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Certain Properties of Generalized Einstein Spaces
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Abstract. In the present paper are introduced generalized Einstein spaces. Einstein type tensors are
represented in the generalized Einstein spaces. Some relations of Einstein type tensors of the first and the
second kind in the generalized Riemannian space are obtained. Also, geodesic mappings of T-connected
generalized Einstein spaces onto Riemannian space are considered.

1. Introduction

In 1922 Cartan was put forward a modification of General Relativity Theory (GRT), by relaxing the
assumption that the affine connection has vanishing the antisymmetric part (torsion tensor), and relating
the torsion to the density of intrinsic angular momentum. Also, the torsion is implicit in the 1928 Einstein
theory of gravitation with teleparallelism. Afterwards, several mathematicians dealt with non-symmetric
affine connection, for example, Eisenhart [6], [7], Prvanović [24], Minčić [14] -[20], Zlatanović [9], [21],
[32] -[39].

Geodesic and almost geodesic lines, play an important role in geometry and physics. Sinyukov [25]
introduced the concept of geodesic mappings between affine connected spaces without torsion. Mikeš
[1], [8] -[13], [26], [31] gave some significant contributions to the study of geodesic and almost geodesic
mappings of affine connected, Riemannian and Einstein spaces. Contribution to the theory of geodesic and
almost geodesic mappings of spaces with non-symmetric affine connection and generalized Riemannian
spaces gave Stanković [19], [20], [27] -[30], [35].

2. Notation and preliminaries

A generalized Riemannian space GRN in the sense of Eisenhart’s definition [5] is a differentiable
N-dimensional manifold, equipped with a nonsymmetric basic tensor 1i j. Connection coefficients of this
space are generalized Cristoffel’s symbols of the second kind.

Generalized Cristoffel’s symbols of the first kind of the space GRN are given by the formula

Γi. jk =
1
2

(1 ji,k − 1 jk,i + 1ik, j), (1)
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where, for example, 1i j,k =
∂1i j

∂xk . Connection coefficients of the space GRN are the generalized Cristoffel’s
symbols of the second kind

Γi
jk = 1

ip
Γp. jk, (2)

where ||1i j
|| = ||1i j||

−1, and 1i j = 1
2 (1i j + 1 ji). We suppose that det ||1i j|| , 0, det ||1i j|| , 0. Generally, we have

Γi
jk , Γi

k j. The symmetric and anti-symmetric part of Γi
jk are given by the formulas

Γi
jk =

1
2

(Γi
jk + Γi

k j) = Si
jk, Γi

jk
∨

=
1
2

(Γi
jk − Γi

k j) = Ti
jk (3)

The magnitude Ti
jk is the torsion tensor of the space GRN. Obviously,

Γi
jk = Si

jk + Ti
jk. (4)

The use of non-symmetric basic tensor and non-symmetric connection became especially actual after
appearance the works of A. Einstein [2]-[5] related to create the Unified Field Theory (UFT). Remark that at
UFT the symmetric part 1i j of the basic tensor 1i j is related to the gravitation, and anisymmetric one 1i j

∨

to

the electromagnetism.
In a generalized Riemannian space one can define four kinds of covariant derivatives [14], [17]. In this

paper, we consider only the first two kinds of covariant differentiation. For example, for a tensor ai
j in GRN

we have

ai
j |
1
m = ai

j,m + Γi
pmap

j − Γ
p
jmai

p, ai
j |
2
m = ai

j,m + Γi
mpap

j − Γ
p
mja

i
p, (5)

where |
θ

(θ = 1, 2) denotes a covariant derivative of the kind θ and ai
j,m =

∂ai
j

∂xm .

In the case of the space GRN we have five independent curvature tensors [14]. In this paper we will
consider only the first two curvature tensors:

R
1

i
jmn = Γi

jm,n − Γi
jn,m + Γ

p
jmΓi

pn − Γ
p
jnΓi

pm,

R
2

i
jmn = Γi

mj,n − Γi
nj,m + Γ

p
mjΓ

i
np − Γ

p
njΓ

i
mp.

(6)

Designating by semicolon ( ; ) covariant derivative with respect to Si
jm, we have [5]:

R
1

i
jmn = Ri

jmn + Ti
jm;n − Ti

jn;m + Tp
jmTi

pn − Tp
jnTi

pm,

R
2

i
jmn = Ri

jmn + Ti
jn;m − Ti

jm;n + Tp
jmTi

pn − Tp
jnTi

pm,
(7)

where Ri
jmn is the curvature tensor with respect to the symmetric connection Si

jm.

Contracting by indices i and n in curvature tensor of the first kind R
1

i
jmn in the space GRN we have the

first type Ricci tensor

R
1 jm = R

1

p
jmp = R jm + Tp

jm;p + Tp
jqTq

mp, (8)

where R jm = Rp
jmp is Ricci tensor with respect to the symmetric connection Si

jm.

Now, contracting by indices i and n in curvature tensor of the second kind R
2

i
jmn we get the second type

Ricci tensor

R
2 jm = R

2

p
jmp = R jm − Tp

jm;p + Tp
jqTq

mp. (9)
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3. Geodesic mappings of generalized Riemannian spaces

One says that reciprocal one valued mapping f : GRN → GRN is geodesic [19], [20], if geodesics of the
generalized Riemannian space GRN pass to geodesics of the generalized Riemannian space GRN. We can
consider these spaces in the common by this mapping system of local coordinates. In the corresponding
points M(x) and M(x) we can put

Γ
i
jk(x) = Γi

jk(x) + Pi
jk(x), (i, j, k = 1, ...,N), (10)

where Pi
jk(x) is the deformation tensor of the connection Γ of GRN according to the mapping f : GRN → GRN.

A necessary and sufficient condition that the mapping f : GRN → GRN be geodesic (see [19], [20]) is that
the deformation tensor Pi

jk in (10) at the mapping f has the form

Pi
jk(x) = δi

j ψk(x) + δi
k ψ j(x) + ξi

jk(x), (11)

where

ψi(x) =
1

N + 1
(Γ
α

iα(x) − Γαiα(x)), ξi
jk(x) = Pi

jk
∨

=
1
2

(Pi
jk − Pi

k j). (12)

4. Some relations of Einstein type tensors

4.1. Einstein type tensors of the first kind
Starting from the Bianchi type identity (see [18])

Cicl
mnv

R
1

i
jmn |

1
v = 2 Cicl

mnv
Tp

mnR
1

i
jpv, (13)

i.e.

R
1

i
jmn |

1
v + R

1

i
jnv |

1
m + R

1

i
jvm |

1
n = 2(Tp

mnR
1

i
jpv + Tp

nvR
1

i
jpm + Tp

vmR
1

i
jpn), (14)

composing by 1ih in (14) and using property of antisymmetry

R
1

i jmn = −R
1

jimn, R
1

i jmn = −R
1

i jnm,

we get

R
1

hjmn |
1
v + R

1
hjnv |

1
m + R

1
hjvm |

1
n = 2(Tp

mnR
1

hjpv + Tp
nvR

1
hjpm + Tp

vmR
1

hjpn). (15)

Now, composing by 1hn1
jm from (15) we have

(R
1

m
v −

1
2
δm

v R
1

) |
1
m = S

1
v −

1
2

S
1

v, (16)

where we denote

S
1

v = 1
mjS

1
mjv, S

1
v = 1

mjS
1

vjm and S
1

mjv = 2Tp
mqR

1

q
jpv. (17)
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Definition 4.1. A tensor E
1

m
v = R

1
m
v −

1
2δ

m
v R

1
is called the Einstein tensor of the first kind.

In this way, the following theorem is proven

Theorem 4.2. The Einstein tensor of the first kind E
1

m
v satisfied the relation

E
1

m
v |

1
m = S

1
v −

1
2

S
1

v, (18)

where vectors S
1

v and S
1

v are given by relations (17).

Analogously, starting from identity (see [18])

Cicl
mnv

R
1

i
jmn |

2
v = 2Cicl

mnv
(Tp

jmR
1

i
pnv + Tp

mnR
1

i
jvp + Ti

mpR
1

p
jnv), (19)

we obtain that the following theorem is valid:

Theorem 4.3. The Einstein tensor of the first kind E
1

m
v satisfied the relation

E
1

m
v |

2
m = −

1
2

(P
1

v + P
1

v + S
1

v −Q
1

v), (20)

where vector S
1

v is given by relation (17) and

P
1

v = 21 jmTp
jnR

1

n
pvm, P

1
v = 21 jmTp

jvR
1

n
pmn, Q

1
v = 21 jmTp

jmR
1

n
pvn.

4.2. Einstein type tensor of the second kind

Starting from the Bianchi type identity (see [18])

Cicl
mnv

R
2

i
jmn |

1
v = 2Cicl

mnv
(Tp

mjR2
i
pnv + Tp

mnR
2

i
jpv + Ti

mpR
2

p
jvn), (21)

we obtain

(R
2

m
v −

1
2
δm

v R
2

) |
1
m =

1
2

(P
2

v + P
2

v + S
2

v −Q
2

v), (22)

where

S
2

v = 1
mjS

2
mjv, S

2
v = 1

mjS
2

vjm, S
2

mjv = 2Tp
mqR

2

q
jpv,

P
2

v = 21 jmTp
jnR

2
n
pvm, P

2
v = 21 jmTp

jvR
2

n
pmn, Q

2
v = 21 jmTp

jmR
2

n
pvn.

(23)

Definition 4.4. A tensor E
2

m
v = R

2
m
v −

1
2δ

m
v R

2
is called the Einstein tensor of the second kind.

Therefore, the following theorem is valid
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Theorem 4.5. The Einstein tensor of the second kind E
2

m
v satisfied the relation

E
2

m
v |

1
m =

1
2

(P
2

v + P
2

v + S
2

v −Q
2

v), (24)

where S
2

v, P
2

v, P
2

v and Q
2

v are given by relations (23)

Starting from the Bianchi type identity (see [18])

Cicl
mnv

R
2

i
jmn |

2
v = 2 Cicl

mnv
Tp

mnR
2

i
jvp, (25)

i.e.

R
2

i
jmn |

2
v + R

2
i
jnv |

2
m + R

2
i
jvm |

2
n = 2(Tp

mnR
2

i
jvp + Tp

nvR
2

i
jmp + Tp

vmR
2

i
jnp). (26)

Composing by 1ih in (26) and using property of antisymmetry

R
2

i jmn = −R
2

jimn, R
2

i jmn = −R
2

i jnm,

we get

R
2

hjmn |
2
v + R

2
hjnv |

2
m + R

2
hjvm |

2
n = 2(Tp

mnR
2

hjvp + Tp
nvR

2
hjmp + Tp

vmR
2

hjnp). (27)

Now, composing by 1hn1
jm from (27) we have

(R
2

m
v −

1
2
δm

v R
2

) |
2
m =

1
2

S
2

v − S
2

v, (28)

where we denote

S
2

v = 1
mjS

2
mjv, S

2
v = 1

mjS
2

vjm and S
2

mjv = 2Tp
mqR

2

q
jpv. (29)

In this way, the following theorem is proven

Theorem 4.6. The Einstein tensor of the second kind E
2

m
v satisfied the relation

E
2

m
v |

2
m =

1
2

S
2

v − S
2

v, (30)

where vectors S
2

v and S
2

v are given by relations (29).

5. Geodesic mappings of T-connected generalized Einstein spaces

Einstein space VN is Riemanian space, with symmetric basic metric tensor 1 jm, where Ricci tensor R jm
satisfies the relation

R jm = K · 1 jm, K = const. (31)
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After contraction of (31) we obtain K =
R
N

.
Einstein spaces provide simple, highly symmetric cosmological models. In general relativity the Einstein

equations relate the curvature of space-time to the energy and momentum of all the mater present in
following way

R jm −
1
2

R1 jm + Λ1 jm = GT jm. (32)

The first two summands on the left side of the relation (32) represent so-called Einstein tensor, Λ is the
cosmological constant, T jm is energy-momentum tensor and G is the gravitational constant.

In the case of generalized Riemannian spaces we can define generalized Einstein spaces of the kind θ in the
following way:

Definition 5.1. Generalized Einstein space of the kind θ (θ = 1, 2) is generalized Riemannian space if Ricci tensor
of the kind θ satisfies the condition

R
θ jm = K

θ
· 1 jm (θ = 1, 2), (33)

where K
θ

are constants. Generalized Einstein space of the kind θ (θ = 1, 2) denoted by GV
θ

N.

From (8) for symmetric and antisymmetric part of Ricci tensor R
1

jm we obtain

R
1 jm = R jm + Tp

jqTq
mp and R

1 jm
∨

= Tp
jm;p. (34)

In this way the following theorem is satisfied:

Theorem 5.2. In generalized Einstein space GV
1

N the next conditions are valid:

R jm + Tp
jqTq

mp = K
1
1 jm and Tp

jm;p = K
1
1 jm
∨

, (35)

where R jm is Ricci tensor with respect to the symmetric part 1 jm of 1 jm, Ti
jk is the torsion tensor, 1 jm

∨

is an antisymmetric

part of 1 jm and K
1

is a constant.

Analogously, for generalized Einstein space of the second kind the next theorem is valid:

Theorem 5.3. In generalized Einstein space GV
2

N the next conditions are valid:

R jm + Tp
jqTq

mp = K
2
1 jm and Tp

jm;p = −K
2
1 jm
∨

, (36)

where R jm is Ricci tensor with respect to the symmetric part 1 jm of 1 jm, Ti
jk is a torsion tensor, 1 jm

∨

is an antisymmetric

part of 1 jm and K
2

is a constant.

In the case of Riemanian space, when the basic metric tensor 1i j is a symmetric, the torsion tensor Ti
jk is

a zero and the conditions (35) and (36) reduce to the condition R jm = K1 jm.

Definition 5.4. Generalized Riemannian space GRn is T-connected if the torsion tensor Ti
jm satisfies the condition:

Tp
jqTq

mp = µ1 jm, µ = const. (37)

It is not difficult to conclude that the following assertion is true
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Lemma 5.5. If the generalized Einstein space GV
θ

N, (θ = 1, 2) is T-connected, then:

R jm = µ
θ
1 jm, (38)

where R jm is Ricci tensor with respect to 1 jm and µ
θ

= K
θ
− µ are constants.

Therefore the following assertion holds:

Theorem 5.6. For generalized Einstein tensors E
ν

m
v of the kind ν (ν = 1, 2) in generalized Einstein spaces GV

θ
N of the

type θ (θ = 1, 2) the next relations are valid:

E
ν

m
v =
(
K
θ
−

1
2

)
δm

v + K
θ
1

pm
1pv
∨

, (θ = 1, 2; ν = 1, 2), (39)

where R
θ

are scalar curvatures.

The Einstein spaces consists a closed class in relation to geodesic mappings, i.e. satisfied the following
theorem (see [10], [13]):

Theorem 5.7. If Einstein space VN permits nontrivial geodesic mapping onto VN, then VN is an Einstein space.

In general case associate space, with the symmetric basic metric tensor 1 jm, at the generalized Einstein
space of the kind θ (θ = 1, 2), is not an Einstein space. According to the Lemma 5.5 we conclude that the
associate space, at the T-connected generalized Einstein space of the kind θ (θ = 1, 2), is an Einstein space.

In this way we have proved the following theorem:

Theorem 5.8. If T-connected generalized Einstein space GV
θ

N of the kind θ (θ = 1, 2) permits nontrivial geodesic

mapping onto Riemanian space VN, then VN is an Einstein space.
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