

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

f-Lacunary Statistical Convergence and Strong f-Lacunary Summability of Order α

Hacer Şengül^a, Mikail Et^b

^aFaculty of Education; Harran University; Osmanbey Campus 63190; Şanlıurfa; TURKEY ^bDepartment of Mathematics; Fırat University 23119; Elazığ ; TURKEY

Abstract. The main object of this article is to introduce the concepts of f-lacunary statistical convergence of order α and strong f-lacunary summability of order α of sequences of real numbers and give some inclusion relations between these spaces.

1. Introduction

In 1951, Steinhaus [33] and Fast [18] introduced the concept of statistical convergence and later in 1959, Schoenberg [32] reintroduced independently. Bhardwaj and Dhawan [3], Caserta et al. [4], Connor [5], Çakallı [10], Çınar et al. [11], Çolak [12], Et et al. ([14], [16]), Fridy [20], Işık [24], Salat [31], Di Maio and Kočinac [13] and many authors investigated some arguments related to this notion.

A modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

- i) f(x) = 0 if and only if x = 0,
- ii) $f(x + y) \le f(x) + f(y)$ for $x, y \ge 0$,
- iii) *f* is increasing,
- iv) f is continuous from the right at 0.

It follows that f must be continuous in everywhere on $[0, \infty)$. A modulus may be unbounded or bounded.

Aizpuru et al. [1] defined f-density of a subset $E \subset \mathbb{N}$ for any unbounded modulus f by

$$d^{f}(E) = \lim_{n \to \infty} \frac{f(|\{k \le n : k \in E\}|)}{f(n)}$$
, if the limit exists

and defined *f*-statistical convergence for any unbounded modulus *f* by

$$d^f\left(\left\{k \in \mathbb{N} : |x_k - \ell| \ge \varepsilon\right\}\right) = 0$$

i.e.

$$\lim_{n\to\infty}\frac{1}{f(n)}f(|\{k\le n:|x_k-\ell|\ge\varepsilon\}|)=0,$$

2010 Mathematics Subject Classification. 40A05, 40C05, 46A45

Keywords. Modulus function, statistical convergence, lacunary sequence

Received: 26 December 2017; Revised: 08 Marh 2018; Accepted: 29 March 2018

Communicated by Ivana Djolović

Email addresses: hacer.sengul@hotmail.com (Hacer Şengül), mikailet68@gmail.com (Mikail Et)

and we write it as $S^f - \lim x_k = \ell$ or $x_k \to \ell(S^f)$. Every f-statistically convergent sequence is statistically convergent, but a statistically convergent sequence does not need to be f-statistically convergent for every unbounded modulus f.

By a lacunary sequence we mean an increasing integer sequence $\theta = (k_r)$ such that $h_r = (k_r - k_{r-1}) \to \infty$ as $r \to \infty$.

In [21], Fridy and Orhan introduced the concept of lacunary statistically convergence in the sense that a sequence (x_k) of real numbers is called lacunary statistically convergent to a real number ℓ , if

$$\lim_{r \to \infty} \frac{1}{h_r} \left| \{ k \in I_r : |x_k - \ell| \ge \varepsilon \} \right| = 0$$

for every positive real number ε .

Throughout this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r . Lacunary sequence spaces were studied in ([6], [7], [8], [9], [17], [19], [21], [23], [25], [29], [35], [36]).

First of all, the notion of a modulus was given by Nakano [27]. Maddox [26] used a modulus function to construct some sequence spaces. Afterwards different sequence spaces defined by modulus have been studied by Altın and Et [2], Et et al. [15], Işık [24], Gaur and Mursaleen [22], Nuray and Savaş [28], Pehlivan and Fisher [30], Şengül [34] and everybody else.

2. Main Results

In this section we will introduce the concepts of f-lacunary statistically convergent sequences of order α and strongly f-lacunary summable sequences of order α of real numbers, where f is an unbounded modulus and give some inclusion relations between these concepts.

Definition 2.1. Let f be an unbounded modulus, $\theta = (k_r)$ be a lacunary sequence and α be a real number such that $0 < \alpha \le 1$. We say that the sequence $x = (x_k)$ is f-lacunary statistically convergent of order α , if there is a real number ℓ such that

$$\lim_{r\to\infty}\frac{1}{f\left(h_r\right)^{\alpha}}f\left(\left|\left\{k\in I_r:\left|x_k-\ell\right|\geq\varepsilon\right\}\right|\right)=0,$$

where $I_r = (k_{r-1}, k_r]$ and $f(h_r)^{\alpha}$ denotes the α th power of $f(h_r)$, that is $(f(h_r)^{\alpha}) = (f(h_1)^{\alpha}, f(h_2)^{\alpha}, ..., f(h_r)^{\alpha}, ...)$. This space will be denoted by $S_{\theta}^{f,\alpha}$. In this case, we write $S_{\theta}^{f,\alpha} - \lim x_k = \ell$ or $x_k \to \ell(S_{\theta}^{f,\alpha})$.

Definition 2.2. Let f be a modulus function, $p = (p_k)$ be a sequence of strictly positive real numbers and α be a real number such that $0 < \alpha \le 1$. We say that the sequence $x = (x_k)$ is strongly $w^{\alpha}[\theta, f, p]$ —summable to ℓ (a real number) such that

$$w^{\alpha}\left[\theta,f,p\right] = \left\{x = (x_k) : \lim_{r \to \infty} \frac{1}{h_r^{\alpha}} \sum_{k \in L} \left[f\left(|x_k - \ell|\right)\right]^{p_k} = 0, \text{ for some } \ell\right\}.$$

In the present case, we denote $w^{\alpha}[\theta, f, p] - \lim x_k = \ell$.

Definition 2.3. Let f be an unbounded modulus, $p = (p_k)$ be a sequence of strictly positive real numbers and α be a real number such that $0 < \alpha \le 1$. We say that the sequence $x = (x_k)$ is strongly $w_{\theta}^{f,\alpha}(p)$ —summable to ℓ (a real number) such that

$$w_{\theta}^{f,\alpha}(p) = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|x_k - \ell|) \right]^{p_k} = 0, \text{ for some } \ell \right\}.$$

In the present case, we write $w_{\theta}^{f,\alpha}\left(p\right)-\lim x_{k}=\ell.$ In case of $p_{k}=p$ for all $k\in\mathbb{N}$ we write $w_{\theta}^{f,\alpha}\left[p\right]$ instead of $w_{\theta}^{f,\alpha}\left(p\right).$

Definition 2.4. Let f be an unbounded modulus, $p = (p_k)$ be a sequence of strictly positive real numbers and α be a real number such that $0 < \alpha \le 1$. We say that the sequence $x = (x_k)$ is strongly $w_{\theta,f}^{\alpha}(p)$ —summable to ℓ (a real number) such that

$$w_{\theta,f}^{\alpha}(p) = \left\{ x = (x_k) : \lim_{r \to \infty} \frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} |x_k - \ell|^{p_k} = 0, \text{ for some } \ell \right\}.$$

In the present case, we write $w_{\theta,f}^{\alpha}(p) - \lim x_k = \ell$. In case of $p_k = p$ for all $k \in \mathbb{N}$ we write $w_{\theta,f}^{\alpha}[p]$ instead of $w_{\theta,f}^{\alpha}(p)$.

The proof of each of the following results is fairly straightforward, so we choose to state these results without proof, where we shall assume that the sequence $p = (p_k)$ is bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$.

Theorem 2.5. Let f be an unbounded modulus. The classes of sequences $w_{\theta}^{f,\alpha}(p)$ and $S_{\theta}^{f,\alpha}$ are linear spaces.

Theorem 2.6. The space $w_{\theta}^{f,\alpha}(p)$ is paranormed by

$$g(x) = \sup_{r} \left\{ \frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|x_k|) \right]^{p_k} \right\}^{\frac{1}{M}}$$

where $0 < \alpha \le 1$ and $M = \max(1, H)$.

Proposition 2.7. ([30]) Let f be a modulus and $0 < \delta < 1$. Then for each $||u|| \ge \delta$, we have $f(||u||) \le 2f(1)\delta^{-1}||u||$.

Theorem 2.8. Let f be an unbounded modulus, α be a real number such that $0 < \alpha \le 1$ and p > 1. If $\lim_{u \to \infty} \inf \frac{f(u)}{u} > 0$, then $w_{\theta}^{f,\alpha}[p] = w_{\theta,f}^{\alpha}[p]$.

Proof. Let p>1 be a positive real number and $x\in w^{f,\alpha}_{\theta}\left[p\right]$. If $\lim_{u\to\infty}\inf\frac{f(u)}{u}>0$ then there exists a number c>0 such that f(u)>cu for u>0. Clearly

$$\frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|x_k - \ell|) \right]^p \ge \frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[c|x_k - \ell| \right]^p = \frac{c^p}{f(h_r)^{\alpha}} \sum_{k \in I_r} |x_k - \ell|^p,$$

and therefore $w_{\theta}^{f,\alpha}[p] \subset w_{\theta,f}^{\alpha}[p]$.

Now let $x \in w_{\theta,f}^{\alpha}[p]$. Then we have

$$\frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} |x_k - \ell|^p \to 0 \text{ as } r \to \infty.$$

Let $0 < \delta < 1$. We can write

$$\frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} |x_k - \ell|^p \geq \frac{1}{f(h_r)^{\alpha}} \sum_{\substack{k \in I_r \\ |x_k - \ell| \ge \delta}} |x_k - \ell|^p \\
\geq \frac{1}{f(h_r)^{\alpha}} \sum_{\substack{k \in I_r \\ |x_k - \ell| \ge \delta}} \left[\frac{f(|x_k - \ell|)}{2f(1)\delta^{-1}} \right]^p \\
\geq \frac{1}{f(h_r)^{\alpha}} \frac{\delta^p}{2^p f(1)^p} \sum_{k \in I_r} [f(|x_k - \ell|)]^p$$

by Proposition 2.7. Therefore $x \in w_{\theta}^{f,\alpha}[p]$.

If $\lim_{u\to\infty}\inf\frac{f(u)}{u}=0$, the equality $w_{\theta}^{f,\alpha}[p]=w_{\theta,f}^{\alpha}[p]$ can not be hold as shown the following example:

Let $f(x) = 2\sqrt{x}$ and define a sequence $x = (x_k)$ by

$$x_k = \begin{cases} \sqrt{h_r}, & \text{if } k = k_r \\ 0, & \text{otherwise.} \end{cases} r = 1, 2, \dots$$

For $\ell = 0$, $\alpha = \frac{4}{5}$ and $p = \frac{6}{5}$, we have

$$\frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|x_k|) \right]^p = \frac{\left(2h_r^{\frac{1}{4}}\right)^{\frac{5}{5}}}{\left(2\sqrt{h_r}\right)^{\frac{4}{5}}} \to 0 \text{ as } r \to \infty$$

hence $x \in w_{\theta}^{f,\alpha}[p]$, but

$$\frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} |x_k|^p = \frac{\left(\sqrt{h_r}\right)^{\frac{6}{5}}}{\left(2\sqrt{h_r}\right)^{\frac{4}{5}}} \to \infty \text{ as } r \to \infty$$

and so $x \notin w_{\theta,f}^{\alpha}[p]$. \square

Maddox [26] showed that the existence of an unbounded modulus f for which there is a positive constant c such that $f(xy) \ge cf(x) f(y)$, for all $x \ge 0$, $y \ge 0$.

Theorem 2.9. Let f be an unbounded modulus, α be a real number such that $0 < \alpha \le 1$ and $p_k = 1$ for all $k \in \mathbb{N}$. If $\lim_{u \to \infty} \frac{f(u)^\alpha}{v^\alpha} > 0$, then $w^\alpha[\theta, f, p] \subset S^{f, \alpha}_{\theta}$.

Proof. Let $x \in w^{\alpha}[\theta, f, p]$ and $\lim_{u \to \infty} \frac{f(u)^{\alpha}}{u^{\alpha}} > 0$. For $\varepsilon > 0$, we have

$$\frac{1}{h_r^{\alpha}} \sum_{k \in I_r} f(|x_k - \ell|) \geq \frac{1}{h_r^{\alpha}} f\left(\sum_{k \in I_r} |x_k - \ell|\right) \geq \frac{1}{h_r^{\alpha}} f\left(\sum_{\substack{k \in I_r \\ |x_k - \ell| \geq \varepsilon}} |x_k - \ell|\right) \\
\geq \frac{1}{h_r^{\alpha}} f(|\{k \in I_r : |x_k - \ell| \geq \varepsilon\}| \varepsilon) \\
\geq \frac{c}{h_r^{\alpha}} f(|\{k \in I_r : |x_k - \ell| \geq \varepsilon\}|) f(\varepsilon) \\
= \frac{c}{h_r^{\alpha}} \frac{f(|\{k \in I_r : |x_k - \ell| \geq \varepsilon\}|)}{f(h_r)^{\alpha}} f(h_r)^{\alpha} f(\varepsilon).$$

Therefore, $w^{\alpha}[\theta, f, p] - \lim x_k = \ell \text{ implies } S_{\theta}^{f, \alpha} - \lim x_k = \ell. \quad \Box$

Theorem 2.10. Let α_1, α_2 be two real numbers such that $0 < \alpha_1 \le \alpha_2 \le 1$, f be an unbounded modulus function and let $\theta = (k_r)$ be a lacunary sequence, then we have $w_{\theta}^{f,\alpha_1}(p) \subset S_{\theta}^{f,\alpha_2}$.

Proof. Let $x \in w_{\theta}^{f,\alpha_1}(p)$ and $\varepsilon > 0$ be given and \sum_1 , \sum_2 denote the sums over $k \in I_r$, $|x_k - \ell| \ge \varepsilon$ and $k \in I_r$, $|x_k - \ell| < \varepsilon$ respectively. Since $f(h_r)^{\alpha_1} \le f(h_r)^{\alpha_2}$ for each r, we may write

$$\frac{1}{f(h_{r})^{\alpha_{1}}} \sum_{k \in I_{r}} [f(|x_{k} - \ell|)]^{p_{k}} = \frac{1}{f(h_{r})^{\alpha_{1}}} \Big[\sum_{1} [f(|x_{k} - \ell|)]^{p_{k}} + \sum_{2} [f(|x_{k} - \ell|)]^{p_{k}} \Big] \\
\geq \frac{1}{f(h_{r})^{\alpha_{2}}} \Big[\sum_{1} [f(|x_{k} - \ell|)]^{p_{k}} + \sum_{2} [f(|x_{k} - \ell|)]^{p_{k}} \Big] \\
\geq \frac{1}{f(h_{r})^{\alpha_{2}}} \Big[\sum_{1} [f(\varepsilon)]^{p_{k}} \Big] \\
\geq \frac{1}{H.f(h_{r})^{\alpha_{2}}} \Big[f\Big(\sum_{1} [\varepsilon]^{p_{k}} \Big) \Big] \\
\geq \frac{1}{H.f(h_{r})^{\alpha_{2}}} \Big[f\Big(\sum_{1} \min([\varepsilon]^{h}, [\varepsilon]^{H}) \Big) \Big] \\
\geq \frac{1}{H.f(h_{r})^{\alpha_{2}}} f\Big(|\{k \in I_{r} : |x_{k} - \ell| \geq \varepsilon\}| \Big[\min([\varepsilon]^{h}, [\varepsilon]^{H}) \Big] \Big) \\
\geq \frac{c}{H.f(h_{r})^{\alpha_{2}}} f\Big(|\{k \in I_{r} : |x_{k} - \ell| \geq \varepsilon\}| \Big[f\Big(\min([\varepsilon]^{h}, [\varepsilon]^{H}) \Big] \Big).$$

Hence $x \in S_{\theta}^{f,\alpha_2}$. \square

Theorem 2.11. Let $\theta = (k_r)$ be a lacunary sequence and α be a fixed real number such that $0 < \alpha \le 1$. If $\lim\inf_r q_r > 1$ and $\lim_{u \to \infty} \frac{f(u)^\alpha}{u^\alpha} > 0$, then $S^{f,\alpha} \subset S^{f,\alpha}_\theta$.

Proof. Suppose first that $\liminf_r q_r > 1$; then there exists a $\lambda > 0$ such that $q_r \ge 1 + \lambda$ for sufficiently large r, which implies that

$$\frac{h_r}{k_r} \ge \frac{\lambda}{1+\lambda} \Longrightarrow \left(\frac{h_r}{k_r}\right)^{\alpha} \ge \left(\frac{\lambda}{1+\lambda}\right)^{\alpha}.$$

If $S^{f,\alpha} - \lim x_k = \ell$, then for every $\varepsilon > 0$ and for sufficiently large r, we have

$$\begin{split} \frac{1}{f(k_{r})^{\alpha}}f\left(|\{k \leq k_{r} : |x_{k} - \ell| \geq \varepsilon\}|\right) & \geq \frac{1}{f(k_{r})^{\alpha}}f\left(|\{k \in I_{r} : |x_{k} - \ell| \geq \varepsilon\}|\right) \\ & = \frac{f(h_{r})^{\alpha}}{f(k_{r})^{\alpha}}\frac{1}{f(h_{r})^{\alpha}}f\left(|\{k \in I_{r} : |x_{k} - \ell| \geq \varepsilon\}|\right) \\ & = \frac{f(h_{r})^{\alpha}}{h_{r}^{\alpha}}\frac{k_{r}^{\alpha}}{f(k_{r})^{\alpha}}\frac{h_{r}^{\alpha}}{k_{r}^{\alpha}}\frac{f\left(|\{k \in I_{r} : |x_{k} - \ell| \geq \varepsilon\}|\right)}{f(h_{r})^{\alpha}} \\ & \geq \frac{f(h_{r})^{\alpha}}{h_{r}^{\alpha}}\frac{k_{r}^{\alpha}}{f(k_{r})^{\alpha}}\left(\frac{\lambda}{1 + \lambda}\right)^{\alpha}\frac{f\left(|\{k \in I_{r} : |x_{k} - \ell| \geq \varepsilon\}|\right)}{f(h_{r})^{\alpha}}. \end{split}$$

This proves the sufficiency. \Box

Theorem 2.12. Let f be an unbounded modulus and $0 < \alpha \le 1$. If $(x_k) \in S^f \cap S_\theta^{f,\alpha}$, then $S^f - \lim x_k = S_\theta^{f,\alpha} - \lim x_k$ such that |f(x) - f(y)| = f(|x - y|), for $x \ge 0$, $y \ge 0$.

Proof. Suppose $S^f - \lim x_k = \ell_1$, $S^{f,\alpha}_{\theta} - \lim x_k = \ell_2$ and $\ell_1 \neq \ell_2$. Let $0 < \varepsilon < \frac{|\ell_1 - \ell_2|}{2}$. Then for $\varepsilon > 0$ we have

$$\lim_{n\to\infty}\frac{f\left(|\{k\leq n:|x_k-\ell_1|\geq\varepsilon\}|\right)}{f\left(n\right)}=0,$$

and

$$\lim_{r\to\infty}\frac{f\left(|\{k\in I_r:|x_k-\ell_2|\geq\varepsilon\}|\right)}{f\left(h_r\right)^\alpha}=0.$$

On the other hand we can write

$$\frac{f(|\{k \le n : |\ell_1 - \ell_2| \ge 2\varepsilon\}|)}{f(n)} \le \frac{f(|\{k \le n : |x_k - \ell_1| \ge \varepsilon\}|)}{f(n)} + \frac{f(|\{k \le n : |x_k - \ell_2| \ge \varepsilon\}|)}{f(n)}$$

Taking limit as $n \to \infty$, we get

$$1 \le 0 + \lim_{n \to \infty} \frac{f\left(|\{k \le n : |x_k - \ell_2| \ge \varepsilon\}|\right)}{f\left(n\right)} \le 1,$$

and so

$$\lim_{n\to\infty}\frac{f\left(|\{k\leq n:|x_k-\ell_2|\geq\varepsilon\}|\right)}{f\left(n\right)}=1.$$

We consider the subsequence

$$\frac{1}{f(k_m)}f(|\{k \le k_m : |x_k - \ell_2| \ge \varepsilon\}|)$$

of sequence

$$\frac{1}{f(n)}f(|\{k\leq n:|x_k-\ell_2|\geq \varepsilon\}|).$$

Then

$$\frac{1}{f(k_{m})}f(|\{k \leq k_{m} : |x_{k} - \ell_{2}| \geq \varepsilon\}|) = \frac{1}{f(k_{m})}f\left(\left|\left\{k \in \bigcup_{r=1}^{m} I_{r} : |x_{k} - \ell_{2}| \geq \varepsilon\right\}\right|\right) \\
= \frac{1}{f(k_{m})}f\left(\sum_{r=1}^{m} |\{k \in I_{r} : |x_{k} - \ell_{2}| \geq \varepsilon\}|\right) \\
\leq \frac{1}{f(k_{m})}\sum_{r=1}^{m}f\left(|\{k \in I_{r} : |x_{k} - \ell_{2}| \geq \varepsilon\}|\right) \\
= \frac{1}{f(k_{m})}\sum_{r=1}^{m}f\left(h_{r}\right)^{\alpha}\frac{1}{f(h_{r})^{\alpha}}f\left(|\{k \in I_{r} : |x_{k} - \ell_{2}| \geq \varepsilon\}|\right) \\$$
(1)

and

$$\sum_{r=1}^{m} f(h_r)^{\alpha} = f(h_1)^{\alpha} + f(h_2)^{\alpha} + \dots + f(h_m)^{\alpha}$$

$$= f(k_1 - k_0)^{\alpha} + f(k_2 - k_1)^{\alpha} + \dots + f(k_m - k_{m-1})^{\alpha}$$

$$= f(|k_1 - k_0|)^{\alpha} + f(|k_2 - k_1|)^{\alpha} + \dots + f(|k_m - k_{m-1}|)^{\alpha}$$

$$= |f(k_1) - f(k_0)|^{\alpha} + |f(k_2) - f(k_1)|^{\alpha} + \dots + |f(k_m) - f(k_{m-1})|^{\alpha}$$

$$\leq |f(k_1) - f(k_0)| + |f(k_2) - f(k_1)| + \dots + |f(k_m) - f(k_{m-1})|$$

$$= f(k_1) - f(k_0) + f(k_2) - f(k_1) + \dots + f(k_m) - f(k_{m-1})$$

$$= f(k_m).$$
(2)

Using (2) in (1), we have

$$\frac{1}{f(k_m)} f(|\{k \le k_m : |x_k - \ell_2| \ge \varepsilon\}|) \le \frac{\sum_{r=1}^m f(h_r)^{\alpha}}{\sum_{r=1}^m f(h_r)^{\alpha}} \frac{1}{f(h_r)^{\alpha}} f(|\{k \in I_r : |x_k - \ell_2| \ge \varepsilon\}|)$$

so

$$\frac{1}{f(k_m)}f(|\{k \le k_m : |x_k - \ell_2| \ge \varepsilon\}|) \to 0,$$

but this is a contradiction to

$$\lim_{n\to\infty}\frac{f\left(|\{k\le n:|x_k-\ell_2|\ge\varepsilon\}|\right)}{f\left(n\right)}=1.$$

As a result, $\ell_1 = \ell_2$. \square

Now as a result of Theorem 2.12 we have the following Corollary 2.13.

Corollary 2.13. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences and $0 < \alpha \le 1$. If $(x_k) \in S^f \cap \left(S_{\theta}^{f,\alpha} \cap S_{\theta'}^{f,\alpha}\right)$, then $S_{\theta}^{f,\alpha} - \lim x_k = S_{\theta'}^{f,\alpha} - \lim x_k$.

Theorem 2.14. Let f be an unbounded modulus. If $\lim p_k > 0$, then $w_{\theta}^{f,\alpha}(p) - \lim x_k = \ell$ uniquely.

Proof. Let $\lim p_k = s > 0$. Assume that $w_{\theta}^{f,\alpha}(p) - \lim x_k = \ell_1$ and $w_{\theta}^{f,\alpha}(p) - \lim x_k = \ell_2$. Then

$$\lim_{r} \frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} [f(|x_k - \ell_1|)]^{p_k} = 0,$$

and

$$\lim_{r} \frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} [f(|x_k - \ell_2|)]^{p_k} = 0.$$

By definition of f, we have

$$\frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|\ell_1 - \ell_2|) \right]^{p_k} \leq \frac{D}{f(h_r)^{\alpha}} \left(\sum_{k \in I_r} \left[f(|x_k - \ell_1|) \right]^{p_k} + \sum_{k \in I_r} \left[f(|x_k - \ell_2|) \right]^{p_k} \right) \\
= \frac{D}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|x_k - \ell_1|) \right]^{p_k} + \frac{D}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|x_k - \ell_2|) \right]^{p_k}$$

where $\sup_{k} p_k = H$ and $D = \max(1, 2^{H-1})$. Hence

$$\lim_{r} \frac{1}{f(h_r)^{\alpha}} \sum_{k \in I_r} \left[f(|\ell_1 - \ell_2|) \right]^{p_k} = 0.$$

Since $\lim_{k\to\infty} p_k = s$ we have $\ell_1 - \ell_2 = 0$. Thus the limit is unique. \square

Theorem 2.15. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subset J_r$ for all $r \in \mathbb{N}$ and α_1, α_2 two real numbers such that $0 < \alpha_1 \le \alpha_2 \le 1$. If

$$\lim_{r \to \infty} \inf \frac{f(h_r)^{\alpha_1}}{f(\ell_r)^{\alpha_2}} > 0 \tag{3}$$

where $I_r = (k_{r-1}, k_r]$, $h_r = k_r - k_{r-1}$ and $J_r = (s_{r-1}, s_r]$, $\ell_r = s_r - s_{r-1}$, then $w_{\theta'}^{f,\alpha_2}(p) \subset w_{\theta}^{f,\alpha_1}(p)$.

Proof. Let $x \in w_{\alpha'}^{f,\alpha_2}(p)$. We can write

$$\begin{split} \frac{1}{f(\ell_r)^{\alpha_2}} \sum_{k \in J_r} \left[f(|x_k - \ell|) \right]^{p_k} &= \frac{1}{f(\ell_r)^{\alpha_2}} \sum_{k \in J_r - I_r} \left[f(|x_k - \ell|) \right]^{p_k} + \frac{1}{f(\ell_r)^{\alpha_2}} \sum_{k \in I_r} \left[f(|x_k - \ell|) \right]^{p_k} \\ &\geq \frac{1}{f(\ell_r)^{\alpha_2}} \sum_{k \in I_r} \left[f(|x_k - \ell|) \right]^{p_k} \\ &\geq \frac{f(h_r)^{\alpha_1}}{f(\ell_r)^{\alpha_2}} \frac{1}{f(h_r)^{\alpha_1}} \sum_{k \in I_r} \left[f(|x_k - \ell|) \right]^{p_k}. \end{split}$$

Thus if $x \in w_{\theta'}^{f,\alpha_2}(p)$, then $x \in w_{\theta}^{f,\alpha_1}(p)$. \square

From Theorem 2.15 we have the following results.

Corollary 2.16. Let $\theta = (k_r)$ and $\theta' = (s_r)$ be two lacunary sequences such that $I_r \subset J_r$ for all $r \in \mathbb{N}$ and α_1, α_2 two real numbers such that $0 < \alpha_1 \le \alpha_2 \le 1$. If (3) holds then

(i)
$$w_{\theta'}^{f,\alpha}(p) \subset w_{\theta}^{f,\alpha}(p)$$
, if $\alpha_1 = \alpha_2 = \alpha$,
(ii) $w_{\theta'}^f(p) \subset w_{\theta}^{f,\alpha_1}(p)$, if $\alpha_2 = 1$,
(iii) $w_{\theta'}^f(p) \subset w_{\theta}^f(p)$, if $\alpha_1 = \alpha_2 = 1$.

References

- [1] A. Aizpuru, M. C. Listán-García and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaest. Math. 37(4) (2014) 525–530.
- [2] Y. Altin and M. Et, Generalized difference sequence spaces defined by a modulus function in a locally convex space, Soochow J. Math. 31(2) (2005) 233–243.
- [3] V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence, Abstr. Appl. Anal. 2016, Art. ID 9365037, 11 pp.
- [4] A. Caserta, G. Di Maio and L. D. R. Kočinac, Statistical convergence in function spaces, Abstr. Appl. Anal. 2011, Art. ID 420419, 11 pp.
- [5] J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis 8 (1988) 47–63.
- [6] H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl. Math. 26(2) (1995) 113–119.
- [7] H. Çakallı, C. G. Aras and A. Sönmez, Lacunary statistical ward continuity, AIP Conf. Proc. 1676, 020042 (2015); http://dx.doi.org/10.1063/1.4930468.
- [8] H. Çakallı and H. Kaplan, A variation on lacunary statistical quasi Cauchy sequences, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(2) (2017) 71–79.
- [9] H. Çakallı and H. Kaplan, A study on N_{θ} -quasi-Cauchy sequences, Abstr. Appl. Anal. 2013 (2013), Article ID 836970, 4 pages.
- [10] H. Çakallı, A study on statistical convergence, Funct. Anal. Approx. Comput. 1(2) (2009) 19–24.
- [11] M. Çınar, M. Karakaş and M. Et, On pointwise and uniform statistical convergence of order *α* for sequences of functions, Fixed Point Theory And Applications, Article Number: 33, 2013.
- [12] R. Çolak, Statistical convergence of order α , Modern Methods in Analysis and Its Applications, New Delhi, India: Anamaya Pub, 2010: 121–129.
- [13] G. Di Maio and L. D. R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008) 28-45.
- [14] M. Et, M. Çınar and M. Karakaş, On λ-statistical convergence of order α of sequences of functions, J. Inequal. Appl. 2013, Article ID 204 (2013).
- [15] M. Et, Y. Altın and H. Altınok, On some generalized difference sequence spaces defined by a modulus function, Filomat 17 (2003) 23–33.
- [16] M. Et, A. Alotaibi and S. A. Mohiuddine, On (Δ^m, I) statistical convergence of order α , Scientific World Journal, Article Number: 535419, 2014.
- [17] M. Et and H. Şengül, Some Cesaro-type summability spaces of order α and lacunary statistical convergence of order α , Filomat 28(8) (2014) 1593–1602.
- [18] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244.
- [19] A. R. Freedman, J. J. Sember and M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc. (3) 37(3) (1978) 508–520.
- [20] J. Fridy, On statistical convergence, Analysis 5 (1985), 301–313.
- [21] J. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993) 43–51.
- [22] A. K. Gaur and M. Mursaleen, Difference sequence spaces defined by a sequence of moduli, Demonstratio Math. 31(2) (1998) 275–278.

- [23] M. Işık and K. E. Et, On lacunary statistical convergence of order α in probability, AIP Conference Proceedings 1676, 020045 (2015); doi: http://dx.doi.org/10.1063/1.4930471.
- [24] M. Işık, Generalized vector-valued sequence spaces defined by modulus functions, J. Inequal. Appl. 2010, Art. ID 457892, 7 pp.
- [25] H. Kaplan and H. Çakallı, Variations on strong lacunary quasi-Cauchy sequences, J. Nonlinear Sci. Appl. 9(6) (2016) 4371–4380.
- [26] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philos. Soc. 100 (1986) 161–166.
- [27] H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27 (1951) 508-512.
- [28] F. Nuray and E. Savaş, Some new sequence spaces defined by a modulus function, Indian J. Pure Appl. Math. 24(11) (1993) 657–663.
- [29] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, Comment. Math. Univ. Carolin. 36(1) (1995) 69–76.
- [30] S. Pehlivan and B. Fisher, Some sequence spaces defined by a modulus, Math. Slovaca 45(3) (1995) 275–280.
- [31] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980) 139–150.
- [32] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959) 361–375.
- [33] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951) 73–74.
- [34] H. Şengül, Some Cesàro-type summability spaces defined by a modulus function of order (α, β) , Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 66(2) (2017) 80–90.
- [35] H. Şengül and M. Et, On lacunary statistical convergence of order α, Acta Math. Sci. Ser. B Engl. Ed. 34(2) (2014) 473–482.
- [36] Ş. Yıldız, Lacunary statistical delta 2 quasi Cauchy sequences, Sakarya University Journal of Science 21(6) (2017) 1408–1412.