
Filomat 32:13 (2018), 4711–4729
https://doi.org/10.2298/FIL1813711F

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we investigate the existing non-unique fixed points of certain mappings, via
simulation functions in the context of quasi-metric space. Our main results generalize and unify several
existing results on the topic in the literature.

1. Introduction and Preliminaries

Quasi metric spaces are one of the interesting topics for fixed-point theory researchers because they
generalize the concept of metric space by giving up the symmetry condition. For some results on fixed
point theorems related to quasi-dimensional spaces, see e.g. [2], [3], [4], [7]. First, we recall some basic
concepts and fundamental results.

Definition 1.1. A quasi-metric on a set X is a function q : X × X→ [0,∞) such that:

(q1) q(x, y) = q(y, x) = 0⇔ x = y ;

(q2) q(x, z) ≤ q(x, y) + q(y, z), for all x, y, z ∈ X.

The pair (X, q) is called a quasi-metric space.

Any metric space is a quasi-metric space, but the converse is not true in general. Now, we give
convergence, completeness and continuity on quasi-metric spaces.

Definition 1.2. Let (X, q) be a quasi-metric space, {xn} be a sequence in X, and x ∈ X. The sequence {xn} converges
to x if and only if

lim
n→∞

q(xn, x) = lim
n→∞

q(x, xn) = 0. (1)

Remark 1.3. In a quasi-metric space (X, q), the limit for a convergent sequence is unique. If xn → x, we have for all
y ∈ X

lim
n→∞

q(xn, y) = q(x, y) and lim
n→∞

q(y, xn) = q(y, x).
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Definition 1.4. Let (X, q) be a quasi-metric space and {xn} be a sequence in X. We say that {xn} is left-Cauchy if and
only if for every ε > 0 there exists a positive integer N = N(ε) such that q(xn, xm) < ε for all n ≥ m > N.

Definition 1.5. Let (X, q) be a quasi-metric space and {xn} be a sequence in X. We say that {xn} is right-Cauchy if
and only if for every ε > 0 there exists a positive integer N = N(ε) such that q(xn, xm) < ε for all m ≥ n > N.

Definition 1.6. Let (X, q) be a quasi-metric space and {xn} be a sequence in X. We say that {xn} is Cauchy if and
only if for every ε > 0 there exists a positive integer N = N(ε) such that q(xn, xm) < ε for all m,n > N.

Remark 1.7. A sequence {xn} in a quasi-metric space is Cauchy if and only if it is left-Cauchy and right-Cauchy.

Definition 1.8. Let (X, q) be a quasi-metric space. We say that:
1. (X, q) is left-complete if and only if each left-Cauchy sequence in X is convergent.
2. (X, q) is right-complete if and only if each right-Cauchy sequence in X is convergent.
3. (X, q) is complete if and only if each Cauchy sequence in X is convergent.

Definition 1.9. Let (X, q) be a quasi-metric space. The map T : X → X is continuous if for each sequence {xn} in X
converging to x ∈ X, the sequence {Txn} converges to Tx, that is,

lim
n→∞

q(Txn,Tx) = lim
n→∞

q(Tx,Txn) = 0 (2)

Definition 1.10. A function ϕ : [0,∞)→ [0,∞) is called a comparison function if:

(c1) ϕ is increasing;

(c2) lim
n→∞

ϕn(t) = 0, for t ∈ [0,∞).

Proposition 1.11. If ϕ is a comparison function then:

(i) each ϕk is also a comparison function for all k ∈N;

(ii) ϕ is continuous at 0;

(iii) ϕ(t) < t for all t > 0.

Definition 1.12. A function ψ : [0,∞)→ [0,∞) is called a c−comparison function if:

(cc1) ψ is monotone increasing;

(cc2)
∞∑

n=0

ψn(t) < ∞, for all t ∈ (0,∞).

We denote by Ψ the family of c−comparison functions.

Remark 1.13. If ψ is a c−comparison function, then ψ(t) < t for all t > 0.

Remark 1.14. A c−comparison function is a comparison function.

In order to unify the several existing fixed point results in the literature, [14], Khojasteh et al. introduced
the notion of simulation function and investigated the existence and uniqueness of a fixed point of certain
mappings via simulation functions.

Definition 1.15. A simulation function is a mapping ζ : [0,∞) × [0,∞)→ R satisfying the following conditions:

(ζ1) ζ(t, s) < s − t for all t, s > 0;
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(ζ2) if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (3)

Notice that in [14] there was a superfluous condition ζ(0, 0) = 0. LetZ denote the family of all simulation functions
ζ : [0,∞) × [0,∞)→ R. Due to the axiom (ζ1), we have

ζ(t, t) < 0 for all t > 0. (4)

The following example is derived from [2, 14, 15].

Example 1.16. Let φi : [0,∞)→ [0,∞), i = 1, 2, 3, be continuous functions with φi(t) = 0 if, and only if, t = 0. For
i = 1, 2, 3, 4, 5, 6, we define the mappings ζi : [0,∞) × [0,∞)→ R, as follows

(i) ζ1(t, s) = φ1(s) − φ2(t) for all t, s ∈ [0,∞), where φ1(t) < t ≤ φ2(t) for all t > 0.

(ii) ζ2(t, s) = s −
f (t, s)
1(t, s)

t for all t, s ∈ [0,∞), where f , 1 : [0,∞)2
→ (0,∞) are two continuous functions with

respect to each variable such that f (t, s) > 1(t, s) for all t, s > 0.

(iii) ζ3(t, s) = s − φ3(s) − t for all t, s ∈ [0,∞).

(iv) If ϕ : [0,∞)→ [0, 1) is a function such that lim supt→r+ ϕ(t) < 1 for all r > 0, and we define

ζ4(t, s) = sϕ(s) − t for all s, t ∈ [0,∞).

(v) If η : [0,∞)→ [0,∞) is an upper semi-continuous mapping such that η(t) < t for all t > 0 and η(0) = 0, and we
define

ζ5(t, s) = η(s) − t for all s, t ∈ [0,∞).

(vi) If φ : [0,∞)→ [0,∞) is a function such that
∫ ε

0 φ(u)du exists and
∫ ε

0 φ(u)du > ε, for each ε > 0, and we define

ζ6(t, s) = s −
∫ t

0
φ(u)du for all s, t ∈ [0,∞).

It is clear that each function ζi (i = 1, 2, 3, 4, 5, 6) forms a simulation function.

In 2012 Samet et al.[16] introduced the notion of α− admissible mappings, concept which is used
frequently in several papers to establish various fixed point results.

Definition 1.17. [16] Let T : X → X be a mapping and α : X × X → [0,∞) be a function. We say that T is an
α−admissible if for all x, y ∈ X we have

α(x, y) ≥ 1⇒ α(Tx,Ty) ≥ 1.

2. Main results

Definition 2.1. A set X is regular with respect to mapping α : X × X→ [0,∞) if, whenever {xn} is a sequence in X
such that α(xn, xn+1) ≥ 1 and α(xn+1, xn) ≥ 1 for all n and xn → x ∈ X as n → ∞, then there exists a subsequence{
xn(k)

}
of {xn} such that α(xn(k), x) ≥ 1 and α(x, xn(k)) ≥ 1 for all n.
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Lemma 2.2. Let T : X → X be an α−admissible function and xn = Txn−1,n ∈ N. If there exists x0 ∈ X such that
α(x0,Tx0) ≥ 1 and α(Tx0, x0) ≥ 1, then we have

α(xn−1, xn) ≥ 1 and α(xn, xn−1) ≥ 1, for all n ∈N0.

Proof. By assumption, there exists a point x0 ∈ X such that α(x0,Tx0) ≥ 1. On account of the definition of
{xn} ⊂ X and owing to the fact that T is α− admissible, we derive

α(x0, x1) = α(x0,Tx0) ≥ 1⇒ α(Tx0,Tx1) = α(x1, x2) ≥ 1.

Recursively, we have

α(xn−1, xn) ≥ 1, for all n ∈N0. (5)

We consider now the case where α(Tx0, x0) ≥ 1. By using the same technique as above, we get that

α(xn, xn−1) ≥ 1, for all n ∈N0. (6)

Theorem 2.3. Let (X, q) be a complete quasi-metric space and a map α : X × X → [0,∞). Suppose that there exist
ζ ∈ Z, ψ ∈ Ψ and a self-mapping T such that

ζ(α(x, y)q(Tx,Ty), ψ(q(x, y))) ≥ 0, (7)

for each x, y ∈ X. Suppose also that

(i) T is α−admissible;
(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;

(iii) either, T is continuous, or
(iv) X is regular with respect to mapping α.

Then, T has a fixed point.

Proof. By (ii), there is x0 ∈ X such that α(x0,Tx0) ≥ 1. By using this initial point, we define a sequence
{xn} ⊂ X by xn+1 = Txn = Tnx0 for all n ∈ N. Suppose that xn0 = xn0+1 for some n0 ∈ N. Then, xn0 is a fixed
point of T, that is, Txn0 = xn0 . From now, we suppose that xn+1 , xn for all n ∈N, in other words

q (xn+1, xn) > 0 and q (xn, xn+1) > 0.

By replacing x = xn and y = xn−1 in (7) and taking into account (ζ1) we find, for all n ≥ 1, that

0 ≤ ζ(α(xn, xn−1)q(Txn,Txn−1), ψ(q(xn, xn−1)))
< ψ(q(xn, xn−1)) − α(xn, xn−1)q(Txn,Txn−1)
= ψ(q(xn, xn−1)) − α(xn, xn−1)q(xn+1, xn).

(8)

Consequently, we have

q(xn+1, xn) ≤ α(xn, xn−1)q(xn+1, xn) ≤ ψ(q(xn, xn−1))
< q(xn, xn−1). (9)

Recursively, we obtain that

q(xn+1, xn) ≤ ψn(q(x1, x0)),∀n ≥ 1. (10)
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By using the triangle inequality and (10), for all k ≥ 1, we get

q(xn+k, xn) ≤ q(xn+k, xn+k−1) + ... + q(xn+1, xn)

≤

n+k−1∑
p=n

ψp(q(x1, x0))

≤

∞∑
p=n

ψp(q(x1, x0)).

(11)

Letting n → ∞ in the above inequality, we derive that
∑
∞

p=n ψ
p(q(x1, x0)) → 0. Hence, q(xn+k, xn) → 0 as

n→∞. Therefore, {xn} is a left-Cauchy sequence in (X, d).
Analogously, we deduce that {xn} is a right-Cauchy sequence in (X, d).

On account of Remark 1.7, we deduce that the constructed sequence {xn} is Cauchy in the complete
quasi-metric space (X, q). It implies that there exists u ∈ X such that

lim
n→∞

q(xn,u) = lim
n→∞

q(u, xn) = 0. (12)

If T is continuous, then, by using the property (q1), we derive that

lim
n→∞

q(xn,Tu) = lim
n→∞

q(Txn−1,Tu) = 0, (13)

and

lim
n→∞

q(Tu, xn) = lim
n→∞

q(Tu,Txn−1) = 0. (14)

Thus, we have

lim
n→∞

q(xn,Tu) = lim
n→∞

q(Tu, xn) = 0. (15)

Keeping (12) and (15) in the mind together with the uniqueness of a limit, we conclude that u = Tu, that is,
u is a fixed point of T.

If X is regular with respect to α, then there exists a subsequence {xn(k)} of {xn} such that α(u, xn(k)) ≥ 1 for
all k. Applying (7), for all k, and taking into account Remark 1.3 we get that

q(Tu, xn(k)+1) = q(Tu,Txn(k)) ≤ α(u, xn(k))q(Tu,Txn(k)) ≤ ψ(q(u, xn(k))). (16)

Letting k→∞ in the above equality, we obtain that

q(Tu,u) ≤ 0. (17)

Thus, we have q(Tu,u) = 0, that is Tu = u.

Theorem 2.4. Let (X, q) be a complete quasi-metric space and a map α : X × X → [0,∞). Suppose that there exist
ζ ∈ Z, ψ ∈ Ψ and a self-mapping T such that

ζ(α(x, y)q(Tx,Ty), ψ(M(x, y))) ≥ 0, (18)

for each x, y ∈ X, where

M(x, y) = max{q(x, y), q(Tx, x), q(Ty, y),
1
2

[q(Tx, y) + q(Ty, x)]}. (19)

Suppose also that

(i) T is α−admissible;
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(ii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;
(iii) either, T is continuous, or
(iv) X is regular with respect to mapping α.

Then, T has a fixed point.

Proof. Following the lines in the proof of Theorem 2.3, we find a sequence {xn} ⊂ X which is built by
xn = Txn−1. Further, with the same reasoning in the proof of Theorem 2.3, we suppose that xn+1 , xn for all
n ∈N, that is,

q (xn+1, xn) > 0 and q (xn, xn+1) > 0.

Taking the inequality (18) and Lemma 2.2 into account, we find

0 ≤ ζ(α(xn, xn−1)q(Txn,Txn−1), ψ(M(xn, xn−1)))
< ψ(M(xn, xn−1)) − α(xn, xn−1)q(Txn,Txn−1)
= ψ(M(xn, xn−1)) − α(xn, xn−1)q(xn+1, xn).

(20)

which yields that

q(xn+1, xn) = q(Txn,Txn−1) ≤ α(xn, xn−1)q(Txn,Txn−1) ≤ ψ(M(xn, xn−1)), (21)

for all n ≥ 1, where

M(xn, xn−1) = max{q(xn, xn−1), q(Txn, xn), q(Txn−1, xn−1), 1
2 [q(Txn, xn−1) + q(Txn−1, xn)]}

= max{q(xn, xn−1), q(xn+1, xn), q(xn, xn−1), 1
2 [q(xn+1, xn−1) + q(xn, xn)]}

≤ max{q(xn, xn−1), q(xn+1, xn)}.
(22)

Since ψ is a nondecreasing function, (21) implies that

q(xn+1, xn) ≤ ψ(max{q(xn, xn−1), q(xn+1, xn)}), (23)

for all n ≥ 1. We shall examine two cases. Suppose that q(xn+1, xn) > q(xn, xn−1). Since q(xn+1, xn) > 0, we
obtain that

q(xn+1, xn) ≤ ψ(q(xn+1, xn)) < q(xn+1, xn), (24)

is a contradiction. Therefore, we find that max
{
q(xn, xn−1), q(xn+1, xn)

}
= q(xn, xn−1). Since ψ ∈ Ψ, (23) yields

that

q(xn+1, xn) ≤ ψ(q(xn, xn−1)) < q(xn, xn−1) (25)

for all n ≥ 1. Recursively, we derive that

q(xn+1, xn) ≤ ψn(q(x1, x0)), ∀n ≥ 1. (26)

Together with (26) and the triangle inequality, for all k ≥ 1, we get that

q(xn+k, xn) ≤ q(xn+k, xn+k−1) + ... + q(xn+1, xn)

≤

n+k−1∑
p=n

ψp(q(x1, x0))

≤

∞∑
p=n

ψp(q(x1, x0))→ 0 as n→∞.

(27)
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Therefore, {xn} is a left-Cauchy sequence in (X, q).
Analogously, we shall prove that {xn} is a right-Cauchy sequence in (X, q). From (18) and Lemma 2.2, we
derive that

0 ≤ ζ(α(xn−1, xn)q(Txn−1,Txn), ψ(M(xn−1, xn)))
< ψ(M(xn−1, xn)) − α(xn−1, xn)q(Txn−1,Txn)
= ψ(M(xn−1, xn)) − α(xn−1, xn)q(Txn−1,Txn).

(28)

which implies

q(xn, xn+1) = q(Txn−1,Txn) ≤ α(xn−1, xn)q(Txn−1,Txn) ≤ ψ(M(xn−1, xn)), (29)

for all n ≥ 1, where

M(xn−1, xn) = max{q(xn−1, xn), q(Txn−1, xn−1), q(Txn, xn), 1
2 [q(Txn−1, xn) + q(Txn, xn−1)]}

= max{q(xn−1, xn), q(xn, xn−1), q(xn+1, xn), 1
2 [q(Txn−1, xn) + q(Txn, xn−1)]}

≤ max{q(xn−1, xn), q(xn, xn−1), q(xn+1, xn)}.
(30)

Since ψ is a nondecreasing function, the inequality (29) turns into

q(xn, xn+1) ≤ ψ(max{q(xn−1, xn), q(xn, xn−1), q(xn+1, xn)}), (31)

for all n ≥ 1. We shall examine three cases.
Case 1. Suppose that max{q(xn−1, xn), q(xn, xn−1), q(xn+1, xn)} = q(xn−1, xn). Since ψ ∈ Ψ, from (30) we find

that

q(xn, xn+1) ≤ ψ(q(xn−1, xn)) < q(xn−1, xn) (32)

for all n ≥ 1. Inductively, we get that

q(xn, xn+1) ≤ ψn(q(x0, x1)),∀n ≥ 1. (33)

By using the triangle inequality and taking (33) into consideration, for all k ≥ 1, we get

q(xn, xn+k) ≤ q(xn, xn+1) + ... + q(xn+k−1, xn+k)

≤

n+k−1∑
p=n

ψp(q(x0, x1))

≤

∞∑
p=n

ψp(q(x0, x1))→ 0 as n→∞.

(34)

Case 2. Assume that max{q(xn−1, xn), q(xn, xn−1), q(xn+1, xn)} = q(xn, xn−1). Regarding ψ ∈ Ψ and (31), we
obtain that

q(xn, xn+1) ≤ ψ(q(xn, xn−1)) < q(xn, xn−1) (35)

for all n ≥ 1. From (18) and Lemma 2.2, we derive that

q(xn, xn−1) = q(Txn−1,Txn−2)
≤ α(xn−1, xn−2)q(Txn−1,Txn−2)
≤ ψ(M(xn−1, xn−2)),

(36)

for all n ≥ 1, where

M(xn−1, xn−2) = max{q(xn−1, xn−2), q(Txn−1, xn−1), q(Txn−2, xn−2), 1
2 [q(Txn−1, xn−2) + q(Txn−2, xn−1)]}

= max{q(xn−1, xn−2), q(xn, xn−1), q(xn−1, xn−2), 1
2 [q(xn, xn−2) + q(xn−1, xn−1)]}

≤ max{q(xn−1, xn−2), q(xn, xn−1)}.
(37)
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Since ψ is a nondecreasing function, (21) implies that

q(xn, xn−1) ≤ ψ(max{q(xn−1, xn−2), q(xn, xn−1)}), (38)

for all n ≥ 1.
We shall examine two cases. Suppose that q(xn, xn−1) > q(xn−1, xn−2). Since q(xn, xn−1) > 0, we obtain that

q(xn, xn−1) ≤ ψ(q(xn, xn−1)) < q(xn, xn−1), (39)

is a contradiction. Therefore, we find that max{q(xn−1, xn−2), q(xn, xn−1) = q(xn−1, xn−2). Since ψ ∈ Ψ, (38)
yields that

q(xn, xn−1) ≤ ψ(q(xn−1, xn−2)) < q(xn−1, xn−2) (40)

for all n ≥ 1. Recursively, we derive that

q(xn, xn−1) ≤ ψn−1(q(x1, x0)), ∀n ≥ 1. (41)

If we combine the inequalities (35) and (41), we derive that

q(xn, xn+1) ≤ ψ(q(xn, xn−1)) < q(xn, xn−1) ≤ ψn−1(q(x1, x0)), ∀n ≥ 1. (42)

Together with (42) and the triangle inequality, for all k ≥ 1, we get that

q(xn, xn+k) ≤ q(xn, xn+1) + ... + q(xn+k−1, xn+k)
< q(xn, xn−1) + ... + q(xn+k−1, xn+k−2)

≤

n+k−1∑
p=n

ψp−1(q(x1, x0))

≤

∞∑
p=n

ψp−1(q(x1, x0))→ 0 as n→∞.

(43)

Case 3. Assume that max{q(xn−1, xn), q(xn, xn−1), q(xn+1, xn)} = q(xn+1, xn). Since q(xn+1, xn) > 0 we have

q(xn, xn+1) ≤ ψ(q(xn+1, xn)) < q(xn+1, xn), (44)

and, as in the previous case, we get that q(xn, xn+k)→ 0 as n→∞. Therefore, by (34) and (43), we conclude
that {xn} is a right-Cauchy sequence in (X, q).

From Remark 1.7, {xn} is a Cauchy sequence in complete quasi-metric space (X, q). This implies that
there exists u ∈ X such that

lim
n→∞

q(xn,u) = lim
n→∞

q(u, xn) = 0. (45)

Then, using the continuity of T we obtain

lim
n→∞

q(xn,Tu) = lim
n→∞

q(Txn−1,Tu) = 0 (46)

and

lim
n→∞

q(Tu, xn) = lim
n→∞

q(Tu,Txn−1) = 0. (47)

Thus, we have

lim
n→∞

q(xn,Tu) = lim
n→∞

q(Tu, xn) = 0. (48)
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It follows from (45) and (48) that u = Tu, that is, u is a fixed point of T.
Now, suppose that X is regular with respect to α. Then, there exists a subsequence {xn(k)} of {xn} such

that α(u, xn(k)) ≥ 1 for all k. Applying (18), for all k, we get that

q(Tu, xn(k)+1) = q(Tu,Txn(k)) ≤ α(u, xn(k))q(Tu,Txn(k)) ≤ ψ(M(u, xn(k))) < M(u, xn(k)), (49)

where

M(u, xn(k)) = max{q(u, xn(k)), q(Tu,u), q(Txn(k), xn(k)),
1
2

[q(Tu, xn(k)) + q(Txn(k),u)]}.

Thus,

q(Tu, xn(k)+1) < max{q(u, xn(k)), q(Tu,u), q(xn(k)+1, xn(k)),
1
2

[q(Tu, xn(k)) + q(xn(k)+1,u)]}. (50)

Letting k→∞ in the above inequality, we obtain that

q(Tu,u) < q(Tu,u) (51)

which is a contradiction. Thus, we have q(Tu,u) = 0, that is Tu = u.

Example 2.5. Let X = [0,∞) be equipped with a quasi-metric q : X × X→ R+
0 such that q(x, y) = max

{
x − y, 0

}
.

Consider the self mapping T : X→ X such that

Tx =


x
8 if x ∈

[
0, 1

2

)
,

1 − x if x ∈
[

1
2 , 1

]
,

x2+8
3 if x ∈ (1,∞) ,

and functions ζ ∈ Z, defined by ζ(s, t) = 1
2 s − t, respectively ψ ∈ Ψ, ψ(t) = t

3 . We define α : X ×X→ R+
0 such that

α(x, y) =


1 if (x, y) ∈

[
0, 1

2

]
×

[
0, 1

2

)
2 if (x, y) =

(
1
2 ,

1
2

)
0 otherwise.

Notice that the self-mapping T is not continuous at x = 1
2 and x = 1. We have to consider the following cases:

(a) If 0 ≤ x < y < 1
2 because q(Tx,Ty) = q( x

8 ,
y
8 ) = 0, inequality (18) becomes

0 = α(x, y)q(Tx,Ty) ≤
ψ

(
M(x, y

)
)

2

which is obviously true for any function ψ ∈ Ψ.
(b) For 0 ≤ y

8 ≤ y ≤ x
8 < x < 1

2 we have

M(x, y) = max
{
q(x, y), q(

x
8
, x), q(

y
8
, y),

1
2

[
q(

x
8
, y) + q(

y
8
, x)

]}
= max

{
x − y, 0, 0,

1
2

(x
8
− y

)}
= x − y

and q(Tx,Ty) = q
(

x
8 ,

y
8

)
= x

8 −
y
8 . Taking into account the properties of the function ζ, we get

α(x, y)q(Tx,Ty) =
x − y

8
<

1
2
·

x − y
3

=
1
2
ψ(M(x, y)).

(c) For 0 ≤ y
8 ≤

x
8 ≤ y ≤ x < 1

2

M(x, y) = max
{
q(x, y), q(

x
8
, x), q(

y
8
, y),

1
2

[
q(

x
8
, y) + q(

y
8
, x)

]}
= max

{
x − y, 0, 0, 0

}
= x − y
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and q(Tx,Ty) = q
(

x
8 ,

y
8

)
= x

8 −
y
8 . So,

α(x, y)q(Tx,Ty) =
x − y

8
<

1
2
·

x − y
3

=
1
2
ψ(M(x, y)).

(d) If x ∈
[
0, 1

2

)
and y = 1

2 we have q(Tx,T 1
2 ) = q( x

8 ,
1
2 ) = 0 and M(x, 1

2 ) = 1
2

(
1
2 − x

)
, and (18) is true.

(e) For x = y = 1
2 , we get q(T 1

2 ,T
1
2 ) = q( 1

2 ,
1
2 ) = 0 and M

(
1
2 ,

1
2

)
= 0, so, also, (18) is fulfilled. Notice that for any

other possibilities, the result is provided easily from the fact that α(x, y) = 0. Let us check that T is α− admissible.
From the definition of function α, for any (x, y) ∈

[
0, 1

2

]
×

[
0, 1

2

)
we have

α(x, y) = 1⇒ α(Tx,Ty) = 1.

and for x = y = 1
2 ,

α(
1
2
,

1
2

) = 2 ≥ 1⇒ α(T
1
2
,T

1
2

) = α(
1
2
,

1
2

) = 2 ≥ 1.

Thus, the first condition (i) of Theorem (2.4) is satisfied. The second condition (ii) of Theorem is also fulfilled. Indeed,
for x0 = 0, we have α(0,T0) = α(0,T0) = α(0, 0) = 1 ≥ 1. It is also easy to see that (X, q) is regular. Indeed let {xn}

be a sequence in X such that for all n and xn → x as n→∞. Since α(xn, xn+1) ≥ 1 for all n, by the definition of α, we
have xn ∈

[
0, 1

2

)
for all n and x ∈

[
0, 1

2

)
. Then,

α(xn, x) = 1 ≥ 1.

If x = 1
2 , then xn = 1

2 and α(xn, x) = 2 ≥ 1. It is clear that T satisfies all the conditions of Theorem (2.4) for any
choice of ζ ∈ S and T has two distinct fixed points, namely, x = 0 and x = 1

2 .

Theorem 2.6. Let (X, q) be a complete quasi-metric space and a map α : X × X → [0,∞). Suppose that there exist
ζ ∈ Z, ψ ∈ Ψ and a self-mapping T such that

ζ(Γ(x, y), ψ(q(x, y))) ≥ 0, (52)

for each x, y ∈ X, where

Γ(x, y) = α(x, y)
[
min

{
q(Tx,Ty), q(x,Tx), q(y,Ty)

}
−min

{
q(Ty, x), q(Tx, y)

}]
.

Suppose also that

(i) T is α−admissible;
(ii) there is a constant C > 1 such that 1

C q(x, y) ≤ q(y, x) ≤ Cq(x, y) for all x, y ∈ X,
(iii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;
(iv) either, T is continuous, or

(iv′) X is regular with respect to mapping α.

Then for each x0 ∈ X the sequence (Tnx0) converges to a fixed point of T.

Proof. By verbatim of the first lines in the proof of Theorem 2.3, we get a constructive sequence {xn} ⊂ X.
Further, with the same reasoning in the proof of Theorem 2.3, we suppose that xn+1 , xn for all n ∈N, that
is,

q (xn+1, xn) > 0 and q (xn, xn+1) > 0.

Taking the inequality (52), the axiom (ζ1) and Lemma 2.2 into account, we find

0 ≤ ζ(Γ(xn−1, xn), ψ(q(xn−1, xn))) < ψ(q(xn−1, xn)) − Γ(xn−1, xn), (53)
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for all n ≥ 1. In conclusion, we have

Γ(xn−1, xn) ≤ ψ(q(xn−1, xn)), (54)

where

Γ(xn−1, xn) = α(xn−1, xn)
[
min

{
q(Txn−1,Txn), q(xn−1,Txn−1), q(xn,Txn)

}
−

−min
{
q(Txn, xn−1), q(Txn−1, xn)

}]
= α(xn−1, xn)

[
min

{
q(xn, xn+1), q(xn−1, xn), q(xn, xn+1)

}
−

−min
{
q(xn+1, xn−1), q(xn, xn)

}]
= α(xn−1, xn) min

{
q(xn, xn+1), q(xn−1, xn)

} (55)

By Lemma 2.2, together with (55) and (5) we obtain that

min
{
q(xn, xn+1), q(xn−1, xn)

}
≤ α(xn−1, xn) min

{
q(xn, xn+1), q(xn−1, xn)

}
≤ ψ(q(xn−1, xn)). (56)

To understand the inequality (56), we consider two cases. For the first case, we suppose that min
{
q(xn, xn+1), q(xn−1, xn)

}
=

q(xn−1, xn). Since ψ(t) < t for all t ≥ 0 we have

q(xn−1, xn) ≤ ψ(q(xn−1, xn)) < q(xn−1, xn),

which is a contradiction. Therefore, min
{
q(xn, xn+1), q(xn−1, xn)

}
= q(xn, xn+1) and thus we have

q(xn, xn+1) ≤ ψ(q(xn−1, xn)) < q(xn−1, xn). (57)

Applying recurrently Remark 1.13 we find that

q(xn, xn+1) ≤ ψ(q(xn−1, xn)) < ... < ψn(q(x0, x1). (58)

Now, we show that {xn} is right-Cauchy sequence. Together with (58) and the triangle inequality, for all
k ≥ 1, we get that

q(xn, xn+k) ≤ q(xn, xn+1) + q(xn+1, xn+2) + ... + q(xn+k−1, xn+k)

=

n+k−1∑
p=n

q(xp, xp+1) ≤
n+k−1∑

p=n

ψp(q(x0, x1)

=

∞∑
p=n

ψp(q(x0, x1)→ 0 as n→∞.

(59)

We conclude that the sequence {xn} is right-Cauchy in (X, q). Analogously, we shall prove that {xn} is
left-Cauchy in (X, q). If substitute x = xn and y = xn−1 in (52), we get

Γ (xn, xn−1) ≤ ψ(q(xn, xn−1))

or, using Lemma (2.2)

min
{
q(xn+1, xn), q(xn, xn+1), q(xn−1, xn)

}
≤ ψ(q(xn, xn−1)) (60)

We shall examine three cases:
Case 1. Obviously, if min

{
q(xn+1, xn), q(xn, xn+1), q(xn−1, xn)

}
= q(xn+1, xn). Since ψ ∈ Ψ, inequality (60)

yields

q(xn+1, xn) ≤ ψ(q(xn, xn−1)) (61)
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for all n ≥ 1. Recursively, we derive

q(xn+1, xn) ≤ ψ(q(xn, xn−1)) ≤ ... ≤ ψn(q(x1, x0), ∀n ≥ 1. (62)

Together with (62) and the triangle inequality, we get, for all k ≥ 1

q(xn+k, xn) ≤ q(xn+k, xn+k−1) + q(xn+k−1, xn+k−2) + ... + q(xn+1, xn)

≤

n+k−1∑
p=n

ψp(q(x1, x0))

≤

∞∑
p=n

ψp(q(x1, x0))→ 0 as n→∞.

(63)

Therefore, {xn} is a left-Cauchy sequence in
(
X, q

)
.

Case 2. If min
{
q(xn+1, xn), q(xn, xn+1), q(xn−1, xn)

}
= q(xn−1, xn) then (60) becomes

q(xn−1, xn) ≤ ψ(q(xn, xn−1)) < q(xn, xn−1) (64)

for all n ∈N. On the other hand, by (ii), there is a constant C > 1 such that

q(xn−1, xn) ≤ ψ(q(xn, xn−1)) < q(xn, xn−1) ≤ Cq(xn−1, xn). (65)

By using the (58) and (59) we get, we conclude that it is left Cauchy.
Case 3. If min

{
q(xn+1, xn), q(xn, xn+1), q(xn−1, xn)

}
= q(xn, xn+1) then we conclude that the sequence {xn} is

left Cauchy by the same reasons in Case 2.
By Remark (1.7), we deduce that {xn} is a Cauchy sequence in complete quasi-metric space (X, q). It

implies that there exists u ∈ X such that

lim
n→∞

q(xn,u) = lim
n→∞

q(u, xn) = 0. (66)

We shall prove that Tu = u. Since from (iv) T is continuous, we obtain

lim
n→∞

q(xn,Tu) = lim
n→∞

q(Txn−1,Tu) = 0 (67)

and respectively,

lim
n→∞

q(Tu, xn) = lim
n→∞

q(Tu,Txn−1) = 0 (68)

Thus we have

lim
n→∞

q(Txn,u) = lim
n→∞

q(u,Txn) = 0. (69)

From (66), (69) and together with the uniqueness of the limit, we conclude that u = Tu, that is, u is a fixed
point of T. Next, we will show that u is the fixed point of T using the alternative hypothesis (iv′). Then,
there exists a subsequence {xn(k)} of {xn} such that α(xn(k),u) ≥ 1 for all k. Substituting x = xn(k) and y = u in
(52) we obtain

ζ(Γ(xn(k),u), ψ(q(xn(k),u))) ≥ 0, (70)

or, equivalent Γ(xn(k),u) ≤ ψ(q(xn(k),u))). We have,

min
{
q(Txn(k),Tu), q(xn,Txn(k)), q(u,Tu)

}
−min

{
q(xn(k),Tu), q(Txn(k),u)

}
≤ α(xn(k),u)

[
min

{
q(Txn(k),Tu), q(xn(k),Txn(k)), q(u,Tu)

}
−

−min
{
q(xn(k),Tu), q(Txn(k),u)

}]
≤ ψ(q(xn(k),u))

(71)
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Then it follows that

min
{
q(xn(k)+1,Tu), q(xn(k), xn(k)+1), q(u,Tu)

}
−min

{
q(xn(k),Tu), q(xn(k)+1,u)

}
≤ ψ(q(xn(k),u)) < q(xn(k),u).

(72)

Taking limit as n→∞, and using Remark (1.13), respectively (66)we obtain

q(u,Tu) < 0

It is a contradiction. Hence, we conclude that u = Tu, that is, u is a fixed point of T.

On account of the condition (ζ2) and taking α(x, y) = 1 in Theorem (2.6), we get the following result:

Theorem 2.7. Let (X, q) be a complete quasi-metric space, such that the condition (ii) from Theorem (2.6) is satisfied.
Let a function ψ ∈ Ψ and a map T : X→ X , such that

min
{
q(Tx,Ty), q(x,Tx), q(y,Ty)

}
−min

{
q(x,Ty), q(Tx, y)

}
≤ ψ(q(x, y)). (73)

Then for each x ∈ X the sequence (Tnx) converges to a fixed point of T.

Corollary 2.8. Let (X, q) be a complete quasi-metric space, k ∈ [0, 1) and a map T : X→ X, such that

min
{
q(Tx,Ty), q(x,Tx), q(y,Ty)

}
−min

{
q(x,Ty), q(Tx, y)

}
≤ k · q(x, y)). (74)

Then for each x ∈ X the sequence (Tnx) converges to a fixed point of T.

Proof. It is sufficient to take ψ(t) = kt, where k ∈ [0, 1), in Theorem (2.7).

Example 2.9. Let X = A ∪ B where A = {a, b, c, d} and B = [1, 2] . Consider the self mapping T : X→ X such that

Tx =

{
a if x ∈ {a, b} ∪ B,
d if x ∈ {c, d}.

Define a quasi-metric q : X × X→ R+
0 as

q(x, y) =



1
16 if (x, y) = (a, c),

1
6 if (x, y) = (c, a),

1
8 if (x, y) ∈ {(a, d), (d, a), (b, d), (d, b), (c, d), (d, c)},

1
4 if (x, y) ∈ {(a, b), (b, a), (b, c), (c, b)} ∪ A × B ∪ B × A,

|x−y|
2 otherwise.

Define α : X × X→ R+
0 such that

α(x, y) =

{
2 if (x, y) ∈ {(a, c), (c, a), (a, d), (d, a), (a, a), (d, d), (a, b), (b, a), (c, d), (d, c)}
0 otherwise.

Let us first notice that, from Ta = a, Td = d, we get that q(a,Ta) = q(a, a) = 0, q(d,Td) = q(d, d) = 0 and

Γ(x, y) = α(x, y)
[
min

{
q(Tx,Ty), q(x,Tx), q(y,Ty)

}
−min

{
q(Ty, x), q(Tx, y)

}]
≤ 0

for any (x, y) ∈ A1 = {(a, c), (c, a), (a, d), (d, a), (a, a), (d, d), (a, b), (b, a), (c, d), (d, c)}. Then, the condition

0 ≤ ζ(Γ(x, y), ψ(q(x, y))) < ψ(q(x, y) − Γ(x, y), (75)



A. Fulga, A. Taş / Filomat 32:13 (2018), 4711–4729 4724

is fulfilled trivially for (x, y) ∈ A1 and for any choice of ψ ∈ Ψ and ζ ∈ Z. Now, it is easy to get that T is α−
admissible, because when x ∈ A we have that Tx ∈ {a, d}. Hence,

α
(
x, y

)
= 2 ≥ 1⇒ α

(
Tx,Ty

)
= 2 ≥ 1

for any (x, y) ∈ A1. Thus, the condition (i) from Theorem (2.6) is satisfied. From the definition of the quasi-metric q,
condition (ii) holds for any C > 1 and (x, y) except (a, c) and (c, a). Let’s check for these two cases. For C = 4 we have

1
4
·

1
16

=
1
4
· q(a, c) ≤

1
6
≤ 4 ·

1
16

= 4 · q(a, c)

and

1
4
·

1
6

=
1
4
· q(a, c) ≤

1
16
≤ 4 ·

1
6

= 4 · q(a, c).

The condition (iii) is also satisfied. Indeed, for any x0 ∈ A, we have α(x0,Tx0) = 2 ≥ 1 and α(Tx0, x0) = 2 ≥ 1. It
is also easy to see that (X, q) is regular, because, whatever the initial x0 ∈ {a, b} chosen, the sequence {xn} tends to a,
and

α(a, b) ≥ 1, α(b, a) ≥ 1 and α(a, a) ≥ 1.

Analoguosly, if x0 ∈ {c, d}, then the sequence {xn} tends to d, and

α(c, d) ≥ 1, α(d, c) ≥ 1 and α(d, d) ≥ 1.

Thus, all conditions of Theorem (2.6) are provided. Notice that Ta = a and Td = d are the fixed points of T.

Theorem 2.10. Let (X, d) be a complete quasi-metric space and a map α : X × X→ [0,∞). Suppose that there exist
ζ ∈ Z, ψ ∈ Ψ, a ≥ 0 and a self-mapping T such that

ζ(P(x, y), ψ(S(x, y))) ≥ 0, (76)

for each x, y ∈ X, where

P(x, y) = α(x, y)
(
K(x, y) − a ·Q(x, y)

)
,

K(x, y) = min
{
q(Tx,Ty), q(y,Ty)

}
,

Q(x, y) = min
{
q(x,Ty), q(y,Tx)

}
and

S(x, y) = max
{
q(x, y), q(x,Tx), q(y,Ty)

}
.

Suppose also that

(i) T is α−admissible;
(ii) there is a constant C > 1 such that 1

C q(x, y) ≤ q(y, x) ≤ Cq(x, y) for all x, y ∈ X,
(iii) there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and α(Tx0, x0) ≥ 1;
(iv) either, T is continuous, or

(iv′) X is regular with respect to mapping α.

Then for each x0 ∈ X the sequence (Tnx0) converges to a fixed point of T.
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Proof. For an arbitrary x ∈ X, we shall construct an iterative sequence {xn} as follows:

x0 := x and xn = Txn−1 for all n ∈N. (77)

We suppose that

xn , xn−1 for all n ∈N. (78)

Indeed, if for some n ∈Nwe have the inequality xn = Txn−1 = xn−1, then, the proof is completed.
By substituting x = xn−1 and y = xn in the inequality (76), we derive that

0 ≤ ζ(P(xn−1, xn), ψ(S(xn−1, xn))) < ψ(S(xn−1, xn)) − P(xn−1, xn). (79)

or, equivalent,

P(xn−1, xn) ≤ ψ(S(xn−1, xn)) (80)

where

K(xn−1, xn) = min
{
q(Txn−1,Txn), q(xn,Txn)

}
= min

{
q(xn, xn+1), q(xn, xn+1)

}
= q(xn, xn+1)

Q(xn−1, xn) = min
{
q(xn−1,Txn), q(xn,Txn−1)

}
= min

{
q(xn−1, xn+1), q(xn, xn)

}
= 0

P(xn−1, xn) = α(xn−1, xn) [K(xn−1, xn) − a ·Q(xn−1, xn)] = α(xn−1, xn)q(xn, xn+1).

and

S(xn−1, xn) = max
{
q(xn−1, xn), q(xn−1,Txn−1), q(xn,Txn)

}
= max

{
q(xn−1, xn), q(xn−1, xn), q(xn, xn+1)

}
Taking Lemma (2.2) into account, the inequality (80) becomes

q(xn, xn+1) ≤ α(xn−1, xn)q(xn, xn+1) ≤ ψ
(
max

{
q(xn−1, xn), q(xn, xn+1)

})
. (81)

Since ψ(t) < t for all t > 0, in the case of max
{
q(xn−1, xn), q(xn, xn+1)

}
= q(xn, xn+1), inequality (81) turns into

q(xn, xn+1) ≤ ψ
(
q(xn, xn+1)

)
< q(xn, xn+1),

which is a contradiction. Hence, inequality (81) yields that

q(xn, xn+1) ≤ ψ
(
q(xn−1, xn)

)
< q(xn−1, xn), (82)

and, recursively

q(xn, xn+1) ≤ ψn (
q(x0, x1)

)
(83)

In the following we shall prove that the sequence {xn} is right-Cauchy. By using the triangle inequality, for
all k ≥ 1 we get the following approximation

q(xn, xn+k) ≤ q(xn, xn+1) + q(xn+1, xn+k)
≤ q(xn, xn+1) + q(xn+1, xn+2) + ... + q(xn+k−1, xn+k). (84)

Combining (83) and (84) we derive that

q(xn, xn+k) ≤ ψn(q(x0, x1)) + ψn+1q(x0, x1) + ... + ψn+k−1(q(x0, x1))

≤

n+k−1∑
p=n

ψp(q(x0, x1))

≤

∞∑
p=n

ψp(q(x0, x1)).

(85)
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Letting n → ∞ in the above inequality, we derive that
∑
∞

p=n ψ
p(q(x0, x1)) → 0. Hence, q(xn, xn+k) → 0 as

n→∞. We conclude that the sequence {xn} is right-Cauchy in (X, q). Analogously, we shall prove that {xn}

is a left-Cauchy sequence in (X, q). For x = xn and y = xn−1, together with Lemma (2.2) we get:

ζ(P(xn, xn−1), ψ(S(xn, xn−1))) ≥ 0, (86)

or, equivalent, using (ζ1),

P(xn, xn−1) ≤ ψ(S(xn, xn−1)), (87)

where

K(xn, xn−1) = min
{
q(Txn,Txn−1), q(xn−1,Txn−1)

}
= min

{
q(xn+1, xn), q(xn−1, xn)

}
Q(xn, xn−1) = min

{
q(xn,Txn−1), q(xn−1,Txn)

}
= min

{
q(xn, xn), q(xn−1, xn)

}
= 0

P(xn, xn−1) = α(xn, xn−1) [K(xn, xn−1) − a ·Q(xn, xn−1)]
= α(xn, xn−1) min

{
q(xn+1, xn), q(xn−1, xn)

}
.

and

S((xn, xn−1) = max
{
q(xn, xn−1), q(xn,Txn), q(xn−1,Txn−1)

}
= max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
Since ψ is a nondecreasing function, (87) implies that

min
{
q(xn+1, xn), q(xn−1, xn)

}
≤ α(xn, xn−1) min

{
q(xn+1, xn), q(xn−1, xn)

}
≤ ψ

(
max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

})
< max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
.

(88)

We shall examine two cases:
Case 1. If min

{
q(xn+1, xn), q(xn−1, xn)

}
= q(xn+1, xn) we have

q(xn+1, xn) ≤ ψ
(
max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

})
(89)

(1.a.) If max
{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
= q(xn, xn−1), then (89) becomes

q(xn+1, xn) < ψ
(
q(xn, xn−1)

)
< ... < ψn (

q(x1, x0)
)

(90)

Using the triangle inequality, for all k ≥ 1

q(xn+k, xn) ≤ q(xn+k, xn+k−1) + q(xn+k−1, xn+k−2) + ... + q(xn+1, xn)
≤ ψn (

q(x1, x0)
)

+ ... + ψn+k−1 (
q(x1, x0)

)
=

n+k−1∑
p=n

ψp (
q(x1, x0)

)
<
∞∑

p=n

ψp (
q(x1, x0)

)
→ 0,

(91)

as n→∞, which proves that {xn} is left Cauchy.
(1.b.) If max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
= q(xn, xn+1) then, from Remark 1.14 inequality (89) becomes

q(xn+1, xn) ≤ ψ
(
q(xn, xn+1)

)
< q(xn, xn+1). (92)
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Considering triangle inequality, together with (92), for any k ≥ 1, we get

q(xn+k, xn) ≤ q(xn+k, xn+k−1) + q(xn+k−1, xn+k−2) + ... + q(xn+1, xn)
< q(xn+k−1, xn+k) + q(xn+k−2, xn+k−1) + ... + q(xn, xn+1). (93)

Using (83) and (85) we conclude that {xn} is left Cauchy.
(1.c.) If max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
= q(xn−1, xn) then, from Remark 1.14 inequality (89) becomes

q(xn+1, xn) ≤ ψ
(
q(xn−1, xn)

)
< q(xn−1, xn). (94)

Using (83) and like above we can show also, that {xn} is left Cauchy.

Case 2. If min
{
q(xn+1, xn), q(xn−1, xn)

}
= q(xn−1, xn) we have

q(xn−1, xn) ≤ ψ
(
max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

})
(95)

(2.a.) If max
{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
= q(xn, xn−1), then (95) becomes

q(xn−1, xn) ≤ ψ
(
q(xn, xn−1)

)
< q(xn, xn−1). (96)

and, by (ii) we have

q(xn−1, xn) < q(xn, xn−1) ≤ Cq(xn−1, xn), (97)

where C > 1. By using the (58) and (59) we get, we conclude that it is left Cauchy.
(2.b.) If max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
= q(xn, xn+1), then (95) becomes

q(xn−1, xn) ≤ ψ
(
q(xn, xn+1)

)
< q(xn, xn+1). (98)

From (83) and since ψ ∈ Ψ we get

q(xn−1, xn) ≤ ψ
(
q(xn, xn+1)

)
< q(xn, xn+1) ≤ ψ(q(xn−1, xn)) < q(xn−1, xn), (99)

which is a contradiction.
(2.c.) If max

{
q(xn, xn−1), q(xn, xn+1), q(xn−1, xn)

}
= q(xn−1, xn), since ψ(t) < t for all t ≥ 1, we get

q(xn−1, xn) ≤ ψ
(
q(xn−1, xn)

)
< q(xn−1, xn.) (100)

This is a contradiction. Using Remark 1.7, we deduce that xn is a Cauchy sequence in complete quasi-metric
space (X, q). It implies that there exists u ∈ X such that

lim
n→∞

q(xn,u) = lim
n→∞

q(u, xn) = 0 (101)

and using the property (iv), (the continuity of T) we obtain

lim
n→∞

q(xn,Tu) = lim
n→∞

q(Txn−1,Tu) = 0 (102)

and

lim
n→→∞

q(Tu, xn) = lim
n→∞

q(Tu,Txn−1) = 0. (103)

Thus, we have

lim
n→∞

q(Tu, xn) = lim
n→∞

q(xn,Tu) = 0. (104)
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It follows from (101) and (104), Tu = u, that is, u is a fixed point of T.
If X is regular with respect to α, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k),u) ≥ 1 for

all k. Substituting x = xn(k) and y = u in (76) we obtain

ζ(P(xn(k),u), ψ(S(xn(k),u))) ≥ 0, (105)

where

P(xn(k),u) = α(xn(k),u)
[
K(xn(k),u) − a ·Q(xn(k),u)

]
= α(xn(k),u)

[
min

{
q(Txn(k),Tu), q(u,Tu)

}
− a ·min

{
q(xn(k),Tu), q(u,Txn(k))

}]
.

(106)

Since ψ is a nondecreasing function, the inequality (87) turns into

min
{
q(xn(k)+1,Tu), q(u,Tu)

}
− a min

{
q(xn(k),Tu), q(u, xn(k)+1)

}
≤ α(xn(k),u)

[
min

{
q(xn(k)+1,Tu), q(u,Tu)

}
− a min

{
q(xn(k),Tu), q(u, xn(k)+1)

}]
≤ ψ

(
max

{
q(xn(k),u), q(xn(k),Txn(k)), q(u,Tu)

})
< max

{
q(xn(k),u), q(xn(k), xn(k)+1), q(u,Tu)

}
.

(107)

Taking the limit as k→∞ in the above inequality and using Remark 1.3 we obtain

q(u,Tu) < q(u,Tu) (108)

which is a contradiction. Therefore, we find q(u,Tu) = 0, that is, Tu = u.

Theorem 2.11. Let (X, q) be a complete quasi-metric space which satisfied (ii) from Theorem (2.10). Suppose that
there exist ψ ∈ Ψ and a self-mapping T, which satisfies

K(x, y) − aQ(x, y) ≤ ψ(S(x, y)) (109)

for all distinct x, y ∈ X, a ≥ 0, where K(x, y), Q(x, y) and S(x, y) are defined as in Theorem (2.10). Then for each
x0 ∈ X the sequence (Tnx0) converges to a fixed point of T.

Corollary 2.12. Let (X, q) be a complete quasi-metric space which satisfied (ii) from Theorem (2.10). Suppose that
there exist a ≥ 0, k ∈ [0, 1) and a self-mapping T which satisfies

K(x, y) − aQ(x, y) ≤ k · (S(x, y)) (110)

for all distinct x, y ∈ X, where K(x, y), Q(x, y) and S(x, y) are defined as in Theorem (2.10). Then for each x0 ∈ X the
sequence (Tnx0) converges to a fixed point of T.
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