field.

2. Contact metric manifolds

A (2n + 1)-dimensional manifold M is said to admit an almost contact structure if it admits a tensor field
φ of type (1, 1), a vector field ξ and a 1-form η satisfying ([1],[2])

(a) φ2 = −I + η ⊗ ξ, (b) η(ξ) = 1, (c) φξ = 0, (d) η ◦ φ = 0. (4)

An almost contact structure is said to be normal if the almost complex structure J on the product manifold
defined by

J(X, f
d
dt

) = (φX − fξ, η(X)
d
dt

)

is integrable, where X is tangent to M, t is the coordinate of R and f is a smooth function on M ×R. Let 1
be a compatible Riemannian metric with almost contact metric structure (φ, η, ξ), that is,

1(φX, φY) = 1(X,Y) − η(X)η(Y).

Then M admits an almost contact metric structure (φ, ξ, η, 1). From (4) it can be easily seen that

(a) 1(X, φY) = −1(φX,Y), (b) 1(X, ξ) = η(X). (5)

for all vector fields X,Y. An almost contact metric structure becomes a contact metric structure if

1(X, φY) = dη(X,Y),

for all vectors fields X,Y. The 1-form η is called a contact metric form and ξ is its characteristic vector field.
We define a (1, 1) tensor field h by h = 1

2 £ξφ, where £ denote the Lie derivative. Then h is symmetric and
satisfies the conditions hφ = −φh, Tr.h = Tr.φh = 0 and hξ = 0. Also

∇Xξ = −φX − φhX,

holds in a contact metric manifold. A normal contact metric manifold is a Sasakian manifold. An almost
contact metric manifold is a Sasakian manifold if and only if

(∇Xφ)(Y) = 1(X,Y)ξ − η(Y)X,

where X,Y ∈ χ(M) and ∇ is the Levi-Civita connection of the Riemannian metric 1. A contact metric
manifold M2n+1(φ, ξ, η, 1) for which ξ is a Killing vector field is said to be a K-contact metric manifold. A
Sasakian manifold is K-contact but not conversely. However a 3-dimensional K-contact metric manifold is
Sasakian [28].
Given the contact metric manifold (M, η, ξ, φ, 1), we have the following identities ([1], [2]):

hξ = 0, hφ + φh = 0,

∇Xξ = −φX − φhX,

∇ξφ = 0,

R(ξ,X)ξ − φR(ξ, φX)ξ = 2(h2 + φ2)X,

(∇ξh)X = φX − h2φX + φR(ξ,X)ξ,
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S(ξ, ξ) = 2n − Tr h2,

R(X,Y)ξ = −(∇Xφ)Y + (∇Yφ)X − (∇Xφh)Y + (∇Yφh)X. (6)

Here, ∇ is the Levi-Civita connection and R the Riemannian curvature tensor of (M, 1) with the sign
convention

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z

for vector fields X, Y, Z on M. The tensor l = R(., ξ)ξ is the Jacobi operator with respect to the characteristic
field ξ. Contact metric manifolds have been studied by several authors such as ([3], [4], [5], [7], [32]) and
many others.
Let (Mn, 1); (n = dimM) be a Riemannian manifold, i.e., a manifold M with the Riemannian metric 1 and let∇
be the Levi-Civita connection of (Mn, 1). A Riemannian manifold is called locally symmetric [16] if ∇R = 0,
where R is the Riemannian curvature tensor of (Mn, 1). The class of Riemannian symmetric manifolds is
very natural generalization of the class of manifolds of constant curvature.

3. Proof of the Main Theorem

In view of equation (3) the Ricci tensor is given by

S(X,Y) = α1(X,Y) + βη(X)η(Y), (7)

where α, β are non-constant smooth functions. Again from (2) we have

(£V1)(Y,Z) = −2S(Y,Z) − 2λ1(Y,Z)
= −2{α1(Y,Z) + βη(Y)η(Z)} − 2λ1(Y,Z)
= −2(α + λ)1(Y,Z) − 2βη(Y)η(Z).

Taking Covariant differentiation with respect to X, we get

(∇X£V1)(Y,Z) = − 2(Xα)1(Y,Z) − 2(Xβ)η(Y)η(Z)
− 2β(∇Xη)(Y)η(Z) − 2βη(Y)(∇Xη)(Z).

(8)

Using (∇Xη)(Y) = 1(X + hX, φY) in (8), we obtain

(∇X£V1)(Y,Z) = − 2(Xα)1(Y,Z) − 2(Xβ)η(Y)η(Z)
− 2β1(X + hX, φY)η(Z) − 2βη(Y)1(X + hX, φZ),

(9)

for any vector field X, Y, Z. According to Yano ([38], pp-23), the following formula

(£V∇X1 − £X∇V1 − ∇[V,X]1)(Y,Z) = −1((£V∇)(X,Y),Z) − 1((£V∇)(X,Z),Y)

is well known for any vector fields X, Y, Z on M. As 1 is parallel with respect to the Levi-Civita connection
∇, then the above relation becomes

(∇X£V1)(Y,Z) = 1((£V∇)(X,Y),Z) + 1((£V∇)(X,Z),Y) (10)

for any vector fields X, Y, Z. Since £V∇ is symmetric tensor of type (1, 2), i.e., (£V∇)(X,Y) = (£V∇)(Y,X), then
it follows from (10) that

1((£V∇)(X,Y),Z) =
1
2

(∇X£V1)(Y,Z) +
1
2

(∇Y£V1)(X,Z) −
1
2

(∇Z£V1)(X,Y). (11)
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Using (9) in (11) we obtain

1((£V∇)(X,Y),Z) = − (Xα)1(Y,Z) − (Xβ)η(Y)η(Z)
− β1(X + hX, φY)η(Z) − βη(Y)1(X + hX, φZ)
− (Yα)1(X,Z) − (Yβ)η(X)η(Z)
− β1(Y + hY, φX)η(Z) − βη(X)1(Y + hY, φZ)
+ (Zα)1(X,Y) + (Zβ)η(X)η(Y)
+ β1(Z + hZ, φY)η(X) − βη(Y)1(Z + hZ, φX).

(12)

From (5) and (12) we get

1((£V∇)(X,Y),Z) = − (Xα)1(Y,Z) − (Xβ)η(Y)η(Z) − (Yα)1(X,Z)
− (Yβ)η(X)η(Z) + (Zα)1(X,Y) + (Zβ)η(X)η(Y)
− 2β1(hX, φY)η(Z) − 2β1(X, φZ)η(Y)
− 2β1(Y, φZ)η(X).

The above equation gives

(£V∇)(X,Y) = − (Xα)Y − (Xβ)η(Y)ξ − (Yα)X − (Yβ)η(X)ξ
+ (Dα)1(X,Y) + (Dβ)η(X)η(Y) − 2β1(hX, φY)ξ
+ 2βη(Y)φX + 2η(X)φY,

(13)

where Xα = 1(Dα,X), D denotes the gradient operator with respect to 1. Thus replacing X by Y and Y by Z
in (13) we have

(£V∇)(Y,Z) = − (Yα)Z − (Yβ)η(Z)ξ − (Zα)Y
− (Zβ)η(Y)ξ + (Dα)1(Y,Z) + (Dβ)η(Y)η(Z)
− 2β1(hY, φZ)ξ + 2βη(Z)φY + 2η(Y)φZ.

(14)

Taking covariant derivative of (14) with respect to X, we get

(∇X£V∇)(Y,Z) = − 1(∇XDα,Y)Z − 1(∇XDβ,Y)η(Z)ξ
− (Yβ)(∇Xη)Zξ − (Yβ)η(Z)∇Xξ

− 1(∇XDα,Z)Y − 1(∇XDβ,Z)η(Y)ξ
− (Zβ)(∇Xη)Yξ − (Zβ)η(Y)∇Xξ

+ ∇XDα1(Y,Z) + ∇XDβη(Y)η(Z)
+ Dβ(∇Xη)Yη(Z) + Dβ(∇Xη)(Z)η(Y)
− 2(Xβ)1(hY, φZ)ξ + 2β1((∇Xh)Y, φZ)ξ
− 2β1(hY, (∇Xφ)Z, ξ) − 2β1(hY, φZ)∇Xξ

+ 2(Xβ)η(Z)φY + 2β(∇Xη)ZφY
+ 2βη(Z)(∇Xφ)Y + 2(Xβ)η(Y)φZ
+ 2β(∇Xη)YφZ + 2βη(Y)(∇Xφ)Z.

(15)

Again,

(£VR)(X,Y)Z = (∇X£V∇)(Y,Z) − (∇Y£V∇)(X,Z). (16)

Now we suppose that h is recurrent, that is,

(∇Xh)(Y) = η(X)hY. (17)
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Using (15), (17) in (16) yields

(£VR)(X,Y)Z = −(Yβ)1(X + hX, φZ)ξ − (Yβ)η(Z)(−φX − φhX)
−1(∇XDα,Z)Y − 1(∇XDβ,Z)η(Y)ξ
−(Zβ)1(X + hX, φY)ξ − (Zβ)η(Y)(−φX − φhX)
+∇XDα1(Y,Z) + ∇XDβη(Y)η(Z)
+Dβ1(XhX, φY)η(Z) + Dβη(Y)1(X + hX, φZ)
−2(Xβ)1(hY, φZ)ξ + 2βη(Z)1(hY,X + hX)ξ
+2β1(hY, φZ)(hX + φhX) + 2(Xβ)η(Z)φY (18)
+2β1(X + hX, φZ)φY + 2βη(Z){1(X + hX,Y)ξ
−η(Y)(X + hX)} + 2(Xβ)η(Y)φZ
+2β1(X + hX, φY)φZ + 2βη(Y){1(X + hX,Z)ξ
−η(Z)(X + hX)} + (Xβ)1(Y + hY, φZ)ξ
+(Xβ)η(Z)(−φY − φhY) + 1(∇YDα,Z)X
+1(∇YDβ,Z)η(X)ξ + (Zβ)1(Y + hY, φX)ξ
+2βη(X)(−φY − φhY) − ∇YDα1(X,Z)
−∇YDβη(X)η(Z) −Dβ1(Y + hY, φX)η(Z)
−Dβ1(Y + hY, φZ)η(X) + 2(Yβ)1(hX, φZ)ξ
−2βη(Z)1(hX,Y + hY)ξ + 2β1(hX, φZ)(−φY − φhY)
−2(Yβ)η(Z)φX − 2β1(y + hY, φZ)φX
−2βη(Z){1(Y + hY,X)ξ − η(X)(Y + hY)}
−2(Yβ)η(X)φZ − 2β1(Y + hY, φX)φZ
−2βη(X){1(Y + hY,Z)ξ − η(Z)(Y + hY)}
−2βη(X)1(hY, φZ)ξ + 2βη(Y)1(hX, φZ)ξ.

Contracting X in (18), we have

(£VS)(Y,Z) = −1(∇YDα,Z) − 1(∇ξDβ,Z)η(Y)
−∆α1(Y,Z) − ∆βη(Y)η(Z)
+1(Dβ, φY + φhY)η(Z) + 1(Dβ, φZ + hφZ)η(Y)
−2(ξβ)1(hY, φZ) + 21(Dβ, φY)η(Z)
+2β1(φY + hφY, φZ) − 4nβη(Y)η(Z)
+21(Dβ, φZ)η(Y) + 2β1(φZ + hφZ, φY) (19)
−4nβη(Y)η(Z) + (ξβ)1(Y + hY, φZ)
+η(Z)1(Dβ,−φY − φhY) + (2n + 1)1(∇YDα,Z)
+1(∇YDβ,Z) − 1(∇YDα,Z) − 1(∇YDβ, ξ)η(Y)
+1(Dβ, φY + φhY)η(Z) − (ξβ)1(Y + hY, φZ)
+2β1(hφZ,−φY − φhY) + 2β1(φY + φhY, φZ)
−2β{1(Y + hY,Z) − η(Y)η(Z)} − 2β(hY, φZ).
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Putting Y = φY, Z = φZ in (19) yields

(£VS)(φY, φZ) = −1(∇φYDα, φZ) − ∆α1(φY, φZ)

−2(ξβ)1(hφY, φ2Z) + 2β1(φ2Y + hφ2Y, φ2Z)
+2β1(φ2Z + hφ2Z, φ2Y) + (ξβ)1(φY + hφY, φ2Z)
+(2n + 1)1(∇φYDα, φZ) + 1(∇φYDβ, φZ) (20)

−1(∇φYDα, φZ) − (ξβ)1(φY + hφY, φ2Z)

+2β1(hφ2Z,−φ2Y − φhφY) + 2β1(φ2Y + φhφY, φ2Z)
−2β1(φY + hφY, φZ) + 2β1(hZ, φY).

On the other hand, from (7) we get

(£VS)(φY, φZ) =(Vα)1(φY, φZ)
+ α{1(∇φYV, φZ) + 1(∇φZV, φY)}

(21)

Therefore from (20) and (21) we obtain

(Vα)1(φY, φZ) + α{1(∇φYV, φZ) + 1(∇φZV, φY)}

= − 1(∇φYDα, φZ) − ∆α1(φY, φZ) − 2(ξβ)1(hφY, φ2Z)

+ 2β1(φ2Y + hφ2Y, φ2Z) + 2β1(φ2Z + hφ2Z, φ2Y)

+ (ξβ)1(φY + hφY, φ2Z) + (2n + 1)1(∇φYDα, φZ)

+ 1(∇φYDβ, φZ) − 1(∇φYDα, φZ) − (ξβ)1(φY + hφY, φ2Z)

+ 2β1(hφ2Z,−φ2Y − φhφY) + 2β1(φ2Y + φhφY, φ2Z)
− 2β1(φY + hφY, φZ) + 2β1(hZ, φY).

(22)

Interchanging Y and Z in (22) and then subtracting from (22) [by using 1(∇XDα,Y) = 1(∇YDα,X)] we
have

0 = − 2(ξβ){1(hφY, φ2Z) − 1(hφZ, φ2Y)}

+ 2β{1(hφ2Y + φ2Y, φ2Z) − 1(φ2Z + hφ2Z, φ2Y}

+ 2β{1(hφ2Z + φ2Z, φ2Y) − 1(φ2Y + hφ2Y, φ2Z}

+ (ξβ){1(φY + hφY, φ2Z − 1(φZ + hφZ, φ2Y))}

− (ξβ){1(φY + hφY, φ2Z − 1(φZ + hφZ, φ2Y))}

+ 2β{1(hφ2Z,−φY
− φhφY) − 1(hφ2Y,−φ2Z − φhφZ)}

+ 2β{1(φ2Y + φhφY, φ2Z) − 1(φ2Z + φhφZ, φ2Y)}
− 2β{1(φY + hφY, φZ − 1(φZ + hφZ, φY))}
+ 2β{1(hZ, φZ) − 1(hY, φZ)}.

This implies that

2β{1(φY, φ2Z) − 1(φZ, φ2Y)} = 0,

and hence

4β1(φY, φZ) = 0,

which implies

β = 0.
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On the other hand, from (13) we obtain

0 =

2n+1∑
i=1

(£V∇)(ei, ei)

= −Dα − (ξβ)ξ −Dα − (ξβ)ξ + (2n + 1)Dα + Dβ − 2β
2n+1∑
i=1

1(hei, φei)ξ.

Since β = 0, from the above equation it follows that (2n − 1)Dα = 0. Therefore we have 1(Dα,X) = 0. This
implies (Xα) = 0. Hence α = constant. Therefore our main Theorem 1.1 is proved.

Also from (2) we obtain

£V1 + 2S + 2λ1 = 0,

from which it follows that

(£V1)(X,Y) = − 2S(X,Y) − 2λ1(X,Y)
= − 2(α + λ)1(X,Y)
= − 2ρ1(X,Y),

where ρ = −(α + λ) = constant. Thus V is a homothetic vector field. Hence the corollary 1.2 is proved.

We suppose that contact metric manifold admits a Ricci soliton (1, ξ).
Then from (2) we get

1
2
{1(∇Xξ,Y) + 1(∇Yξ,X)} + S(X,Y) − λ1(X,Y) = 0.

This implies

{1(−φX − φhX,Y) + 1(−φY − hφY,X)}
+ 2S(X,Y) − 2λ1(X,Y) = 0.

(23)

Since hφ = −φh, from the above equation (23) we have

1(X, hφY) + S(X,Y) − λ1(X,Y) = 0.

It follows that

QY = λY − hφY. (24)

Substituting Y = ξ in the above equation (24) yields

Qξ = λξ.
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