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Abstract. Motivated by some recently established Jensen-type operator inequalities related to a convex
function, in the present paper we derive several more accurate Jensen-type operator inequalities for certain
subclasses of convex functions. More precisely, we obtain interpolating series of Jensen-type inequalities
utilizing log-convex and non-negative superquadratic functions. In particular, we obtain the corresponding
refinements of the Jensen-Mercer operator inequality for such classes of functions.

1. Introduction

Let B(%¢) be the C*-algebra of all bounded linear operators on a complex Hilbert space s# with an
identity I, and let B(.7¢), stand for the real subspace of B(.#’) consisting of all self-adjoint operators on ..
An operator A € B(57);, is called positive if (Ax, x) > 0 for all x € 7, and we then write A > 0. In addition,
we write A > 0 if A is a positive invertible operator. For A, B € B(J¢), we say B > Aif B— A > 0. Spectrum
of an operator A € B(J¢) is defined with

sp(A) = {A € C: A — Al is not invertible in B(J¢)} .

This set is non-empty and compact for operators in IB(#). A linear map ® on B() is said to be positive
if ®(A) > 0 for each A > 0 and is called unital if ®(I) = I.

The continuous functional calculus is based on the Gelfand map f +— f(A) which is a *-isometric
isomorphism between the C*-algebra C(sp(A)) of all complex-valued continuous functions acting on the
spectrum sp(A) of a self-adjoint operator A and the C*-algebra generated by I and A. The following
order preserving property is a consequence of the continuous functional calculus: If f, g € C(sp(A)), then
ft) = g(t), t € sp(A), implies that f(A) > g(A). For more details about continuous functional calculus, the
reader is referred to [5].
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A function f : ] - R is convex if

flax+ (1 -a)y) <af(x)+ (1 -a)f(y) 1)

for all @ € [0,1] and all x, ¥ € J. On the other hand, if @ ¢ [0,1] and x, y € ] such that ax + (1 — a)y € ], then
the last inequality takes form

af(x)+ (1 -a)f(y) < flax + (1 -a)y). ()

The relation (1) is the most simplest form of the Jensen inequality.

In this article we deal with operator inequalities of the Jensen-type. One of the most famous operator
forms of the Jensen inequality is the Davis-Choi-Jensen inequality which is related to operator convexity.
Recall that a continuous function f : ] — R is operator convex if f(aA + (1 — a)B) < af(A) + (1 — a)f(B)
holds for all A,B € B(5¢), with spectra in | and all a € [0,1]. The Davis-Choi-Jensen inequality asserts
thatif f : | — R is operator convex, then f(®(A)) < O(f(A)) holds for any unital positive linear map @ on
B(s¢) and any A € B(J¢);, with spectrum contained in J. For some other versions of the Jensen operator
inequality related to operator convexity, the reader is referred to monograph [5] and references therein.

On the other hand, considerable attention is also paid to operator Jensen-type inequalities referring to a
mere convexity. Among them, the Jensen-Mercer operator inequality (see [9]) asserts that if f : [m, M] = R
is a convex function and @y, ®,, ..., P, are positive linear maps on B(s7) with YL, @i(I) =1, then

f[M +m— Z @i(Aj) [ < f(M) + f(m) - Z @;(f(A) 3)
i=1 i=1
holds for all Ay, A, ..., A, € B(#), with spectra contained in the interval [m, M].

Recently, Moslehian et.al. [10], showed that if f : ] —» R is a continuous convex function and @ is a
unital positive linear map on B(%¢), then

f(®(B)) + f(P(C)) < D(f(A)) + D(f(D)) (4)

holds for A, B, C, D € B(#);, with spectra contained in | suchthat A+ D =B+Cand A<m<B,C<M<D
for two real numbers m < M. In particular, it has also been showed in [10] that the Jensen-Mercer inequality
(3) is a consequence of the Jensen-type inequality (4). It should be noticed here that some improvements of
operator relations (3) and (4) have been established in [11].

The main objective of the present paper is to derive interpolating operator inequalities for (3) and
(4) using certain subclasses of convex functions. More precisely, we will establish refinements of these
inequalities for log-convex and non-negative superquadratic functions. The paper is divided into three
sections as follows: after introduction, in Section 2 we give improved versions of (3) and (4) for log-
convex functions, while in Section 3 we derive the corresponding results for superquadratic functions. The
established Jensen-type relations will be given as interpolating series of inequalities.

2. Interpolating Jensen-type inequalities for log-convex functions

Recall that a non-negative function f : ] — R* is called log-convex if log f(t) is a convex function. That
is,
flax+(1-a)y) < f)*f(y)'™
for every x,y € J and a € [0,1]. Our main goal in this section is to refine the operator inequality (4) for
log-convex functions. To do this, we need some auxiliary scalar relations for such a class of functions.

It is easy to see that every log-convex function f : ] — R* is also convex. Namely, by virtue of the Young
inequality we have

flax+ (1 —a)y) < fE)* f )™ <af@) + 1 -a)f(y), (5)
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fora € [0,1] and x, y € J. Moreover, if a ¢ [0, 1] and ax + (1 — a)y € ], then the signs of inequalities in (5) are
reversed,

flax+ (1 -a)y) > f@)f(y)'™ 2 af@) + 1 - a)f(y). (6)

Clearly, the first inequality in (6) follows from convexity of log f and inequality (2). Moreover, the second
inequality in (6) follows from reverse of the Young inequality which asserts that aa + (1 — a)b < a®b'~* holds
for positive numbers 4, b and for real number « ¢ [0, 1] (for more details, see [3]).

Now, we give improved forms of left inequalities in (5) and (6). The corresponding result is due to
Sababheh [12, 13]. For the reader’s convenience, we give it here in a simpler form, which will be more
suitable for the purpose of the present paper.

Lemma 2.1. Let f : ] = R* be alog-convex function, x, y € J, and r(a) = min{er, 1 — a}, where @ € R. If a € [0, 1]

and K¢(x, y) = %, then
flax+ (1= a)y) < Kelx, p) D f0 f(9)' ™ < af(x) + (L - a)f(y). )

In addition, if « ¢ [0,1] and ax + (1 — a)y € ], then the inequality signs in (7) are reversed.

Proof. We first show the left inequality in (7). To do this, we consider two cases depending on weather
a €0, %] orae [%,1]. Ifa €0, %], then

ty

flax+ (1 -a)y) :f(Za(x )+(l—20z)y)

< f(HTy)M F)I  (by inequality (5))

= Ky, y)" f()* ()" (®)

Further, if a € [%, 1],then1 —a €0, %], so that

Flax+(1-a)y) = f((1 —2(1—a)x+2(1 —a)(x+y))

2
sﬂw%ﬂd¥¥fm)wwmwmww>
= Ky, 1) 0" ) ©)

Therefore, by virtue of (8) and (9) we have
flax+ (1 = a)y) < Kelx, )" @ f)* f)' =,

as required. The right inequality in (7) holds by log-convexity of f. Namely, since f? (HTy) < f0f(y), it

follows that K¢(x, y)"® < 1, so the right inequality in (7) is weaker than the corresponding inequality in (5).
It remains to prove the corresponding relations with reversed signs of inequalities. Let a ¢ [0, 1] such
that ax + (1 — a)y € J. Following the lines as in (8) and (9), and utilizing (6) instead of (5), we have

flax+ (1= a)y) = Kex, p)* fQ)* f(»)' ™", <0,
and

flax+ (1 -a)y) = Kelx, ) " f @) f ()™, a>1,
that is, we have

flax+ (1= a)y) > Kelx, ) f0 f(y)' ™

Finally, the second inequality in (8) with the reversed sign of inequality holds due to the fact that K (x, y)"® >
1forr(a) <0. O
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Remark 2.2. We have already mentioned that Lemma 2.1 has been established by Sababheh in a more general form.
For more details, the reader is referred to references [12, 13].

Remark 2.3. It should be noticed here that the first inequality in (7) can also be established as a consequence of the
so-called superadditivity property of the Jensen functional. For more details, the reader is referred to [8].

We are ready to prove the first result in this section.

Theorem 2.4. Let f : | — R* be a continuous log-convex function and let A, B, C,D € B(J¢);, be operators with
spectra contained in | such that A <m < B,C < M < D for real numbers m < M. If one of the following conditions

() B+C<A+D and f(m)< f(M)
({)A+D<B+C and f(M)< f(m)

holds, then
fB) + f(O) ~
< Kp(m, M)P f(m) ¥ f(M)FE + Ky(m, M)C f(m) 35 f(M)7en
< BT fm + S )
< Kp(m, MY f(m) 5 FM)I5 + K (m, M)P f(m) 30 £(M) 75
< f(A) + f(D),
where F = 1 — |t — M| and K(m, M) is defined in Lemma 2.1,

Proof. First, it should be noticed here that

r(M_t)—min{M_t t—m}_l_ 1 ‘t_m+M‘_—tv
M-m)~ M—-m'M-m] 2 M-m 2 |

Further, Lemma 2.1 implies that

M-t t—m
f(f)Zf(M_m~m+M_mM)
< Ky(m, M) f(m) ¥ f(M) P
M-t t—m
A/ + = f)
_ foD— fom),  fomM — fM)m
- M-m M-m

<

(10)

holds for t € [m, M], while for t € | \ [m, M] the inequality signs in (10) are reversed. Now, since A < m <
B,C < M £ D, applying the functional calculus to (10) yields

B—m

F(B) < Kp(m, M)? f(m)En f(M) 5
QD) = fm) |, Fm)M —

T Mem M-m -~ (11)
f(C) < K¢(m, M)Ef(m)%f(M) cm
SO - flm) . femM - f(M)m N

- M-m M-m !
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FIA) > Kp(m, MY f(m) 550 £(M) 5

SO0~ fn) M = fMm
M-m M-m

and

f(D) = Kf(m,M)Ef(m)Miﬁ f(M)ﬁi”"’,
, SO = fom) o femM - f@M)m
M—m M-m
Therefore, if one of conditions (i) or (ii) in the statement of Theorem is fulfilled, we have
f(B)+ f(C)
= Kf(m/M)Bf(m)ﬁf(M)% + Ks(m, M)Cf(m)?/1/1%5,f(]\/j)ﬁf_':1
f) - fm) Fom)M — f(Mym
< W(B +C)+ ZW
f@0 - f(m) Fm)M — FMym
< W(A + D) + ZW
< Kp(m, MY f(m) ¥ (M) + K (m, M)P f(m) ¥ F(M) ¥
< f(A) + f(D),

which completes the proof. O

Our first application of Theorem 2.4 refers to a power function f : R* — R* defined by f(x) = x, p <0.
Obviously, f is log-convex and we have the following consequence.

Corollary 2.5. Let A, B,C, D € B(5)), be positive invertible such that 0 < A < m < B,C < M < D for non-negative
real numbersm < M. If A+D < B+ Candp <0, then

B < (2 M )ZPBm;o(ﬁ:,i)W(%) (2 M )ZPCmmﬁ:ﬁ)W(ﬁ::z
2VmM 2VmM
2M-B-C B+C—2m
< P+ M
- M-m " M-m
< (Mf’”‘*mp(% M) (M)zf’l’mm%wm‘l
2VmM 2VmM
< AP+ DP,

where t is defined as in Theorem 2.4.

Remark 2.6. Let m and M be real numbers such that m < M. In [10], the authors defined the subset () of
B(S), x B(A), by Q = {(A, B),A<m< % <M< B}. Now, if f : | = R* is a continuous log-convex function
and (A, D) € Q with spectra contained in |, we obtain the Jensen-type relation

f(A+D

A+D-2m

) < Kf(m,M)r%Df(m)%f(M) 2AM=m)
2M-A-D A+D-2m
< Soi—m " S /M

A-m 1 D-m

< %Kf(m,M)gf(m)%f(M)M*m + EKf(m,M)ﬁf(m)%f(M)Mfm

< 2f(A)+ 2 fD).

Clearly, this follows by putting B = C = 432 in Theorem 2.4.
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Our next intention is to establish a variant of Theorem 2.4 containing unital positive linear mappings
The following result provides the interpolating series of inequalities for relation (4), established in [10]

Theorem 2.7. Let f : | — R" be a continuous log-convex function and let A, B, C,D € B(J¢);, be operators with

spectra contained in | such that A+ D = B+ Cand A <m < B,C <M < D for real numbers m < M. If ®isa
unital positive linear map on B(H), then

D(f(B)) + D(F(C)) < D (Kp(m, M)® f(m) 5 f(M)T)

+ Ky, M)° ) 5 (07 )

m%fw+qﬂ) ®@+Q:mﬂM)

< Kf(m M)CD(A)f(m M QA) -

M-m

M=D(D) D(D)-m

+ Ky(m, M)Q‘D)f(m) o f(M) i
< f(P(A)) + f(P(D)),

1

where t = 1 — yym— |t - @’ and K¢(m, M) is defined in Lemma 2.1.

1
2

Proof. Applying the positive linear map ® to relations (11) and (12), we have

D(f(B)) < q’(Kf(m M)Bf(m)M " F(M) )

M=) ®(B) —m

W T+ 2 SO

and

P(F(C) < @ Ky, M) Fom) 5 Fu) )

< M2 iy 4 PO g,

Moreover, since P(A) < mand M < @(D), utilizing the scalar relation (10) with reversed signs of inequalities,
we have

F@(A)) = Ky(om, MY fm) o f(M) 55

M- ®(A) @M)m
> e S faw

and

F@(D)) = Ky(m, M)*® f(m) T () 35

M —-O(D D
> VPO iy PO gy

Now, adding relations for ®(f(B)) and ®(f(C)), taking into account that B+ C = A+D, and utilizing estimates
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for f(P(A)) and f(P(D)), we have

D(f(B)) + D(F(C)) < D (Kp(m, M)® f(m) 5 f(M)T)
+ O (Kf(m, M F(m)¥5 Fvy 2 ";,)
2M - ®(B +C OB +C) -2
< ﬁﬂm) S mf(M)
_2M- cD(A +D) <I)(A + D)
M CD(A M= A oy + (I)(A) mf(M)

M—-d(D (D
' M_fn)f(m>+ fw) Fau

M (D(A DA)-m
< Ky(m, MP@ £y f(m)

® Foay
+ Ky, MY fam) 75" F()
< f@(A) + F(@(D)),

f (M)

which completes the proof. [

4529

Remark 2.8. Suppose that the assumptions of Theorem 2.7 are fulfilled. Then, according to the same argument as in

the proof of Theorem 2.7, we easily get the following interpolating series of inequalities:

D(B)—m

F@B)) + F(D(C)) < Ky(m, M)®® £(m) 5 (M) e

—-D(C) D(C)—m

+Kp(m, M)GJ(C) f(m) e f (M) e
2M — (B + C) OB +C) -
< B SR

A-m

<q>(1<f (m, MYA () ¥En (M) )

= fv)

+ @ (Kp(m, M)P f(m) 5 (M) 75
< O(f(A)) + O(f(D))

and

O(f(B) + F(@(C)
< (Ky(m, M)Bf<m>ﬁf<M>ﬁi'&)

DC)-m

+ Kym, W)™ flam) 55 ) 5

2M — ®(B + C) DB +C) -
IR M—
< Ky, M) f(m) 55 M)

D-m

+ @ (Ky(m, M)P f(m) ¥ f(M) e )
< f(D(A)) + O(f(D)).

= fav)

Our next intention is to establish interpolating series for the Jensen-Mercer inequality (3). To do this, we

give a multidimensional version of the interpolating series from the previous remark.
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Corollary 2.9. Let f : | = R" be a continuous log-convex function. Let A;, Bi, C;, D; € B(5);, be operators with
spectra contained in | such that A;j + D; = B + Ciand A; <m < B;,C; <M < D;,i=1,2,...,n, for real numbers
m < M. If @y, Dy, - -+, @, are positive linear maps on B() satisfying Y.ir; Pi(I) = I, then

Zn: qu(Ci)]
pa

< 30 (Km, 207 ) )5 )
i=1

D OB+ f
i=1

M—Z;’:l D;(C;) ;l:l D;(C;)-m

n a z
+ Kf(m/ M)Zizl CI’,(Ci)f(m) M- f(M) M-
2M - YL, ©i(Bi + Ci) Y @i(Bi + Ci) — 2m
: M—m S M-

L @i4) LI, @i(4;)-m

< Ks(m, MYZi @A) £y = — f(M) ™ 7w

fM)

& 30 (K, P )2 ) )
i=1

<f [Z i(4)
i=1

Remark 2.10. Suppose that B; € B(¢),, i =1,2,...,n, are operators with spectra contained in [m, M], and let ®;,
i=1,2,...,n, be positive linear maps on B(J€) such that };_, ®;(I) = I. Then, Corollary 2.9 provides interpolating
series of the Jensen-Mercer inequality for continuous log-convex function on [m, M]. To see this, we first define
Ci=M+m-B;i=1,2,...,n. Clearly, m < C; < M and B; + C; = M + m. Now, setting A; = ml and D; = MI,
i=1,2,...,n, Corollary 2.9 reduces to

+ ) D(F(Dy).
i=1

Y ou(f(B)) + f(M -y cp,-(B,-)}
i=1 i=1

Yo (Kt WP oy %y )
i=1

" ®i(B)-m M-T1 ®;(B))

+ Kf(m, M)M+m_i\;’:1 q’i(Bz)f(m) E e f(M) ik
< f(m) + f(M),

since Y1 ®i(Bi + Cj) = Yl @i((m + M)I) = m + M and m = M=0. Clearly, this yields a term that interpolates
between the left-hand side and the right-hand side of the Jensen-Mercer inequality (3).

3. Employing superquadraticity

Our goal in this section is to derive analogues of the results from the previous section for superquadratic
functions.

For the reader’s convenience, we recall the definition and several basic properties of superquadratic
functions, introduced by Abramovich et.al. [1] (for more details, see also [2]). A function f : [0,00) — Riis
called superquadratic provided that for each s > 0 there exists a constant c; € R such that

f®) = f(s) = flt = s) 2 cs(t = 5) (13)

holds for all ¢ > 0. Superquadratic functions are closely connected to convex functions. In particular, at the
first glance, condition (13) seems to be stronger than convexity. However, if f takes negative values, it may
be considerably weaker. Just to see how poorly behaved superquadratic functions can be, we note that any
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function f with values in the closed interval [-2, —1] is superquadratic, since in this case the left-hand side
of (13) is non-negative, so we can put ¢; = 0. On the other hand, non-negative superquadratic functions are
much better behaved, namely, they are convex.

A common example of a superquadratic function is a power function. Namely, it has been showed in
[1] that a function f : [0, o) — R defined by f(x) = *” is superquadratic for p > 2.

One of the most useful characterizations of superquadratic functions is an extension of the Jensen
inequality, given here in the most simplest form. A function f : [0, 0) — R is superquadratic if and only if

flax+ (1 =a)y) <af(x) + (1 -a)f(y) - af((1 - a)lx = y)) = (1 — a) f(alx - y)) (14)

for every x,y € ] and a € [0, 1]. This relation will be the crucial point in this section. For more generalized
form of (14) the reader is refered to [1].

Now, we are able to give the main result in this section, that is, an analogue of Theorem 2.7 for
superquadratic functions. In the case of a non-negative superquadratic function, the following theorem
provides a refinement of the Jensen-type inequality (4).

Theorem 3.1. Let f : [0,00) — R be a continuous superquadratic function and let A, B, C, D € B(57)y, be such that
A+D=B+Cand0 <A <m < B,C <M < D, for non-negative real numbers 0 < m < M. If @ is a unital positive
linear map on B(J7), then

F(@(B) + F@(O)
<c1>(f(A)>+c1>(f(D>)—AL"?f@(B)— m) - D2 (0 - a®)
M- (D(C) D(0)-
P f@iey - m) - D2 v - o(0)) - o(fom - )
- q’(A)ﬂM )—<I>(f(D—M))—Mf(M m). (15)

M-

Proof. We utilize characterization (14) of a superquadratic function. Namely, if ¢ € [m, M], then considering
(14) withx = m, y = M and a = #=L provides

M t—m M-t t—m
f6) < V= M~ [ m - (M-,

If t < m, then m € [t, M] so applying (14) withx =+, y = M and a = 22 it follows that

f> T M) + flm = )+ T FM ),

Finally, if t > M, then M € [m, t], so puttingx =m,y =tand a = EM (14) yields

t—m

f(t) = M) + 5 f(M m).
Now, since m < ®(B), ®(C) < M, applying functional calculus to the first scalar inequality, we have
fam) < T2 g 4 %ﬂm
M fD(B) d(B) —m
ST F@(B) = m) = =2 (M - (B)
and
M - d(C) qD(C)
FOC) < T2 flm) + = 2 (M)
_M-90) @©) -
S S (@(C) = m) = = f(M - @(O).
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Similarly, since A < m and M < D, applying functional calculus to the remaining two scalar inequalities
and then, taking into account linearity of @, we obtain

M D(A) q>() m

a(f) > D oy + SE fay
va(fon - Ay + 22D gy
and
(D) 2 2D iy + DO
+ (D - M) + ;ALf(M m).

Now, summing the estimates for f(®(B)) and f(P(C)), it follows that

F@O(B) + F(@(O)
<1@®) - 52O fae) - m) - DO i ey
+ L@(O) - %f@(@ —my = XL - a0,

where L(t) = +=L f(m) + 2% f(M). In addition, since A + D = B + C, the right-hand side of the latter
inequality can be rewrltten as

M- (D(B) _O(B) -

DL(A)) + O(LD)) - —r— —f(P(B) - V= f (M — ®(B))
M- (D(C) " o) -
N @€ mf(M - 9(Q)),

due to linearity of @ and L. Finally, taking into account estimates for ®(f(A)) and ®(f(D)) we get (15), as
claimed. O

Our next application of Theorem 3.1 refers to power superquadratic functions. We have already dis-
cussed that a power function f(t) = #*, t > 0, is superquadratic for p > 2. Applying Theorem 3.1 to such a
class of functions, we obtain the following result.

Corollary 3.2. Let A,B,C,D € B(J)y, be such that 0 < A <m < B,C < M < D, for non-negative real numbers
m < M, and let ® be a unital positive linear map on B(J). If A+ D =B+ Cand p > 2, then

O(BY + D(C)
+ MM @(B)(@(B) my + %(M_ by
+ MM;'D(C)@(Q my + LMy
< @A)+ 0(0") @ - ) - P gy
~ (D - MY) - M(M .

M-

Remark 3.3. Suppose that the assumptions as in Theorem 3.1 are fulfilled. Then, similarly to Remark 2.8 we also
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obtain the following two versions of Theorem 3.1:

QF(B) + F(C)
<f®m»+ﬂ@m»—M 2O o3 - m - 22 pua - )
-2 w0 - my - S - 0() - o - ()
- QAUM4 m) — f@) - M)~ DM g )
and
F(O(B) + D)
s@qm»+ﬂm0»——lgg¥@wrmﬂ—??;fﬂM—®w»
-2 w0 - my - S - 0() - s - )
- @AUM4 m) — f@) M)~ DM piar )

4533

(16)

Now, our goal is to establish improved version of the Jensen-Mercer inequality (3) based on su-
perquadraticity. To do this, we first give multidimensional versions of inequalities (15) and (16). Namely,

following the lines of the proof of Theorem 3.1, we obtain the following result.

Corollary 3.4. Let f : [0,00) — R be continuous superquadratic function. Let A;, Bi, Ci, D; € B(I)y, be such that
Ai+D;=Bi+Ciand 0 < A; <m<B;,C;<M<D;i=1,2,...,n, for non-negative real numbers m < M. If

@y, Dy, -+, Dy, are positive linear maps on B(H) satisfying Y.y ©i(I) = I, then
f[_z Di(B;) | + f[_z D;(C))

L M-TL 0(B) z,le) Zcp(B)-) 2,1<D(B) [ Z )
i=1

M L PG ’1®(C) ZCD(C)—m +Z’1®(C) cp(ci)
: -IL, o4 z>
<) Pilf(A)) + Z (D) - Z @i(fm - A9) - T v m
i=1 i=1 i=1
u ;’=] (Di(Di) -M
L Pi(fDi = M) = = —— fM—m)
and
Y. duf B+ F| Y 0C)
i=1 i=1

n

- it i(B)) —
Z O,(f(B) - mJ + ZlM# [M Z o((B; >>]

N M-Y, ®i(B;)
M-m

n

Z@(C)— ] 4 L OGO o CI)1'((:1')_mf[A/I— (C1)

M-m p
f Z q>,-(A,-)] + Z ®(f(Di)) - f[m - Z @z-(A,-))
i=1 i=1 i=1

m =Y, Pi(A) -
iy fM-m) - _,: i(f (D; = M) -

M- Z,1®(C)
+

i1 @i(Di) -M

e f(M = m).
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Remark 3.5. Suppose that B; € B(),, i = 1,2,...,n, are positive operators with spectra contained in [m, M] C
[0,00), and let ®;, i = 1,2,...,n, be positive linear maps on B() such that Y,i_; ®;(I) = I. Then, Corollary
3.4 provides refinement of the Jensen-Mercer inequality for continuous non-negative superquadratic function f :
[0, 00) = R. To see this, defineC; =M +m—B;i=1,2,...,n. Obviously, m < C; < Mand B; + C; = M +m. Now,
setting Ay = mland D; = MI,i=1,2,...,n, the second inequality in Corollary 3.4 reduces to

f[M +m— i CD,'(BZ')

i=1

L M-TL @) Z,lcb(B)[Zq)(f(B ] %[M_ cD,-(f(B,-))]
=1

Y, (B M- z:l <1><B> i
—1Mm [ Z@(B)] 1 [Z@(B) ]

< fm)+ fM) — Z @(f (B:) - 2£(0),
i=1

which represents more accurate form of the Jensen-Mercer inequality (3) in the case of a non-negative function f.

If @ is an identity map, then the condition A + D = B + C in Theorem 3.1 can be relaxed, as in Theorem
2.4 from the previous section. In fact, the following result is an analogue of Theorem 2.4 for superquadratic
functions.

Theorem 3.6. Let f : [0,00) — R be continuous superquadratic function and let A, B, C,D € B(J)y, be such that
0 <A <m<B,C<M <D, for non-negative real numbers 0 < m < M. If one of the following conditions

() B+C<A+D and f(m)< f(M)
({)A+D<B+C and fM)< f(m)

holds, then
F(B) + F(C) + T f(M - B) + 1= F(C~ m)
P -0y M g
< ) + D) = flm = A) = =2 s m)
- D= M) = T FM ).

Proof. Since A <m < B,C <M < D, utilizing the scalar inequalities derived in the proof of Theorem 3.1, we
have

fM) — fm) , fm)M — f(M)m

fB) < M-m B+ M-m
B B-m

T f(B=m) = = f(M - B)

f(M)—f(m) fmM — f(M)m
f(C) < C+ -

M C C-m

——f(C— —M—fM 0),

fM) = fm) , fmM — f(M)m
fé) 2 M-m A+ M-m

+ flm = A)+ =M = m)
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and
fM) - f (m) f (m)M — f(M)m
fb)y= M-m M-m
+ D~ M)+ D fM

Now, summing the estimates for f(B) and f(C), and taking into account that % (B+C) < % (A+D),
it follows that

f(B) + f(O)
M- f(m) fmM — f(M)m M-B
-C C-m
—mf(M ~B) = $ T f(C = m) — = f(M ),

Finally, the result follows by taking into account estimates for f(A) and f(D). O

Remark 3.7. If f : [0,00) — R is a continuous superquadratic function and (A, D) € Q, where Q is defined in
Remark 2.6, then Theorem 3.6 implies the inequality

(A+D) A+D-2m ( _A+D) 2M—-A-D (A+D_m)

2 2(M — m) 2 2(M — m) 2
1 1 1 1 m—-A+D-M
< Ef(A)JrEf(D)—Ef(m—A)—Ef(D—M)—Wf(M—m)-

Remark 3.8. It should be noticed here that some related Jensen-type operator inequalities for superquadratic functions
have been studied in [4, 6, 7].
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