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Abstract. In this paper, the stochastic SIS epidemic model with vaccination under regime switching is
further investigated. A new threshold Rs

0 which is different from that given in [22] is established. A new
technique to deal with the nonlinear incidence and vaccination for stochastic epidemic model under regime
switching is proposed. When Rs

0 > 0, the existence of a unique stationary distribution and the ergodic
property are obtained by constructing a new stochastic Lyapunov function with Markov switching. The
corresponding result which is acquired in [22] is improved and extended.

1. Introduction

It is well known that mathematical models which describe the dynamical behaviors of infectious diseases
have played an important role in understanding the mechanism of disease transmission and control in the
epidemiological aspect. Owing to our real life is full of randomness and stochasticity, transmissions of
many infectious disease are inevitably affected by environmental random perturbations, such as white
noise, colored noise and jumps noise, etc. (See [1-13]). In recent years many authors have proposed
and investigated various types of stochastic epidemic dynamical models with such disturbances (see, for
example, [13-26]). Particularly, we can see that the SIS (susceptible-infected-susceptible) type stochastic
epidemic models are proposed and investigated in many articles, see for example [6,13,15,17-20,] and the
references cited therein.

In view of the importance of vaccination for the control of some infectious diseases, Zhao and Jiang in
[17] proposed and investigated the following stochastic SIS epidemic model with bilinear incidence and
vaccination:

dS(t) =[(1 − q)A − βS(t)I(t) − (µ + p)S(t) + γI(t)
+ εV(t)]dt + σ1S(t)dB1(t),

dI(t) =[βS(t)I(t) − (µ + γ + α)I(t)]dt + σ2I(t)dB2(t),
dV(t) =[qA + pS(t) − (µ + ε)V(t)]dt + σ3V(t)dB3(t).

(1)
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They established the threshold R̄0 = R0 −
σ2

2
2(µ+γ+α) , where R0 =

βS0

µ+γ+α is the threshold of the corresponding
deterministic model of model (1) and S0 is the number of susceptibles in the disease-free equilibrium which
is given in [17]. They further obtained that when R̄0 < 1 then the disease I dies out with probability one,
and when R̄0 > 1 then the solution (S(t), I(t),V(t)) is permanent in the mean with probability one. We easily
see that R̄0 is an extension of R0 and R̄0 < 1 (or > 1) is equivalent to R∗0 = βS0 − (µ+ γ+ α+ 1

2σ
2
2) < 0 (or > 0).

Therefore, R̄0 has a very evident epidemiological meaning.
In [22], Zhang et al. introduced environmental colored noise into the above model, and proposed and

investigated the following stochastic SIS epidemic model with bilinear incidence and vaccination under
regime switching:

dS(t) =[(1 − qr(t))Ar(t) − βr(t)S(t)I(t) − (µr(t) + pr(t))S(t)
+ γr(t)I(t) + εr(t)V(t)]dt + σ1r(t)S(t)dB1(t),

dI(t) =[βr(t)S(t)I(t) − (µr(t) + γr(t) + αr(t))I(t)]dt + σ2r(t)I(t)dB2(t),
dV(t) =[qr(t)Ar(t) + pr(t)S(t) − (µr(t) + εr(t))V(t)]dt + σ3r(t)V(t)dB3(t),

(2)

where the regime switching is modeled by a continuous time Markov chain r(t) with the values in a finite
state spaceM = {1, 2, · · · ,N}. They established the threshold Rs

0 =
∑

k∈M πkR0k, where R0k = c1(k)(1− qk)Ak +

c2(k)qkAk − (µk + γk + αk + 1
2σ

2
2k), c1(k) and c2(k) are the solutions of linear system (3) in [22]. They further

proved that if Rs
0 > 0 then the solution (S(t), I(t),V(t)) of model (2) admits a unique ergodic stationary

distribution.
Comparing the above two thresholds R∗0 and Rs

0, we see that Rs
0 is completely different from R∗0. However,

since there are c1(k) and c2(k) in Rs
0, the epidemiological meaning of Rs

0 is not very evident. Therefore, an
important and interesting problem is to establish a new threshold Rs

0 for model (2) which is similar to R̄0 or
R∗0.

On the other hand, the nonlinear incidence rates are very important substances in modelling the dy-
namics of epidemic systems. In recent years, many authors have investigated various types of stochastic
epidemic models with nonlinear incidence (see, for example, [9,24-26]). A stochastic SIS epidemic model
with nonlinear incidence βS1(I) is proposed in [24], where the authors established the threshold criteria
on the extinction and permanence in the mean in probability meaning. In [26], the authors extended the
model in [24] into a general nonlinear incidence rate f (S, I), and the sufficient conditions for the global
stability of the disease-free equilibrium, permanence in the mean with probability one and existence of
unique stationary distribution are established. However, from the expression of the threshold Rs

0 for model
(2) we easily see that this threshold only can been used to model (2) with the bilinear incidence. Therefore,
another important problem is to extend the results obtained for model (2) to the model with nonlinear
incidence by introducing a new threshold.

Motivated by the above works, in this paper we propose the following stochastic SIS epidemic model
with vaccination and nonlinear incidence under regime switching:

dS(t) =[(1 − qr(t))Ar(t) − βr(t) f (S(t))1(I(t)) − (µr(t) + pr(t))S(t)
+ γr(t)I(t) + εr(t)V(t)]dt + σ1r(t)S(t)dB1(t),

dI(t) =[βr(t) f (S(t))1(I(t)) − (µr(t) + γr(t) + αr(t))I(t)]dt + σ2r(t)I(t)dB2(t),
dV(t) =[qr(t)Ar(t) + pr(t)S(t) − (µr(t) + εr(t))V(t)]dt + σ3r(t)V(t)dB3(t),

(3)

where the regime switching is modeled by a continuous time Markov chain r(t) with values in a finite
state space. Our purpose is to establish a new threshold which is similar to threshold R∗0, and further to
obtain a threshold criterion for the existence of a unique stationary distribution and the ergodic property by
constructing a new stochastic Lyapunov function with Markov switching. Particularly, we will propose a
new technique to deal with the nonlinear incidence functions and vaccination for stochastic epidemic model
under regime switching. We will give a considerable improvement and extension for the corresponding
results given in [22].
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This paper is organized as follows. In Section 2, as preliminaries some notations and useful lemmas
are introduced. In Section 3, the main theorem in this paper is stated and proved. In Section 4, numerical
examples are given to illustrate the main results. Lastly, a brief conclusion is presented in Section 5.

2. Preliminaries

Denote R+ = [0,∞) and Rn
+ = {(x1, x2, · · · , xn) : xi > 0, i = 1, 2, · · · ,n}. For any bounded function f (t)

defined on [0,∞), we denote f u = supt≥0 f (t) and f l = inft≥0 f (t). Let M = {1, 2, · · · ,N}. For a vector
1 = (11, 12, · · · , 1N), let 1̂ = mink∈M 1k and 1̆ = maxk∈M 1k.

In model (3), S(t), I(t) and V(t) denote the numbers of susceptible, infectious and immune, respectively.
r(t) for t ≥ 0 be a right-continuous Markov chain with values in a finite space M; Bi(t) (i = 1, 2, 3) are
independent standard Browian motion and σ2

i represent the intensities of Bi(t). The parameter Ar(t) is the
input of new members into the susceptible; qr(t) is a fraction of vaccinated for new members; βr(t) is the
disease transmission coefficient; µr(t) is the natural death rate of the total population; γr(t) is the recovery
rate of infectious; pr(t) denotes the proportional coefficient of vaccinated for the susceptible and 0 ≤ pr(t) < 1;
εr(t) is the rate of losing their immunity for vaccinated individuals; αr(t) represents the disease-caused death
rate of infectious.

Throughout this paper, we assume that model (1) is defined in a complete probability space (Ω,F ,P)
with a filtration {Ft}t≥0 satisfying the usual conditions.

The generator Γ = (γi j)N×N of Markov chain r(t) is given by

P{r(t+ M) = j|r(t) = i} =
{

γi j M +o(M), if i , j,
1 + γii M +o(M), if i = j,

where M> 0, γi j ≥ 0 is the transition rate from i to j if i , j while
∑N

j=1 γi j = 0. We assume that Bi(t) and
r(t) are independent for i = 1, 2, 3, and the Markov chain r(t) is irreducible, which means that the model
can switch from one environmental regime to another. That is to say, the Markov chain r(t) has a unique
stationary distribution π = (π1, π2, · · · , πN). It can be determined the equation πΓ = 0 subject to

∑N
h=1 πh = 1

and πh > 0 for all h ∈ M. In this paper, we assume γi j > 0 for i , j, and for each k ∈ M the parameters Ak, qk,
βk, µk, pk, εk, γk and σik (i = 1, 2, 3) are nonnegative constants, and qk < 1, Ak > 0, µk > 0 and max{pk, qk} > 0.

For functions f (S) and 1(I) we introduce the following assumptions.
(H1) The functions f (S) and 1(I) are nonnegative and continuously differentiable for S ≥ 0 and I ≥ 0,

respectively. f (0) = 1(0) = 0, and 1′(0) > 0.
(H2) 1(I)I is nonincreasing for I > 0, and maxI>0{

1′(0)
1(I) −

1
I } < ∞.

(H3) f ′(S) ≥ 0 and f ′′(S) ≥ 0 for all S ≥ 0, and supS>0{
f ′(S)S
f (S) } < ∞.

Remark 2.1. When f (S) = Sm

1+ω1S or f (S) = S and 1(I) = I
1+ω2I with constants m ≥ 2, ω1 > 0 and ω2 ≥ 0, then

(H1), (H2) and (H3) are clearly satisfied. Furthermore, from (H3) we easily obtain supS≥1
1

f (S) < ∞.

We firstly have the following result on the existence of globally positive solution for model (3).

Lemma 2.2. Assume that (H1) − (H3) hold. For any initial value (S(0), I(0),V(0)) ∈ R3
+, the model (3) has a unique

solution (S(t), I(t),V(t)) defined on t ∈ R+0 satisfying (S(t), I(t),V(t)) ∈ R3
+ for all t ≥ 0 with probability one.

Lemma 2.2 can be easily proved by using the same method which is given in Theorem 2.1 by Gray et al.
in [18]. We hence omit it here.

Lemma 2.3. The following equation
(µk + pk)S0(k) − εkV0(k) − (1 − qk)Ak +

∑
l∈M

γklS0(l) = 0,

(µk + εk)V0(k) − pkS0(k) − qkAk +
∑
l∈M

γklV0(l) = 0
(4)

has a unique positive stationary distribution solution (S0(k),V0(k), k ∈ M).
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Proof Equation (4) can be rewritten as

PY = Q, (5)

where Y = (S0(1), · · · ,S0(N),V0(1), · · · ,V0(N)), Q = ((1 − q1)A1, · · · , (1 − qN)AN, q1A1,
· · · , qNAN)T, and

P =


µ1 + p1 + γ11 · · · γ1N −ε1 · · · 0

· · · · · · · · · · · · · · · · · ·

γN1 · · · µN + pN + γNN 0 · · · −εN

−p1 · · · 0 µ1 + ε1 + γ11 · · · γ1N

· · · · · · · · · · · · · · · · · ·

0 · · · −pN γN1 · · · µN + εN + γNN


For k = 1, 2, · · · ,N, the leading principal submatrixs of P are

Pk =


µ1 + p1 + γ11 γ12 · · · γ1k

γ21 µ2 + p2 + γ22 · · · γ2k
· · · · · · · · · · · ·

γk1 γk2 · · · µk + pk + γkk

 ,

PN+k =


µ1 + p1 + γ11 · · · γ1N −ε1 · · · 0

· · · · · · · · · · · · · · · · · ·

γN1 · · · µN + pN + γNN 0 · · · −εk

−p1 · · · 0 µ1 + ε1 + γ11 · · · γ1k

· · · · · · · · · · · · · · · · · ·

0 · · · −pk γk1 · · · µk + εk + γkk


.

We see that each column of sub-matrix Pk has the sum µi + pi +
∑k

j=1 γ ji ≥ µi > 0 for i = 1, 2, · · · , k,
and for sub-matrix PN+k, the sum of i-th column is µi + pi +

∑N
j=1 γ ji − pi = µi > 0 (1 ≤ i ≤ N) and

µi + εi +
∑k

j=1 γ ji − εi ≥ µi > 0 (N < i ≤ N + k). Lemma 5.3 in [27] implies detPk > 0 for k = 1, 2, · · · , 2N.
By Theorem 2.10 in [27], P is a nonsingular M-matrix, Hence, for the vector Q, equation (5) has a unique
positive solution Y = (S0(k),V0(k), k ∈ M). This completes the proof.

Lemma 2.4. The following equation
∑
l∈M

γklc1(l) − (µk + pk)c1(k) + pkc2(k) + βk f ′(S0(k))1′(0) = 0,∑
l∈M

γklc2(l) − (µk + εk)c2(k) + εkc1(k) = 0.
(6)

has a unique positive solution (c1(k), c2(k), k ∈ M).

The proof of the lemma is similar to Lemma 2.3, so we here omit it.

3. Existence of stationary distribution

Define Rs
0 =

∑
k∈M πkR0k, with

R0k = βk f (S0(k))1′(0) − (µk + γk + αk +
1
2
σ2

2k). (7)

Theorem 3.1. Assume that (H1)− (H3) hold and Rs
0 > 0. Then for any initial value (S(0), I(0),V(0)) ∈ R3

+, solution
(S(t), I(t),V(t)) of model (3) admits a unique ergodic stationary distribution. That is to say, there exists a unique
invariant probability measure µ(·, ·) such that for any Borel measurable function h(·, ·) : R3

+ ×M→ R satisfying

N∑
k=1

∫
R3

+

|h(x, k)|µ(dx, k) < ∞,
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one has

P
(

lim
t→∞

1
t

∫ t

0
h((S(s), I(s),V(s)), r(s))ds =

n∑
k=1

∫
R3

+

h(x, k)µ(dx, k)
)

= 1.

Proof We have γi j > 0 for any i , j. Obviously, diffusion matrix D(x, k) = diag{σ1kS, σ2kI,
σ3kV} is positive define. Let σ2

k = max{σ2
1k, σ

2
2k, σ

2
3k}. Define a C2-function W(S, I,V, k) = W1 + W2 + W3 + MW4,

where

W1 =
1

θ + 1
(S + I + V)θ+1, W2 = −

∫ S

1

1
f (S)

dS, W3 = − ln V,

W4 = −c1(k)(S + I − S0(k)) − c2(k)(V − V0(k)) −
∫ I

1

1′(0)
1(I)

dI − ωk,

and c1(k), c2(k) are the positive solutions of equation (6) in Lemma 2,the Markov chain ωk (k ∈ M) will be
determined later, and θ ∈ (0, 1) and M > 0 satisfy

µ̂ −
θ
2
σ̌2 > 0, f u

1 + f u
3 −MRs

0 ≤ −2, (8)

where f1(x), f3(x) will be determined later. From (H2) and (H3), we have 1
f (S) ≤ M1 for all S ≥ 1 and

1′(0)
1(I) ≤

1
I + M2 for all I > 0, where M1 = supS≥1

1
f (S) and M2 = supI>0{

1′(0)
1(I) −

1
I }. Hence, for any S ≥ 1, I > 0,

V > 0 and k ∈ Mwe have
W(S, I,V, k) ≥ P(S) + Q(I) + R(V),

where

P(S) =
1

θ + 1
Sθ+1

−M1S −Mč1S + Mĉ1Ŝ0,

Q(I) =
1

θ + 1
Iθ+1
−M ln I −MM2I −Mč1I −Mω̌,

R(V) =
1

θ + 1
Vθ+1

− ln V −Mč2V + Mĉ2V̂0.

Thus, we can easily obtain that W(S, I,V, k) satisfies

inf{W(S, I,V, k) : max{S, I,V} ≥ H, k ∈ M} → ∞ as H→∞.

On the other hand, from assumption (H1), since

lim
S→0+

∫ S

1

1
f (s)

ds = −∞, lim
I→0+

∫ I

1

1
1(i)

di = −∞, lim
V→0+

ln V = −∞,

we further have
inf{W(S, I,V, k) : min{S, I,V} ≤ h, k ∈ M} → ∞ as h→ 0+.

With the generalized ˆIto
′

s formula (See [27]), we have

LW1 ≤(S + I + V)θ(Ak − µk(S + I + V)) +
θ
2

(S + I + V)θ−1σ2
k(S2 + I2 + V2)

≤ − (µ̂ −
θ
2
σ̌2)(Sθ+1 + Iθ+1 + Vθ+1) + 3θǍ(Sθ + Iθ + Vθ),

(9)

LW2 = −
(1 − qk)Ak

f (S)
+ βk1(I) + (µk + pk)

S
f (S)
− γk

I
f (S)
− εk

V
f (S)

+
1
2
σ2

1k f ′(S)(
S

f (S)
)2

≤
1

f (S)
(−(1 − q̌)Â + (µ̌ + p̌ +

1
2
σ̌2

1M3)S) + β̌1′(0)I,
(10)



J. Hu et al. / Filomat 32:13 (2018), 4773–4785 4778

where M3 = supS>0{
f ′(S)S
f (S) } from (H3), and

LW3 = −
qkAk

V
− pk

S
V

+ µk + εk +
1
2
σ2

3k

≤


− qk

Ak

V
+ µk + εk +

1
2
σ2

3k, qk > 0,

− pk
S
V

+ µk + εk +
1
2
σ2

3k, qk = 0, pk > 0,

≤ − λ̂
1
V

min{Â,S} + µ̌ + ε̌ +
1
2
σ̌2

3,

(11)

where λ̂ = min{pi, q j : i ∈ N1, j ∈ N2} with N1 = {i : pi > 0} and N2 = { j : q j > 0}. Furthermore, by Lemmas 2
and 3 we also have

LW4 = − c1(k)[−(µk + pk)S + εkV − (µk + αk)I + (µk + pk)S0(k) − εkV0(k)]

−

∑
l∈M

γklc1(l)(S + I − S0(k)) − c2(k)[pkS − (µk + εk)V − pkS0(t)

+ (µk + εk)V0(k)] −
∑
l∈M

γklc2(l)(V − V0(k)) − βk1
′(0)( f (S0(k))

+ f (S) − f (S0(k))) + (µk + γk + αk)1′(0)
I
1(I)

+
1
2
σ2

2k1
′(0)1′(I)(

I
1(I)

)2
−

∑
l∈M

γklωl.

(12)

Using the mean value theorem and then by (H2), we have that there exist ζ1 ∈ (S,S0(t)) such that

f (S) − f (S0(k)) = f ′(ζ1)(S − S0(k)) ≥ f ′(S0(k))(S − S0(k)),

and we also have 1′(I) ≤ 1(I)I ≤ 1
′(0) for I > 0. Hence, from (12) and Lemma 3 we have

LW4 ≤ − βk1
′(0) f (S0(k)) + (µk + γk + αk +

1
2
σ2

2k) −
∑
l∈M

γklwl + [c1(k)αk + pkc2(k) + βk f ′(S0(k))1′(0)]I

+ (µk + γk + αk +
1
2
σ2

2k)(1′(0)
I
1(I)
− 1)

= − R0k −
∑
l∈M

γklωl + [c1(k)αk + pkc2(k) + βk f ′(S0(k))1′(0)]I + (µk + γk + αk +
1
2
σ2

2k)(1′(0)
I
1(I)
− 1).

(13)

Since the generator matrix Γ is irreducible, for R = (R01,R02, · · · ,R0N) we can determine a set ω =
(ω1, ω2, · · · , ωN) satisfying the following Poisson system

Γω = (
N∑

h=1

πhR0h)~1 − R.

Consequently, we further have

−R0k −
∑
l∈M

γklωl = −
∑
l∈M

πkR0k = −Rs
0.

Substituting it into (13), we have

LW4 ≤ − Rs
0 + [č∗1α̌ + p̌č∗2 + β̌ f ′(Š0)1′(0)]I + (µ̌ + γ̌ + α̌ +

1
2
σ̌2

2)M2I. (14)
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Combining (9), (10), (11) and (14), we have

LW = LW1 +LW2 +LW3 + MLW4 ≤ f1(S) + f2(I) + f3(V),

where
f1(S) = − (µ̂ −

θ
2
σ̌2)Sθ+1 + 3θǍSθ + µ̌ + ε̌ +

1
2
σ̌2

3

+
1

f (S)
(−(1 − q̌)Â + (µ̌ + p̌ +

1
2
σ̌2

1M3)S),

f2(I) = − (µ̂ −
θ
2
σ̌2)Iθ+1 + β̌1′(0)I + 3θǍIθ + M(−Rs

0 + [č∗1α̌ + p̌č∗2

+ β̌ f ′(Š0)1′(0)]I + (µ̌ + γ̌ + α̌ +
1
2
σ̌2

2)M2I),

f3(V) = − (µ̂ −
θ
2
σ̌2)Vθ+1 + 3θǍVθ

− λ̂
1
V

min{Â,S}.

By (H3), it is clear that f u
1 < ∞, f u

2 < ∞ and f u
3 < ∞. Since f1(S) → −∞ as S → +∞ or S → 0+, there is a

constant η1 > 0 such that when 0 < S < η−1
1 or S > η1 one has

f1(S) + + f u
2 + f u

3 < −1. (15)

Since f2(I) → −∞ as I → +∞ and f2(I) → −MRs
0 as I → 0+, from (8) we have that there is a constant η2 > 0

such that when 0 < I < η−1
2 or I > η2 one has

f u
1 + f2(I) + f u

3 < −1. (16)

Since when η−1
1 ≤ S ≤ η1, f2(V) → −∞ as V → +∞ or V → 0+, there is a constant η3 > 0 such that when

η−1
1 ≤ S ≤ η1, 0 < V < η−1

3 or V > η3 one has

f u
1 + f u

2 + f3(V) < −1. (17)

Let Q = [η−1
1 , η1] × [η−1

2 , η2] × [η−1
3 , η3], then from (15)-(17) we further have

LW(S, I,V, k) ≤ −1, (S, I,V, k) ∈ Qc
×M,

where Qc = R3
+\Q. Thus, from Lemma 2.1 in [28] we finally have that solution (S(t), I(t),

V(t)) of model (3) has a unique ergodic stationary distribution. This completes the proof.
When f (S) = Sm

1+ω1S and 1(I) = I
1+ω2I , then Rs

0 =
∑

k∈M πkR0k with

R0k = βk
Sm

0 (k)

1 + ω1S0(k)
− µk − γk − αk −

1
2
σ2

2k.

From Remark 1, we have the following result as a corollary of Theorem 1.

Corollary 3.2. Assume f (S) = Sm

1+ω1S and 1(I) = I
1+ω2I with constants m ≥ 2, ω1 > 0 and ω2 ≥ 0. If Rs

0 > 0, then
for any initial value (S(0), I(0),V(0)) ∈ R3

+, solution (S(t), I(t),V(t)) of model (3) admits a unique ergodic stationary
distribution.

When f (S) = S and 1(I) = I, then Rs
0 =

∑
k∈M πkR0k with

R0k = βkS0(k) − µk − γk − αk −
1
2
σ2

2k. (18)

From Theorem 1, we have the following corollary.
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Corollary 3.3. Assume f (S) = S and 1(I) = I. If Rs
0 > 0, then for any initial value (S(0), I(0),V(0)) ∈ R3

+, solution
(S(t), I(t),V(t)) of model (2) admits a unique ergodic stationary distribution.

Remark 3.4. From (18) we easily see that a new threshold Rs
0 is established in this paper for model (2), which is

different from the threshold Rs
0 given in [22]. Furthermore, we also see that the threshold Rs

0 given in [22] only is
propitious to model (2) in the case of bilinear incidence βr(t)SI. But, from Theorem 1 and Corollary 1 we see that the
threshold Rs

0 established in this paper can be used to model (2) with the general nonlinear incidence βr(t) f (S)1(I). This
shows that the result obtained in this paper is a considerable improvement and generalization of the corresponding
result given in [22].

4. Numerical examples

In this section, we introduce some numerical examples to illustrate the main results established in this
paper, and will further find some new dynamical properties.

Example 4.1. Take in model (3) the incidence functions f (S) = S3

1+S and 1(I) = I
1+1.5I , the Markov chain r(t) with the

finite values in the state spaceM = {1, 2, 3} and the generator

Γ =

 −4 2 2
3 −4 1
3 1 −4

 .
Furthermore, take the parameters Ar(t) = (A1,A2,A3) = (1.5, 1.6, 1.55), qr(t) = (q1, q2, q3) = (0.2, 0.15, 0.3), βr(t) =
(β1, β2, β3) = (0.2, 0.15, 0.3), µr(t) = (µ1, µ2, µ3) = (0.06, 0.05, 0.08), αr(t) = (α1, α2, α3) = (0.8, 0.9, 0.7), pr(t) =
(p1, p2, p3) = (0.4, 0.3, 0.2), γr(t) = (γ1, γ2, γ3) = (0.02, 0.35, 0.4) and εr(t) = (ε1, ε2, ε3) = (0.25, 0.35, 0.3).

By calculating, the Markov chain r(t) has a unique stationary distribution π = (π1, π2, π3) = ( 3
7 ,

2
7 ,

2
7 ).

Solving equation (4) in Lemma 3, we have S0(k) = (S0(1),S0(2),
S0(3)) = (10.3, 22.8, 11.9) and V0(k) = (V0(1),V0(2),V0(3)) = (14.7, 9.2, 7.5). Thus, from (7) we further have
R01 = 1.6600, R02 = −1.2360 and R03 = 2.6150. Therefore, Rs

0 = 1.1054 > 0.
By Corollary 1, the solution (S(t), I(t),V(t)) of model (3) with initial value (S(0),

I(0),V(0)) ∈ R3
+ has a unique ergodic stationary distribution. The numerical simulations in Figure 1 indicate

that (S(t), I(t),V(t)) not only has a unique stationary distribution, but is also permanent with probability
one.

Here, the solution (S(t), I(t),V(t)) is said to be permanent in the mean with probability one if there exist
two constants M > m > 0 which are independent of solution (S(t), I(t),V(t)) such that

m ≤ lim inf
t→∞

1
t

∫ t

0
S(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
S(s)ds ≤M a.s.,

m ≤ lim inf
t→∞

1
t

∫ t

0
I(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
I(s)ds ≤M a.s.,

m ≤ lim inf
t→∞

1
t

∫ t

0
V(s)ds ≤ lim sup

t→∞

1
t

∫ t

0
V(s)ds ≤M a.s..

The solution (S(t), I(t),V(t)) is said to be permanent with probability one, if there exist two constants
M > m > 0 which are independent of solution (S(t), I(t),V(t)) such that

m ≤ lim inf
t→∞

S(t) ≤ lim sup
t→∞

S(t) ≤M a.s.,

m ≤ lim inf
t→∞

I(t) ≤ lim sup
t→∞

I(t) ≤M a.s.,

m ≤ lim inf
t→∞

V(t) ≤ lim sup
t→∞

V(t) ≤M a.s..
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From the above definitions, it is clear that the permanence implies the permanence in the mean.
Figure 2 reflects the sample means of (S(t), I(t),V(t)) and the distribution of the the switching times of

r(t).
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Figure 1: Simulations of the solution (S(t), I(t),V(t)) with the initial values S(0) = 4, I(0) = 3 and V(0) = 2.
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Figure 2: (i) Simulations of the sample means for the solution (S(t), I(t),V(t)) with the initial values S(0) = 4, I(0) = 3 and V(0) = 2; (ii)
Simulations of the switching times of r(t).

Example 4.2. Take in model (3) the incidence functions f (S) = S3

1+S and 1(I) = I
1+1.5I , the Markov chain r(t) with the

finite values in the state spaceM = {1, 2, 3} and the generator

Γ =

 −2 1 1
3 −4 1
1 2 −3

 .
Furthermore, take the parameters Ar(t) = (A1,A2,A3) = (0.8, 0.9, 0.6), qr(t) = (q1, q2, q3) = (0.2, 0.8, 0.6), βr(t) =
(β1, β2, β3) = (0.1, 0.04, 0.02), µr(t) = (µ1, µ2, µ3) = (0.3, 0.2, 0.3), αr(t) = (α1, α2, α3) = (0.06, 0.7, 0.8), pr(t) =
(p1, p2, p3) = (0.2, 0.3, 0.2), γr(t) = (γ1, γ2, γ3)
= (1.2, 0.2, 0.3) and εr(t) = (ε1, ε2, ε3) = (0.2, 0.4, 0.3).

By calculating, the Markov chain r(t) has a unique stationary distribution π = (π1, π2, π3) = ( 7
12 ,

3
12 ,

5
12 ).

Solving equation (4), we have S0(k) = (S0(1),S0(2),S0(3)) = (1.7, 2.2, 1.05) and V0(k) = (V0(1),V0(2),V0(3)) =
(1, 2.3, 0.95). Thus, from (7) we further have R01 = 0.4433, R02 = −0.5867 and R03 = −1.0283. Therefore,
Rs

0 = −0.0594 < 0.
Let (S(t), I(t),V(t)) be the solution of model (3) with initial value (S(0), I(0),V(0))

= (5, 3, 1). The numerical simulations in Figure 3 indicate that S(t) and V(t) not only has a unique stationary
distribution, but also is permanent with probability one, and I(t) is extinct with probability one. That is,
limt→∞ I(t) = 0 a.s. The computer simulations of the sample means of the solution (S(t), I(t),V(t)) and the
switching times of r(t) are given in Figure 4.
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Figure 3: The simulations of the solution (S(t), I(t),V(t)) with the initial values S(0) = 5, I(0) = 3 and V(0) = 1.

0 200 400 600 800 1000
0

1

2

3

4

5

6

time t

 

 

∫
0
T S(t)dt/T

∫
0
T I(t)dt/T

∫
0
T V(t)dt/T

0 100 200 300 400 500

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

time t

γ(
t)

Figure 4: (i) The simulations of the sample means for the solution (S(t), I(t),V(t)) with the initial values S(0) = 5, I(0) = 3 and V(0) = 1;
(ii) The distribution for the switching times of r(t).

Example 4.3. Take in model (3) the incidence functions f (S) = S3

1+S and 1(I) = I2, the Markov chain r(t) with the
finite values in the state spaceM = {1, 2, 3} and the generator

Γ =

 −3 2 1
1 −2 1
1 2 −3

 .
Furthermore, take the parameters Ar(t) = (A1,A2,A3) = (2.4, 2.5, 2.6), qr(t) = (q1, q2, q3) = (0.5, 0.2, 0.15), βr(t) =
(β1, β2, β3) = (0.08, 0.05, 0.04), µr(t) = (µ1, µ2, µ3) = (0.12, 0.05, 0.4), αr(t) = (α1, α2, α3) = (0.5, 1.6, 0.5), pr(t) =
(p1, p2, p3) = (0.6, 0.3, 0.7), γr(t) = (γ1, γ2, γ3) = (0.02, 0.3, 0.02) and εr(t) = (ε1, ε2, ε3) = (0.5, 0.4, 0.3).

Obviously, 1(I) does not satisfy assumption (H2). Hence, Corollary 1 is not applicable. By calculating,
the Markov chain r(t) has a unique stationary distribution π = (π1, π2, π3) = ( 3

12 ,
6

12 ,
3

12 ). Solving equation
(4), we have S0(k) = (S0(1),S0(2),S0(3)) = (8.5, 29.3, 3) and V0(k) = (V0(1),V0(2),V0(3)) = (11.5, 20.7, 3.5).
Thus, from (7) we further have R01 = 2.6931, R02 = −0.0467 and R03 = 0.7466. Therefore, Rs

0 = 0.8366 > 0.
Let (S(t), I(t),V(t)) be the solution of model (3) with initial value (S(0), I(0),V(0))

= (5, 3, 1). From the numerical simulations in Figure 5 we see that there is an indicate of existence of a sta-
tionary distributions for S(t) and V(t), but I(t) may not have the stationary distribution. The corresponding
sample means of (S(t), I(t),V(t)) and the distribution of r(t) are illustrated in Figure 6. From Figures 5 and
6, we also see that S(t) and V(t) are permanent with probability one, but I(t) only is permanent in the mean
with probability one, but not permanent with probability one.
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Figure 5: Simulations of the solution (S(t), I(t),V(t)) with the initial values S(0) = 5, I(0) = 3 and V(0) = 1.
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Figure 6: (i) Simulations of the sample means for the solution (S(t), I(t),V(t)) with the initial values S(0) = 5, I(0) = 3 and V(0) = 1; (ii)
Simulations of the switching times of r(t).

Example 4.4. Take in model (3) the incidence functions f (S) = S
1+S and 1(I) = I

1+1.5I , the Markov chain r(t) with the
finite values in the state spaceM = {1, 2, 3} and the generator

Γ =

 −4 3 1
2 −4 2
1 3 −4

 .
Furthermore, take the parameters Ar(t) = (A1,A2,A3) = (0.8, 0.7, 0.6), qr(t) = (q1, q2, q3) = (0.3, 0.2, 0.3), βr(t) =
(β1, β2, β3) = (1.5, 1.2, 1.6), µr(t) = (µ1, µ2, µ3) = (0.1, 0.2, 0.2), αr(t) = (α1, α2, α3) = (0.4, 0.5, 0.6), pr(t) =
(p1, p2, p3) = (0.02, 0.3, 0.02), γr(t) = (γ1, γ2, γ3)
= (0.65, 0.04, 0.02) and εr(t) = (ε1, ε2, ε3) = (0.2, 0.4, 0.3).

Since f ′(S) = 1
(1+S)2 is decreasing for S ≥ 0, assumption (H3) is not satisfied. Hence, Corollary 1 is not ap-

plicable. By calculating, the Markov chain r(t) has a unique stationary distributionπ = (π1, π2, π3) = ( 3
7 ,

3
7 ,

2
7 ).

Solving equation (4), we have S0(k) = (S0(1),S0(2),S0(3)) = (7, 2.2, 2.5) and V0(k) = (V0(1),V0(2),V0(3)) =
(1, 1.3, 0.5). Thus, from (7) we further have R01 = −0.1700, R02 = 0.0587 and R03 = 0.2017. Therefore,
Rs

0 = 0.0342 > 0.
Let (S(t), I(t),V(t)) be the solution of model (3) with initial value (S(0), I(0),V(0))

= (5, 3, 1). From the numerical simulations given in Figure 7 we see that S(t) and V(t) not only seem to
confirm a stationary distribution, but also is permanent with probability one, and I(t) may be extinct with
probability one. The simulations of the corresponding sample means and the distribution of r(t) are shown
in Figure 8.



J. Hu et al. / Filomat 32:13 (2018), 4773–4785 4784

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

time t

S
(t

)

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

time t

I(
t)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time t

V
(t

)

Figure 7: Simulations of the path (S(t), I(t),V(t)) with the initial values S(0) = 2, I(0) = 4 and V(0) = 1.
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Figure 8: (i) Simulations of the sample means for the solution (S(t), I(t),V(t)) with the initial values S(0) = 2, I(0) = 4 and V(0) = 1; (ii)
Simulations the switching times of r(t).

5. Conclusion

In this paper, we investigated the stationary distribution for a stochastic SIS epidemic model with
vaccination and nonlinear incidence under regime switching. We see that a new threshold is introduced
which is different from that given in [22]. A new sufficient condition on the existence of unique ergodic
stationary distribution is established. A new technique to deal with the nonlinear incidence and vaccination
for the stochastic epidemic models under regime switching is proposed. The corresponding results given
in [22] are considerably improved and generalized.

The assumptions (H2) and (H3) are introduced for the nonlinear incidence functions f (S) and 1(I). We
find that they are used only in the proofs of Theorem 3.1. However, from Examples 3 and 4 we see
that the assumptions (H2) and (H3) may be necessary to ensure the existence of a stationary distribution.
Furthermore, from the numerical examples we also find that when the threshold Rs

0 > 0 the solution of
model (3) also is permanent or permanent in the mean with probability one, and when Rs

0 < 0 the disease I
in model (3) will be extinct with probability one.

In the future, some new problems should be further investigated for this model, for instance, stochastic
extinction, persistence and asymptotic behaviors of positive solutions. In addition, it is also important and
interesting that whether the results and methods established in this paper can be extended to stochastic SIR
and SEIR type epidemic models with vaccination and nonlinear incidence under regime switching.
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