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Hyers-Ulam Stability of Hyperbolic Möbius Difference Equation

Young Woo Nama

aMathematics Section, College of Science and Technology, Hongik University, 339–701 Sejong, Korea

Abstract. Hyers-Ulam stability of the difference equation with the initial point z0 as follows

zi+1 =
azi + b
czi + d

is investigated for complex numbers a, b, c and d where ad− bc = 1, c , 0 and a + d ∈ R \ [−2, 2]. The stability
of the sequence {zn}n∈N0 holds if the initial point is in the exterior of a certain disk of which center is − d

c .
Furthermore, the region for stability can be extended to the complement of some neighborhood of the line
segment between − d

c and the repelling fixed point of the map z 7→ az+b
cz+d . This result is the generalization of

Hyers-Ulam stability of Pielou logistic equation.

1. Introduction

Difference equation is the recurrence relation which defines the sequence and each of which terms
determines the proceeding terms. For the introduction of difference equation, for example, see [4]. The first
order difference equation is of the following form

zi+1 = 1(i, zi)

for all integer i ≥ 0. In 1940, Ulam [13] suggested the problem concerning the stability of group homomor-
phisms: Given a metric group (G, ·, d), a positive number ε, and a function f : G → G which satisfies the
inequality d

(
f (xy), f (x) f (y)

)
≤ ε for all x, y ∈ G, do there exist an homomorphism a : G→ G and a constant

δ depending only on G and ε such that d
(
a(x), f (x)

)
≤ δ for all x ∈ G? A first answer to this question was

given by Hyers [5] in 1941 who proved that the Cauchy additive equation is stable in Banach spaces.
The difference equation has Hyers-Ulam stability if each terms of the sequence with the given relation has
(small) error, this sequence is approximated by the sequence with same relation which has no error. Hyers-
Ulam stability of difference equation is relatively recent topic. For example, see [8–11]. In particular, Pielou
logistic difference equation has Hyers-Ulam stability only if the initial point of the sequence is contained
in definite intervals in [10]. In the same paper, this result is extended to the following difference equation
over R

xi+1 =
axi + b
cxi + d
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where ad − bc = 1, c , 0 and (a + d)2 > 4 for real numbers a, b, c and d. In this article, we generalize the
result of difference equations on the complex plane Cwhere a + d is real and it satisfies that (a + d)2 > 4 with
complex numbers a, b, c and d.

Möbius map

Linear fractional map on the Riemann sphere Ĉ = C∪ {∞} is called Möbius map or Möbius transformation.

1(z) =
az + b
cz + d

where ad − bc , 0 for z ∈ Ĉ.

The non-constant Möbius map 1(z) = az+b
cz+d has the following properties.

• Without loss of generality, we may assume that ad − bc = 1.

• 1(∞) is defined as a
c and 1

(
−

d
c

)
is defined as∞.

• The composition of two Möbius maps is also a Möbius map.

• The map 1 is the linear map if and only if∞ is a fixed point of 1.

• The image of circle or line under Möbius map is circle or line.

The matrix representation of Möbius map is useful to classify Möbius map qualitatively. In particular, the
equation az+b

cz+d =
paz+pb
pcz+pd holds for all p , 0. We define the matrix representation of Möbius map z 7→ az+b

cz+d as

follows
(

a b
c d

)
where ad − bc = 1. We denote the matrix representation of Möbius map 1 by also 1 unless it

makes confusion. Denote the trace of the matrix representation of Möbius map 1 by tr(1).

Main content

In Section 3, Hyers-Ulam stability of the sequence defined by hyperbolic Möbius map on the exterior
of the disk of which center is 1−1(∞) with a certain radius. This is the direct generalization of Hyers-Ulam
stability of Pielou logistic equation in [10] on the complex plane. In Section 5, the avoided region at ∞ is
defined as the complement of the closure of the neighborhood of the line segment between 1−1(∞) and the
repelling fixed point of 1. In Section 7, Hyers-Ulam stability of 1 is proved in the complement of an avoided
region.

2. Hyperbolic Möbius map

The trace of matrix is invariant under conjugation. Thus qualitative classification of Möbius map
depends on the trace of matrix representation.

Definition 2.1. If the matrix representation of the non-constant Möbius map
(

a b
c d

)
has its trace a + d, say tr(1), is in

the set R \ [−2, 2], then the map 1 is called the hyperbolic Möbius map.

Denote the fixed points of 1 by α and β. If |1′(α)| < 1, then α is called the attracting fixed point. If |1′(β)| > 1,
then β is called the repelling fixed point.

Lemma 2.2. Let 1 be the hyperbolic Möbius map such that 1(z) = az+b
cz+d where ad− bc = 1 and c , 0. Then 1 has two

different fixed points, one of which is the attracting fixed point and the other is the repelling fixed point.
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Proof. The fixed points of 1 are the roots of the quadratic equation

cz2
− (a − d)z − b = 0

Denote the fixed points of 1 as follows

α =
a − d +

√
(a + d)2 − 4
2c

and β =
a − d −

√
(a + d)2 − 4
2c

. (1)

Observe that α + β = a−d
c and αβ = − b

c . Thus we have the following equation

(cα + d)(cβ + d) = c2αβ + cd(α + β) + d2

= −bc + d(a − d) + d2

= −bc + ad
= 1 (2)

Since 1 is the hyperbolic Möbius map, that is, a + d > 2 or a + d < −2, without loss of generality we may
assume that a + d > 2. Then we obtain the following inequality using the equation (1)

cα + d =
a + d +

√
(a + d)2 − 4
2

>
a + d

2
> 1. (3)

Since 1′(z) = 1
(cz+d)2 and by the equations (2) and (3), we obtain that 1′(α) = 1

(cα+d)2 < 1 and 1′(β) = 1
(cβ+d)2 >

1.

Lemma 2.3. Let 1 and h are Möbius map as follows

1(z) =
az + b
cz + d

and h(z) =
z − β
z − α

where α and β are the fixed points of 1 and ad − bc = 1. If α , β, then h ◦ 1 ◦ h−1(w) = kw where k = 1
(cβ+d)2 . In

particular, if 1 is the hyperbolic Möbius map and β is the repelling fixed point, then k > 1.

Proof. The maps 1 and h are Möbius map. Thus so is h ◦ 1 ◦ h−1. By the direct calculation, we obtain that
h−1(w) =

αw−β
w−1 . Observe that h−1(0) = β, h−1(∞) = α and h−1(1) = ∞. Then we have

h ◦ 1 ◦ h−1(0) = h ◦ 1(β) = h(β) = 0

h ◦ 1 ◦ h−1(∞) = h ◦ 1(α) = h(α) = ∞

The points 0 and∞ are fixed points of h◦1◦h−1. So h◦1◦h−1(w) = kw for some k ∈ C. Since k = h◦1◦h−1(1),
the following equation holds by (1) and (2)

k = h ◦ 1 ◦ h−1(1) = h ◦ 1(∞) = h
(a

c

)
=

a
c − β
a
c − α

=
a − cβ
a − cα

=
a + d +

√
(a + d)2 − 4

a + d −
√

(a + d)2 − 4

=
cα + d
cβ + d

=
1

(cβ + d)2 .

If 1 is the hyperbolic Möbius map, then k = 1
(cβ+d)2 = 1′(β) > 1 by the proof of Lemma 2.2.
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Lemma 2.4. Let 1 be the hyperbolic Möbius map on Ĉ. Let α and β be the attracting and the repelling fixed point
respectively. Then

lim
n→∞
1n(z)→ α as n→ +∞

for all z ∈ Ĉ \ {β}.

Proof. By the classification of Möbius map, the hyperbolic Möbius map has both the attracting and the
repelling fixed points. Let h be the linear fractional map as follows

h(z) =
z − β
z − α

.

Then f = h ◦ 1 ◦ h−1 is the dilation with the repelling fixed point at zero, that is, f (w) = kw for k > 1. Thus
0 is the repelling fixed point of f . Since h is a bijection on Ĉ, the orbit, {1n(z)}n∈Z corresponds to the orbit,
{ f n(h(z))}n∈Z by conjugation h. Observe that

f n(z)→∞ as n→ +∞

for all z ∈ Ĉ \ {0}. Hence,
1n(z)→ α as n→ +∞

for all z ∈ Ĉ \ {β}.

Corollary 2.5. Let 1 be the map defined in Lemma 2.4. Then

lim
n→∞
1−n(z)→ β as n→ +∞

for all z ∈ Ĉ \ {α}.

Proof. Observe that 1−1 is also hyperbolic Möbius transformation and β and α are the attracting and the
repelling fixed point under 1−1 respectively. Thus we apply the proof of Lemma 2.4 to the map 1−1. It
completes the proof.

We collect the notions throughout this paper as follows

• The Möbius map 1 is the hyperbolic Möbius map and 1(z) = az+b
cz+d where ad − bc = 1 and c , 0.

• The Möbius map h is defined as h(z) =
z−β
z−α where α and β are the attracting and the repelling fixed

points of 1.

• Without loss of generality, we may assume that the hyperbolic Möbius map 1 has the matrix repre-
sentation with tr(1) > 2.

• Since the trace of matrix is invariant under conjugation, we obtain that tr(1) = tr(h◦1◦h−1). By Lemma
2.3, if tr(1) > 2, then

tr(1) = tr

√k 0
0 1

√
k

 =
√

k +
1
√

k
> 2.
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3. Hyers-Ulam stability on the exterior of disk

Let F be the function fromN0 × C to C. Suppose that for a given positive number ε, a complex valued
sequence {an}n∈N0 satisfies the inequality

|ai+1 − F(i, ai)| ≤ ε

for all i ∈N0 where | · | is the absolute value of complex number. If there exists the sequence {bn}n∈N0 which
satisfies that

bi+1 = F(i, bi)

for each i ∈N0, and |ai − bi| ≤ G(ε) for all i ∈N0 where the positive number G(ε) converges to zero as ε→ 0,
then we say that the sequence {bn}n∈N0 has Hyers-Ulam stability. Denote F(i, z) by Fi(z) if necessary.

The set S is called an invariant set under F (or S is invariant under F) where for any s ∈ S we obtain that
F(i, s) ∈ S for all i ∈N0.

Lemma 3.1. Let F : N0 × C→ C be a function satisfying the condition

|F(i,u) − F(i, v)| ≤ K|u − v| (4)

for all i ∈ N0, u, v ∈ C and for 0 < K < 1. For a given an ε > 0 suppose that the complex valued sequence {ai}i∈N0

satisfies the inequality

|ai+1 − F(i, ai)| ≤ ε (5)

for all i ∈N0. Then there exists a sequence {bi}i∈N0 satisfying

bi+1 = F(i, bi) (6)

and

|bi − ai| ≤ Ki
|b0 − a0| +

1 − Ki

1 − K
ε

for i ∈ N0. If the whole sequence {ai}i∈N0 is contained in the invariant set S ⊂ C under F , then {bi}i∈N0 is also in S
under the condition, a0 = b0.

Proof. By induction suppose that

|bi−1 − ai−1| ≤ Ki−1
|b0 − a0| +

1 − Ki−1

1 − K
ε.

If i = 0, then trivially |b0 − a0| ≤ ε. Morover,

|bi − ai| ≤ |bi − F(i − 1, ai−1)| + |ai − F(i − 1, ai−1)|

≤ |F(i − 1, bi−1) − F(i − 1, ai−1)| + |ai − F(i − 1, ai−1)|

= K|bi−1 − ai−1| + ε

≤ K
{

Ki−1
|b0 − a0| +

1 − Ki−1

1 − K
ε

}
+ ε

= Ki
|b0 − a0| +

1 − Ki

1 − K
ε.

Moreover, if a0 = b0, then the sequence {bi}i∈N0 satisfies the inequality (5) without error under F. Hence,
{bi}i∈N0 is contained in the invariant set S.
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Figure 1: Image of the disk under hyperbolic Möbius map

The real version of the following lemma is proved in [10] as 1 is the map defined on the real line.

Lemma 3.2. Let 1 be the Möbius map 1(z) = az+b
cz+d where a, b, c and d are complex numbers, ad − bc = 1 and c , 0.

Let the region S(r) and T(r) be as follows

S(r) =

{
z ∈ C :

∣∣∣∣∣z +
d
c

∣∣∣∣∣ > r
|c|

}
, T(r) =

{
z ∈ C :

∣∣∣∣z − a
c

∣∣∣∣ < 1
r|c|

}

for r > 0. Then 1(S(r)) = T(r) \
{a

c

}
for any r > 0. Moreover, if 1 is hyperbolic Möbius map and r + 1

r < |tr(1)|, then

the closure of T(r) is contained in S(r).

Proof. The set S(r) is contained inC and 1(∞) = a
c . Then S(r) does not have a

c . The equation 1(S(r)) = T(r)\
{a

c

}
for any r > 0 is shown by the following equivalent conditions

1(z) ∈ T(r) \
{a

c

}
⇐⇒ 0 <

∣∣∣∣∣az + b
cz + d

−
a
c

∣∣∣∣∣ < 1
r|c|

⇐⇒ 0 <
∣∣∣∣∣ ad − bc
cz2 + cd

∣∣∣∣∣ < 1
r|c|

⇐⇒ 0 <
1∣∣∣z + d

c

∣∣∣ < |c|r
⇐⇒

∣∣∣∣∣z +
d
c

∣∣∣∣∣ > r
|c|

⇐⇒ z ∈ S(r).

Additionally, suppose that 1 is the hyperbolic map and r + 1
r < |tr(1)|. The closure of T(r) is the set of points
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satisfying that
∣∣∣z − a

c

∣∣∣ ≤ 1
r|c| . Then for any z in the closure of T(r), we obtain that

|cz + d| = |cz − a + a + d|
≥ −|cz − a| + |a + d|

= −|c| ·
∣∣∣∣z − a

c

∣∣∣∣ + |tr(1)|

> −|c| ·
r
|c|

+ r +
1
r

=
1
r

Then we have
∣∣∣z + d

c

∣∣∣ > 1
r|c| , that is, z ∈ S(r). Hence, the closure of T(r) is contained in S(r) if r + 1

r < |tr(1)|.

Proposition 3.3. Let 1 be the hyperbolic Möbius map with tr(1) = 2 + τ for τ > 0. Let S(r) be the region defined in
Lemma 3.2. For a given ε > 0, let a complex valued sequence {ai}i∈N0 satisfies the inequality

|ai+1 − 1(ai)| ≤ ε

for all i ∈N0. Suppose that ε < t
|c|(1+t) and a0 is in S(1 + t) for 0 < t ≤ τ. Then the sequence {an}n∈N0 is contained in

S(1 + t). Moreover, there exists the sequence {bi}i∈N0 satisfying

bi+1 = 1(bi)

for each i ∈N has Hyers-Ulam stability where b0 = a0.

Proof. For the map

1(z) =
az + b
cz + d

we may assume that ad − bc = 1. Recall that 1′(z) = 1
(cz+d)2 . Thus |1′| has a uniform upper bound in S(1 + t)

as follows

z ∈ S(1 + t)⇐⇒
∣∣∣∣∣z +

d
c

∣∣∣∣∣ > 1 + t
|c|

⇐⇒ |cz + d| > 1 + t

⇐⇒ |1′(z)| =
1

|cz + d|2
<

1
(1 + τ)2 < 1. (7)

claim : If a0 ∈ S(1 + τ) and ε < τ
|c|(1+τ) , then the whole sequence {ai}i∈N0 is also contained in S(1 + τ). By

induction assume that ai−1 ∈ S(1 + τ). Then∣∣∣∣∣∣ai −

(
−

d
c

)∣∣∣∣∣∣ =

∣∣∣∣∣ai −
a
c

+
a
c
−

d
c

∣∣∣∣∣
≥ −

∣∣∣∣ai −
a
c

∣∣∣∣ +

∣∣∣∣∣a + d
c

∣∣∣∣∣
≥ −

∣∣∣∣1(ai−1) −
a
c

∣∣∣∣ − ε +
2 + t
|c|

> −
1

|c|(1 + τ)
− ε +

2 + t
|c|

by Lemma 3.2

=
1
|c|

(
2 + t −

1
1 + t

− ε
)

>
1
|c|

(
2 + t −

1
1 + t

−
t

1 + t

)
=

1
|c|

(1 + t).
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Thus
∣∣∣ai + d

c

∣∣∣ > 1+t
|c| , that is, ai ∈ S(1 + t). Then the whole sequence {ai}i∈N0 is contained in S(1 + τ).

The inequality (7) implies that 1 is the Lipschitz map with Lipschitz constant 1
(1+t)2 in S(1 + t). Then Lemma

3.1 implies that

|bi − ai| ≤ Ki
|b0 − a0| +

1 + Ki

1 − K
ε

where K =
1

(1 + t)2 < 1. Hence, the sequence {bi}i∈N0 has Hyers-Ulam stability where b0 = a0.

4. Image of concentric circles under the conjugation h

In this section, we show that the image of concentric circles of which center is − d
c under the map h

defined as h(z) =
z−β
z−α . Denote a circle in the complex plane by C. Recall that the image of line or circle under

Möbius map is line or circle. Moreover, since Möbius map is conformal, the end points of the diameter
of C is mapped by h to the end points of the diameter of h(C). However, the image of the center of C is
not in general the center of h(C). Recall the map f = h ◦ 1 ◦ h−1 is the dilation defined as f (w) = kw where

b

b

b

b

b

b

F

L

F (L)

Figure 2: Circle and line under Möbius map

k = 1
(cβ+d)2 > 1 by Lemma 2.3. Let L be the straight line in C. Define the extended (straight) line as L∪ {∞} and

denote it by L∞.

Lemma 4.1. Let h be the Möbius map defined as h(z) =
z−β
z−α . Then the image of − d

c under h as follows

h
(
−

d
c

)
=

1
k

and −
d
c

=
kβ − α
k − 1

.

Proof. The map h is the conjugation from 1 to f and h(∞) = 1. The fact that f ◦ h = h ◦ 1 implies that

f ◦ h
(
−

d
c

)
= h ◦ 1

(
−

d
c

)
= h(∞) = 1 = f

(1
k

)
.

Since f is a bijection on C, h(− d
c ) = 1

k . Observe that the map h−1(w) =
αw−β
w−1 . Hence, we have

−
d
c

= h−1
(1

k

)
=

kβ − α
k − 1

. (8)

Lemma 4.2. Let 1 be the hyperbolic Möbius map 1(z) = az+b
cz+d where ad − bc = 1 and c , 0 with the attracting

and repelling fixed points α and β respectively. Denote the extended (straight) line which contains α and β by
L∞ = { tα + (1 − t)β : t ∈ R } ∪ {∞}. Then L∞ is invariant under 1. In particular, 1(L∞) = L∞.
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Proof. Lemma 4.1 implies the following equation

−
d
c

=
k

k − 1
β −

1
k − 1

α

Thus − d
c is in the line segment which contains both α and β. Then − d

c ∈ L∞. The fact that 1
(
−

d
c

)
= ∞

implies that∞ is also contained in 1(L∞). Recall that any non constant Möbius map is bijective on Ĉ. Then
1(L∞) is the extended line which contains α and β. Hence, the extended line L∞ is invariant under 1 and
1(L∞) = L∞.

Corollary 4.3. Let L∞ be the extended line defined in Lemma 4.2. Let h be the map defined as z−β
z−α where α and β are

the attracting and the repelling fixed points of 1 respectively. Then h(L∞) is the extended real line, R ∪ {∞}.

Proof. By the definition of h, h(α) = ∞, h(β) = 0 and h(∞) = 1. Hence, h(L∞) is the extended line which
contains 0, 1 and∞. Hence, h(L∞) is the extended real line, R ∪ {∞}.

Recall the set ∂S(r) is the circle of which center is − d
c with radius r

|c| for c , 0. The extended line L∞ contains
−

d
c . Thus for any two points p and q in L∞, if the midpoint of the line segment connecting p and q is − d

c ,
then p and q are the end points of the diameter of ∂S(r) for some r > 0. In the following lemma the image
of the endpoints of the diameter of ∂S(r) for arbitrary radius.

Lemma 4.4. Let h be the map h(z) =
z−β
z−α . Let tα + (1 − t)β be the point in L∞ and denote it by pt for t ∈ R. Then

h(pt) =
t

t − 1
and h

(
−pt −

2d
c

)
=

tk − t + 2
tk − t + k + 1

.

Proof. The straightforward calculation shows that h(pt) = t
t−1 . So we omit the detail of the calculation. By

the equation (8) in Lemma 4.1, we have − d
c =

kβ−α
k−1 . Then

h
(
−pt −

2d
c

)
=

(
−pt −

2d
c

)
− β(

−pt −
2d
c

)
− α

=
−tα − (1 − t)β − β − 2d

c

−tα − (1 − t)β − α − 2d
c

=
tα + (2 − t)β − 2kβ−2α

k−1

(1 + t)α + (1 − t)β − 2kβ−2α
k−1

by (8) in Lemma 4.1

=
(tk − t + 2)(α − β)

(tk − t + k + 1)(α − β)

=
tk − t + 2

tk − t + k + 1
.

It completes the proof.

Corollary 4.5. Let h be the Möbius map h(z) =
z−β
z−α . Then we obtain that

h
(
−β −

2d
c

)
=

2
k + 1

, and h
(
−
α + β

2
−

2d
c

)
=

k + 3
3k + 1

.

Proof. Observe that p0 = β and p 1
2

=
α+β

2 in Lemma 4.4. Put t = 0 for h
(
−β − 2d

c

)
and put t = 1

2 for h
(
−
α+β

2 −
2d
c

)
in Lemma 4.4.
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Lemma 4.6. Let 1 be the hyperbolic Möbius map 1(z) = az+b
cz+d where ad − bc = 1 and c , 0. Let h be another Möbius

map as follows

h(z) =
z − β
z − α

.

where α and β be the attracting and the repelling fixed point of 1 respectively. Then

∂S
(

1
√

k

)
=

{
z :

∣∣∣∣∣z +
d
c

∣∣∣∣∣ =

∣∣∣∣∣dc + β

∣∣∣∣∣ }
and

h
(
∂S

(
1
√

k

))
=

{
w :

∣∣∣∣∣w − 1
k + 1

∣∣∣∣∣ =
1

k + 1

}
where k = 1

(cβ+d)2 > 1.

Proof. The fact that k = 1
(cβ+d)2 implies |cβ+d|

|c| = 1
√

k|c|
. Thus by Lemma 3.2, we have

∂S
(

1
√

k

)
=

{
z :

∣∣∣∣∣z +
d
c

∣∣∣∣∣ =

∣∣∣∣∣dc + β

∣∣∣∣∣ } .
The extended straight line L∞ contains β and −β − 2d

c by Lemma 4.1. The midpoint of the line segment

between these two points is − d
c , which is the center of ∂S

(
1
√

k

)
. The half of the distance between β and

−β− 2d
c is the radius. Moreover, ∂S

(
1
√

k

)
meets L∞ at two points β and −β− 2d

c at right angle because L∞ goes

through the center of ∂S
(

1
√

k

)
. Since h is conformal, F(L∞) also meets F

(
∂S

(
1
√

k

))
at F(β) and F

(
−β − 2d

c

)
at

right angle. h(β) = 0 by the definition of h. Corollary 4.5 implies that

h
(
−β −

2d
c

)
=

2
k + 1

. (9)

Then center of the circle h
(
∂S

(
1
√

k

))
is the midpoint of the line segment between 0 and 2

k+1 . Hence, h
(
∂S

(
1
√

k

))
is the following circle{

w :
∣∣∣∣∣w − 1

k + 1

∣∣∣∣∣ =
1

k + 1

}
.

Corollary 4.7. The following equations hold∣∣∣∣∣cβ + d
c

∣∣∣∣∣ =
1

k − 1
|α − β| and

1
|c|

=

√
k

k − 1
|α − β|

where k = 1
(cβ+d)2 .

Proof. Observe that h−1(w) =
αw−β
w−1 . Thus we have that

h−1
( 2

k + 1

)
= −

k + 1
k − 1

(α − β) + α
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and h−1(0) = β. The distance between the above two points is the diameter of ∂S
(

1
√

k

)
. Then the half of this

distance is the radius of ∂S
(

1
√

k

)
as follows

1
2

∣∣∣∣∣−k + 1
k − 1

(α − β) + α − β

∣∣∣∣∣ =
1

k − 1
|α − β|.

However,
∣∣∣∣ cβ+d

c

∣∣∣∣ is also the radius of ∂S
(

1
√

k

)
by Lemma 4.6. Hence, we have

∣∣∣∣ cβ+d
c

∣∣∣∣ = 1
k−1 |α−β| and moreover,

since 1
√

k
= |cβ + d|, the equation 1

|c| =
√

k
k−1 |α − β| holds.

Remark 4.8. The upper bound of 1
|c| for every k > 1 is the distance between − d

c and α+β
2 because∣∣∣∣∣∣α + β

2
−

(
−

d
c

)∣∣∣∣∣∣ =

∣∣∣∣∣a − d
2c

+
d
c

∣∣∣∣∣ =
a + d
2|c|

>
2

2|c|
=

1
|c|
.

Recall that tr(1) = a + d = 2 + τ. Thus the equation, a+d
2|c| =

1+ τ
2
|c| holds. Then the disk Ĉ \ S

(
1 + τ

2

)
as follows

Ĉ \ S
(
1 +

τ
2

)
=

{
z :

∣∣∣∣∣z +
d
c

∣∣∣∣∣ ≤ ∣∣∣∣∣α + β

2
+

d
c

∣∣∣∣∣ } . (10)

Moreover, this disk contains compactly the disk Ĉ \ S(1).

Proposition 4.9. The circle h
(
∂S

(
1 + τ

2

))
is as follows{

w :

∣∣∣∣∣∣w − 1
2

(
k + 3
3k + 1

− 1
)∣∣∣∣∣∣ =

1
2

(
k + 3

3k + 1
+ 1

)}
. (11)

Proof. By the definition of ∂S(r) for r > 0, the line connecting the fixed points α and β, say L, goes through
the center of the circle ∂S(r). In other words, the circle and line meet at two points at right angle. Since h is
conformal, h(∂S(r)) meets also the real line at two points at right angle.

Observe that two points in the set ∂S
(
1 + τ

2

)
∩L are −α+β

2 −
2d
c and α+β

2 . Thus it suffice to show that the image

of two points in ∂S
(
1 + τ

2

)
∩ L under h is the points k+3

3k+1 and −1. In Lemma 4.4, put t = 1
2 . Hence, we have

the following equations

h
(
α + β

2
−

2d
c

)
=

k + 3
3k + 1

and h
(
α + β

2

)
= −1

for each k > 1. Then the midpoint of the two points k+3
3k+1 and −1 is the center of the circle h

(
∂S

(
1 + τ

2

))
.

Moreover, the half of the distance between these two points is the radius of h
(
∂S

(
1 + τ

2

))
.

Remark 4.10. Observe that the map y(k) = k+3
3k+1 is a decreasing function for k > 0 and 1

3 <
k+3
3k+1 < 1 for k > 1.

y(1) = 1 and limk→∞
k+3
3k+1 = 1

3 . Then the circle in Corollary 4.9, h
(
∂S

(
1 + τ

2

))
is contained in the unit disk

{w : |w| ≤ 1} for all 1 < k < ∞.
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Figure 3: Concentric circles and its images under h

5. Avoided region

The map 1 is the hyperbolic Möbius map as follows

1(z) =
az + b
cz + d

for ad − bc = 1 and c , 0. Since the point ∞ is not a fixed point of 1, the preimage of ∞ under 1, namely,
1−1(∞) is in the complex plane. For a given ε > 0, the sequence {ai}i∈N0 satisfying that

|ai+1 − 1(ai)| ≤ ε

contains 1−1(∞), say ak, then |ak+1−∞| is not bounded where | · | is the absolute value of the complex number.
In order to exclude 1−1(∞) in the whole sequence {ai}i∈N0 , the region R1 is defined such that if the initial
point of the sequence, a0 is not in R1, then the whole sequence {ai}i∈N0 cannot be in the same region R1. Let
the forward orbit of p under F be the set {F(p),F2(p), . . . ,Fn(p), . . .} and denote it by OrbN(p,F).

Definition 5.1. Let F be the map on Ĉ which does not fix ∞. Avoided region for the sequence {ai}i∈N0 satisfying
|ai+1 − F(ai)| ≤ ε for a given ε > 0 which is denoted by RF ⊂ C is defined as follows

1. Ĉ \ RF is (forward) invariant under F, that is, F(Ĉ \ RF) ⊂ Ĉ \ RF.

2. For any given initial point a0 in C \ RF, all points in the sequence {ai}i∈N0 satisfying |ai+1 − F(ai)| ≤ ε are in
C \ RF.

If RF contains OrbN(p,F−1) where p ∈ Ĉ, then it is called the avoided region at p and is denoted by RF(p).

In the above definition, the avoided region does not have to be connected.

Remark 5.2. The set Ĉ \S(1 + t) in Proposition 3.3 is an avoided region at∞. However, avoided region Ĉ \S
(
1 + τ

2

)
can be extended to some neighborhood of OrbN(∞, 1−1), which is denoted to be R1(∞) in the following proposition.

Recall that for a complex number z, Re z is the real part of z and Im z is the imaginary part of z. The
complex conjugate of z is denoted by z̄.
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Figure 4: Avoided regions for hyerbolic Möbius maps

Proposition 5.3. Define the following regions

R
t
1 =

{
w : |w| ≤

tδ
k − 1

}
∩ {w : Re w ≤ 0}

R
t
2 =

{
w : −

tδ
k − 1

≤ Im w ≤
tδ

k − 1

}
∩

{
w : 0 ≤ Re w ≤

1
k

}
R

t
3 =

{
w :

∣∣∣∣∣w − 1
k

∣∣∣∣∣ ≤ tδ
k − 1

}
∩

{
w : Re w ≥

1
k

}
for t ≥ 1 and denote the union Rt

1 ∪ R
t
2 ∪ R

t
3 by Rt. Let the map f be the dilation, f (w) = kw for the given number

k > 1. Let {ci}i∈N0 be the sequence for a given δ > 0 satisfying that

|ci+1 − f (ci)| < δ (12)

for all i ∈N0. If δ <
(
1 − 1

k

)2
, then the set Rt is an avoided region for {ci}i∈N0 , namely, R f . Furthermore, R f contains

the the orbit, OrbN(1, f−1). Hence, the avoided region can be chosen as R f (1).

The proof of Proposition 5.3 requires the combined result of lemmas as follows.

Lemma 5.4. Let f be the map f (w) = kw for k > 1. The sequence {ci}i∈N0 is defined in (12) for δ > 0. Consider the
following regions

D
t
1 =

{
w : |w| ≤

tδ
k − 1

}
, Dt

2 =
{
w : −

tδ
k − 1

≤ Im w ≤
tδ

k − 1

}
for δ > 0 and t ≥ 1. If c0 ∈ Ĉ \ Dt

j for j = 1, 2, then the whole sequence {ci}i∈N0 is contained in the same set Ĉ \ Dt
j

respectively.

Proof. Suppose firstly that |c0| > tδ
k−1 . Thus | f (c0)| > ktδ

k−1 . The inequality |ci+1 − f (ci)| < δ implies that

δ > |c1 − f (c0)| ≥ | |c1| − | f (c0)| | (13)
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|c1| > | f (c0)| − δ >
ktδ

k − 1
− tδ =

tδ
k − 1

(14)

for t ≥ 1. Then c1 ∈ Ĉ \ Dt
1. By induction the whole sequence is also contained in Ĉ \ Dt

1.
Similarly, suppose that c0 ∈ D

t
2. Since |Im(c1 − f (c0))| ≤ |c1 − f (c0)| < δ, the assumption c0 ∈ D

t
2 implies the

following inequality.

|Im c1| > |Im f (c0)| − δ = k |Im c0| − δ >
ktδ

k − 1
− tδ =

tδ
k − 1

for t ≥ 1. Then c1 ∈ D
t
2. Hence, by induction the whole sequence is also contained in Ĉ \ Dt

2.

Observe that Dt
1 ⊂ D

t
2 for every t ≥ 1 in Lemma 5.4. The region Rt

1 is the half disk of Dt
1 in the left half

complex plane. Thus if a point c j in Ĉ\Rt
1 and c j+1 is also contained in the set {w : Re w ≤ 0} for some j ∈N0,

then c j+1 is contained in
(
Ĉ \ Rt

1

)
∩ {w : Re w ≤ 0}. However, c j+1 may be in the right half complex plane.

Thus in order to construct the avoided region in Proposition 5.3, another lemma is required as follows.

b

b

b kc•kcj

cj+1

D+D+
j

∂P
Re z = 0

Figure 5

Lemma 5.5. Let f be the map f (w) = kw for k > 1. The sequence {ci}i∈N0 is defined in (12) for δ > 0. Suppose
that c j for some j ∈ N0 is contained in the set

(
Ĉ \ Dt

1

)
∩ {w : Re w ≤ 0} but Re c j+1 ≥ 0. Then c j+1 satisfies that

|Im c j+1| > tδ
k−1 , that is, c j+1 ∈ Ĉ \ Dt

2 for t ≥ 1.

Proof. By the assumption we have

c j ∈

{
w : |w| >

tδ
k − 1

}
∩ {w : Re w ≤ 0}

for some given j ∈ N0. Let c• be the purely imaginary number satisfying |c j| = |c•| and Im c j and Im c• has
the same sign. Without loss of generality, we may assume that Im c j > 0 and Im c• > 0. The proof of other
case is similar. Define the sets as follows

D+ = {w : |w − kc•| < δ} ∩ {w : Re w ≥ 0}
D+

j = {w : |w − kc j| < δ} ∩ {w : Re w ≥ 0}.

Consider the region

P = {z : |z − kc•| < |z − kc j|}

We show that D+
j ⊆ D+ where Re c j ≤ 0 using the following claim.
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claim: For any z ∈
(
Ĉ \ P

)
∩ {z : Im z ≥ 0}, the real part of z is negative, namely, Re z ≤ 0. The number z

satisfies the equivalent inequalities

|z − kc•| ≥ |z − kc j|

⇐⇒ |z − kc•|2 ≥ |z − kc j|
2

⇐⇒− kc•z̄ − kc̄•z ≥ −kc jz̄ − kc̄ jz

⇐⇒− Re (c̄•z) ≥ −Re (c̄ jz)

⇐⇒ Re ((c j − c•)z) ≥ 0

Recall that Re c j ≤ 0, Re c• = 0 and Im c• ≥ Im c j > 0 because |c j| = |c•|. Thus c j − c• = −a + bi for some
a, b > 0. Denote z = x + yi for y > 0. Then Re ((c j − c•)z) = Re

(
(−a + bi)(x + yi)

)
= −ax − by ≥ 0. Then x ≤ 0,

that is, Re z ≤ 0 is the necessary condition for the inequality. The proof of the claim is complete.
If Re w ≥ 0 and Im w ≥ 0, then w ∈ P. Thus

|w − kc•| < |w − kc j| < δ.

Then D+
j ⊆ D+. For every w ∈ D+, the following inequality holds

|Im w − Im kc•| ≤ |w − kc•| < δ
=⇒ |Im w| > k |Im c•| − δ

= k|c•| − δ = k|c j| − δ

>
tkδ

k − 1
− tδ

=
tδ

k − 1

Then D+ is disjoint fromDt
2. The fact that c j+1 ∈ D+

j implies that c j+1 < Dt
2 for t ≥ 1. Hence, c j+1 ∈ Ĉ \Dt

2 for
t ≥ 1.

Lemma 5.6. Let f be the map f (w) = kw for k > 1. The sequence {ci}i∈N0 is defined in (12) for δ > 0. Suppose that
c j ∈

(
Ĉ \ Rt

3

)
∩

{
w : Re w ≥ 1

k

}
, that is,

c j ∈

{
w :

∣∣∣∣∣w − 1
k

∣∣∣∣∣ > tδ
k − 1

}
∩

{
w : Re w ≥

1
k

}
(15)

for t ≥ 1 and for some j ∈N0. If δ <
(

k−1
k

)2
, then c j+1 is contained in Ĉ \ Rt

3 ∩
{
w : Re w ≥ 1

k

}
for t ≥ 1.

Proof. Observe that f (Ĉ \ Rt
3) is the half disk. Since |c j+1 − f (c j)| < δ, we have that |c j+1| > | f (c j)| − δ ≥ 1 − δ.

Moreover, |c j| < 1
k + tδ

k−1 . Thus it suffice to show that 1 − δ > 1
k + tδ

k−1 . Then

1 − δ >
1
k

+
tδ

k − 1
⇐⇒ 1 −

1
k
>

tδ
k − 1

+ δ =
( t

k − 1
+ 1

)
δ

≥

(
k + t − 1

k − 1

)
δ.

Hence, δ < (k−1)2

k(k+t−1) ≤
(

k−1
k

)2
for all t ≥ 1.
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Proof. [proof of Proposition 5.3] The definition of Rt andDt
2 implies that Rt

⊂ D
t
2. If c j ∈ D

t
2, then c j+1 ∈ D

t
2

by Lemma 5.4. Thus we may assume that Re c j ≤ 0 or Re c j ≥
1
k . If c j ∈ Ĉ \ Rt

1 ∩ {w : Re ≤ 0}, then c j+1 is
contained in the same set by Lemma 5.5. Similarly, if c j ∈ Ĉ \ Rt

3 ∩ {w : Re ≤ 0}, then c j+1 is contained in
the same set by Lemma 5.6. Hence, Rt = Rt

1 ∪ R
t
2 ∪ R

t
3 can be an avoided region R f for t ≥ 1. Moreover,

OrbN(1, f−1) is contained in the line segment connecting 0 and 1
k .

We define the avoided region R f (1) as Rk
1 ∪ R

1
2 ∪ R

1
3 and R1(∞) as h−1(R f (1)).

6. Escaping time from the region

Let the sequence {ci}i∈N0 satisfies the following

|ci+1 − f (ci)| ≤ δ (16)

for all i ∈ N0. For the given region R, assume that c0 ∈ R. If the distance between cn and the closure of R is
positive for all n ≥ N for some N ∈ N, then N is called escaping time of the sequence {ci}i∈N0 from R under
f . If the escaping time N is independent of the initial point c0 in R, then the number N is called uniformly
escaping time. Denote the ball of which center is the origin with radius r > 0 by B(0, r).

Lemma 6.1. Let {ci}i∈N0 be the sequence defined in the equation (16) where f (w) = kw for k > 1. Suppose that
c0 ∈ E f where E f is defined as the region h

(
Ĉ \ S

(
1 + τ

2

) )
\ B

(
0, kδ

k−1

)
. Then the (uniformly) escaping time N from

the region E f under f satisfies the following inequality

N > log
(

1
δ

(
k + 3

3k + 1
+ 1

)
+ 1

) /
log k

for small enough δ > 0.

Proof. By triangular inequality, we have

| f n(c0) − c0| ≤ | f n(c0) − f n−1(c1)| + | f n−1(c1) − f n−2(c2)|+

· · · + | f 2(cn−2) − f (cn−1)| + | f (cn−1) − cn| + |cn − c0|

=

n∑
j=1

kn− j
| f (c j−1) − c j| + |cn − c0|

≤
kn
− 1

k − 1
δ + |cn − c0|.

Thus we have

|cn − c0| ≥ | f n(c0) − c0| −
kn
− 1

k − 1
δ

= (kn
− 1)|c0| −

kn
− 1

k − 1
δ

= (kn
− 1)

(
|c0| −

δ
k − 1

)
≥ (kn

− 1)
(

kδ
k − 1

−
δ

k − 1

)
= (kn

− 1) δ

Hence, the escaping time N satisfies if the inequality (kN
− 1) δ > k+3

3k+1 + 1 holds, then |cn − c0| is greater than

the diameter of h
(
S
(
1 + τ

2

) )
for all n ≥ N by (11) in Proposition 4.9. Hence, N is the uniformly escaping

time where N >
log( 1

δ ( k+3
3k+1 +1)+1)
log k .
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Remark 6.2. The inequality 1
3 <

k+3
3k+1 < 1 for k > 1 implies that a upper bound of the uniformly escaping time is

N0 > log
(

2
δ + 1

) /
log k.

The sequence {ai}i∈N0 is defined as the set each of which element ai = h(ci) for every i ∈ N0 where {ci}i∈N0 is
defined in (16). Recall that f is the map h ◦ 1 ◦ h−1. Denote the radius of the ball h−1

(
B(c j, δ)

)
by ε j for j ∈N0.

Then the sequence {ai}i∈N0 as follows

|ai+1 − 1(ai)| ≤ εi. (17)

corresponds {ci}i∈N0 by the conjugation h. Then the escaping time of {ai}i∈N0 from h−1(E f ) under 1 is the same
as that of {ci}i∈N0 from E f under f in Lemma 6.1. Furthermore, since h is uniformly continuous on the closure
of Ĉ \ S

(
1 + τ

2

)
under Euclidean metric, there exists ε > 0 such that h

(
B(a j, ε)

)
⊂ B(c j, δ) for j = 1, 2, . . .N1 for

all c j ∈ E f . Thus we obtain the following Proposition.

Proposition 6.3. Let {ci}i∈N0 be the sequence satisfying

|ci+1 − f (ci)| ≤ δ

where f (w) = kw for k > 1 on E f defined in Lemma 6.1. Let N be the (uniformly) escaping time from E f Let {ai}i∈N0

be the sequence satisfying ai = h(ci) for every i ∈N0. Then there exists ε > 0 such that if {ai}i∈N0 satisfies that

|ai+1 − 1(ai)| ≤ ε (18)

on h−1(E f ) for i = 1, 2, . . . ,N − 1, then the escaping time from h−1(E f ) under 1 is also N.

Remark 6.4. The definition of E f implies that the set h−1(E f ) is the set,
(
Ĉ \ S

(
1 + τ

2

) )
\ h−1

(
B
(
0, kδ

k−1

))
.

7. Hyers-Ulam stability on the complement of the avoided region

Hyers-Ulam stability of hyperbolic Möbius map requires two different regions, one of which is S(1 + τ
2 )

where tr(1) = 2 + τ for τ > 0. The other region is the
(
Ĉ \ S

(
1 + τ

2

))
\ R1(∞) where R1(∞) = h−1

(
R f (1)

)
is the

avoided region defined in Section 5. We show that Hyers-Ulam stability on the region
(
Ĉ \ S

(
1 + τ

2

))
\R1(∞)

for finite time bounded by the uniformly escaping time. Then this stability and Proposition 3.3 implies
Hyers-Ulam stability of 1 on the set Ĉ \ R1(∞).

Lemma 7.1. The avoided region h−1
(
R f (1)

)
contains the disk

Dε̃ =

{
z :

∣∣∣∣∣z +
d
c

∣∣∣∣∣ < ε̃}
where ε̃ = k2δ

(k−1)3 |α − β|.

Proof. The avoided region R f (1) contains the disk

B
(1

k
,

δ
k − 1

)
=

{
w :

∣∣∣∣∣w − 1
k

∣∣∣∣∣ ≤ δ
k − 1

}
.
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Since h−1
(

1
k

)
= − d

c , the avoided region h−1
(
R f (1)

)
contains a small disk of which center is − d

c . Thus the

number ε̃ is either the radius of the circle, h−1
(
B
(

1
k ,

δ
k−1

))
or the distance between − d

c and h−1
(

1
k + δ

k−1

)
.

Denote the point 1
k + δ

k−1 by t0
k , that is, choose t0 = 1 + kδ

k−1 . Thus we have

h−1
( t0

k

)
=

kβ − t0α

k − t0
=

(
1 +

t0

k − t0

)
β −

t0

k − t0
α. (19)

By Lemma 4.1, we have

−
d
c

=
(
1 +

1
k − 1

)
β −

1
k − 1

α.

Then the distance between − d
c and h−1

(
t0
k

)
is as follows∣∣∣∣∣(1 +

t0

k − t0

)
β −

t0

k − t0
α −

(
1 +

1
k − 1

)
β −

1
k − 1

α

∣∣∣∣∣
=

∣∣∣∣∣ 1
k − 1

−
t0

k − t0

∣∣∣∣∣ |α − β|
=

∣∣∣∣∣∣ 1
k − 1

−
1 + kδ

k−1

k − 1 − kδ
k−1

∣∣∣∣∣∣ |α − β|
=

∣∣∣∣∣ 1
k − 1

−
k − 1 + kδ

(k − 1)2 − kδ

∣∣∣∣∣ |α − β|
=

∣∣∣∣∣∣ −k2δ

(k − 1){(k − 1)2 − kδ}

∣∣∣∣∣∣ |α − β|
=

k2δ

(k − 1){(k − 1)2 − kδ}
|α − β| (20)

Another candidate for ε̃ is the half of diameter of h−1 (R2). Thus take two points, t0
k and t1

k in R2 where
t1
k = 1

k −
δ

k−1 , that is, t1 = 1− kδ
k−1 . Since t0

k −
t1
k is the diameter of the circle R2, the half of the distance between

h−1
(

t0
k

)
and h−1

(
t1
k

)
is the radius of h−1 (R2). Then the calculation in (19) implies that

1
2

∣∣∣∣∣h−1
( t0

k

)
− h−1

( t1

k

)∣∣∣∣∣
=

1
2

∣∣∣∣∣(1 +
t0

k − t0

)
β −

t0

k − t0
α −

(
1 +

t1

k − t1

)
β −

t1

k − t1
α

∣∣∣∣∣
=

1
2

∣∣∣∣∣ t0

k − t0
−

t1

k − t1

∣∣∣∣∣ |α − β|
=

1
2

∣∣∣∣∣ k − 1 + kδ
(k − 1)2 − kδ

−
k − 1 − kδ

(k − 1)2 + kδ

∣∣∣∣∣ |α − β|
=

1
2

∣∣∣∣∣∣ 2k2(k − 1)δ
{(k − 1)2 − kδ}{(k − 1)2 + kδ}

∣∣∣∣∣∣ |α − β|
=

k − 1
(k − 1)2 + kδ

·
k2δ

(k − 1)2 − kδ
|α − β| (21)
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The number ε̃ have to be smaller than the both number of equation (20) and (21). Hence, ε̃ can be chosen
as follows

ε̃ =
k2δ

(k − 1)3 |α − β|

<
k − 1

(k − 1)2 + kδ
·

k2δ

(k − 1)2 − kδ
|α − β| <

k2δ

(k − 1){(k − 1)2 − kδ}
|α − β|.

Corollary 7.2. For every z ∈ C \ R1(∞), the following inequality holds

|1′(z)| ≤
(k − 1)4

k3δ2 .

Proof. It suffice to show the upper bound of |1′| on the region C \ h−1(R2) because R1(∞) contains h−1(R2)
and moreover, contains Dε in Lemma 7.1. Recall that

1′(z) =
1

(cz + d)2

Thus in the region C \Dε, the inequality |cz + d| ≥ |c|ε holds. Then the upper bound of |1′| is as follows

|1′(z)| =
1

|cz + d|2
≤

1
|c|2ε2 =

(k − 1)6

|c|2k4δ2|α − β|2

by Lemma 7.1. Moreover, Corollary 4.7 implies the equation

1
|c|

=

√
k

k − 1
|α − β|.

Hence,

(k − 1)6

|c|2k4δ2|α − β|2
=

(k − 1)6

k4δ2 ·
k

(k − 1)2 =
(k − 1)4

k3δ2 .

The following is the mean value inequality for holomorphic function.

Lemma 7.3. Let 1 be the holomorphic function on the convex open set B in C. Suppose that sup
z∈B
|1′| < ∞. Then for

any two different points u and v in B, we have∣∣∣∣∣1(u) − 1(v)
u − v

∣∣∣∣∣ ≤ 2 sup
z∈B
|1′|.

Proof. The complex mean value theorem implies that

Re(1′(p)) = Re
(
1(u) − 1(v)

u − v

)
and Im(1′(q)) = Im

(
1(u) − 1(v)

u − v

)
where p and q are in the line segment between u and v. Hence, the inequality

|Re(1′(p)) + i Im(1′(q))| ≤ |Re(1′(p))| + |Im(1′(q))| ≤ 2 sup
z∈B
|1′|

completes the proof.
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Proposition 7.4. Let 1 be the hyperbolic Möbius map. For a given ε > 0, let a complex valued sequence {ai}i∈N0

satisfies the inequality
|ai+1 − 1(ai)| ≤ ε

for all i ∈N0. Suppose that a0 ∈
(
Ĉ \ S

(
1 + τ

2

))
\R1(∞) where R1(∞) is the avoided region defined in Section 5. For

a given small enough number ε > 0, there exists the sequence {bi}i∈N0 defined as

bi+1 = 1(bi)

for each i = 0, 1, 2, . . . ,N which satisfies that

|aN − bN | ≤
MN
− 1

M − 1
ε

where N is the uniformly escaping time from the region Ĉ \ S
(
1 + τ

2

)
and M =

2(k−1)4

k3δ2 .

Proof. M
2 is an upper bound of |1′| in C \ R1(∞) by Corollary 7.2. The triangular inequality and Lemma 7.3

implies that

|aN − bN | ≤ |aN − 1(aN−1)| + |1(aN−1) − 1(bN−1)| + |1(bN−1) − bN |

≤ ε + M |aN−1 − bN−1|

where M ≥ sup
z∈C\R1(∞)

2|1′|. Observe that if δ > 0 is sufficiently small, then M > 1 in the region Ĉ \ S
(
1 + τ

2

)
.

Thus we have

|aN − bN | +
ε

M − 1
≤ M

(
|aN−1 − bN−1| +

ε
M − 1

)
.

Then |aN − bN | is bounded above by the geometric sequence with rate M.

|aN − bN | ≤MN
(
|a0 − b0| +

ε
M − 1

)
−

ε
M − 1

= MN
|a0 − b0| +

MN
− 1

M − 1
ε

Hence, if we choose b0 = a0, then

|aN − bN | ≤
MN
− 1

M − 1
ε.

We show the Hyers-Ulam stability of hyperbolic Möbius map outside the avoided region.

Theorem 7.5. Let 1 be a hyperbolic Möbius map. For a given ε > 0, let a complex valued sequence {an}n∈N0 satisfies
the inequality

|ai+1 − 1(ai)| ≤ ε

for all i ∈ N0. Suppose that a given point a0 ∈ C \ R1(∞) where R1(∞) is the avoided region defined in Section 5.
For a small enough number ε > 0, there exists the sequence {bi}i∈N0

bi+1 = 1(bi)

satisfies that |ai − bi| ≤ H(ε) for all i ∈N0 for each i ∈N where the positive number H(ε) converges to zero as ε→ 0.
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Proof. Suppose first that a0 ∈ S
(
1 + τ

2

)
. Then by Proposition 3.3, we have the inequality

|bi − ai| ≤
1 − Ki

1 − K
ε (22)

for some K < 1. Secondly, assume that a0 ∈
(
Ĉ \ S

(
1 + τ

2

))
\ R1(∞) and i ≤ N where N is the escaping time

from the region
(
Ĉ \ S

(
1 + τ

2

))
\ R1(∞). Then by Proposition 7.4,

|bi − ai| ≤
Mi
− 1

M − 1
ε (23)

where M =
2(k−1)4

k3δ2 . Suppose that a0 ∈
(
Ĉ \ S

(
1 + τ

2

))
\ R1(∞) but i > N for the last case. Then we combine

the first and second case as follows

|bi − ai| ≤

(
MN
− 1

M − 1
+

1 − Ki−N

1 − K

)
ε (24)

where K and M are the numbers used in the inequality (22) and (23).
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