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Numerical Solution of Two Dimensional Nonlinear Fuzzy Fredholm
Integral Equations of Second Kind Using Hybrid of Block-Pulse

Functions and Bernstein Polynomials
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Abstract. In this paper, first, we introduce a successive approximation method in terms of a combination
of Bernstein polynomials and block-pulse functions. The proposed method is given for solving two
dimensional nonlinear fuzzy Fredholm integral equations of the second kind. Then, we present the
convergence of the proposed method. Also we investigate the numerical stability of the method with
respect to the choice of the first iteration. Finally, two numerical examples are presented to show the
accuracy of the method.

1. Introduction

The fuzzy integral equations (FIE) are very useful for solving many problems in several applied fields
such as mathematical economics; electrical engineering; medicine ; biology and optimal control theory.
Since these equations usually can not be solved explicitly, so it is required to obtain approximate solutions.
The Banach fixed point theorem is the main tool in studying the existence and uniqueness of the solution
for fuzzy integral equations which can be found in [5, 21]. Numerical procedures for solving fuzzy integral
equations of the second kind, based on the successive approximation method and other iterative techniques,
have been investigated in [6, 24]. Recently, Bica and Popescu [7, 8] applied the successive approximation
method to the fuzzy Hammerstein integral equation. Ezzati and Ziari [9] proved the convergence of the
successive approximation method for solving nonlinear fuzzy Fredholm integral equations of the second
kind, and they proposed an iterative procedure based on the trapezoidal quadrature. Mirzaee [18] obtained
an approximate solution for the linear Fredholm fuzzy integral equations of the second kind by hybrid of
block-pulse function and Taylor series (HBT). Ezzati and Baghmeshe [4] obtained an approximate solution
for the nonlinear Fredholm fuzzy integral equations of the second kind by hybrid of block-pulse function
and Taylor series. Zarrini and Torkaman [25] obtained the numerical solution of fuzzy Fredholm integral
equations by hybrid orthonormal Bernstein and block-pulse functions.

In this paper, first, we approximate the fuzzy function by hybrid block-pulse functions and Bernstein
polynomials (HBB) and estimate the error approximation. Then, we propose an iterative procedure based
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on HBB for solving two dimensional nonlinear fuzzy Fredholm integral equations

u(x, y) = f (x, y) ⊕ (FR)
∫ b

a
(FR)

∫ d

c
K(x, y, s, t) � G(u(s, t))dsdt, (x, y) ∈ [a, b] × [c, d], (1)

where K(x, y, s, t) is an arbitrary positive crisp kernel in [a, b]× [c, d]× [a, b]× [c, d] and f : [a, b]× [c, d]→ RF,
u(x, y) is a fuzzy real valued function and G : RF → RF is continuous. We assume K is continuous and
therefore uniformly continuous with respect to x, y. This property implies that there exists M > 0 such that

M = max |K(x, y, s, t)|.

The rest of the paper is organized as follows: In Section 2, we review some elementary concepts of the fuzzy
set theory, fuzzy Reiman integrable function and modulus of continuity. In Section 3, hybrid of Bernstain
polynomials and block - pulse functions is introduced.The error estimate, convergence and numerical
stability analysis of the proposed method are presented in Section 4. We present two examples in section 5
to show the efficiency of the proposed method. Finally, we present our concluding remarks in Section 6.

2. Preliminaries

Definition 1 (See[2]). A fuzzy number is a function u : R→ [0, 1] having the properties:

(1) u is normal , that is ∃ x0 ∈ R such that u(x0) = 1,

(2) u is fuzzy convex set

(i.e. u(λx + (1 − λ)y) ≥ min
{
u(x),u(y)

}
∀x, y ∈ R, λ ∈ [0, 1]),

(3) u is upper semi-continuous on R,

(4) the { x ∈ R : u(x) > 0} is compact set.

The set of all fuzzy numbers is denoted by Rz. An alternative definition which yields the same Rz is given
by [17].

Definition 2 (See [15, 19]). An arbitrary fuzzy number is represented, in parametric form, by an ordered
pair of functions (u(r),u(r)), 0 ≤ r ≤ 1, which satisfy the following requirements:

(1) u(r) is a bounded left continuous non-decreasing function over [0,1],

(2) u(r) is a bounded left continuous non-increasing function over [0,1],

(3) u(r) ≤ u(r) , 0 ≤ r ≤ 1.

The addition and scaler multiplication of fuzzy numbers in Rz are defined as follows:

(1) (u ⊕ v)(r) = (u(r) + v(r),u(r) + v(r)),

(2) (λ � u)(r) =


(λu(r), λu(r)) λ ≥ 0,

(λu(r), λu(r)) λ < 0.

Definition 3 (See [1]). For arbitrary fuzzy numbers u = (u(r),u(r)) , v = (v(r), v(r)) the quantity D(u, v) =
sup

r∈[0,1]
max{|u(r) − v(r)| , |u(r) − v(r)| } is the distance between u and v.

The following properties are hold (See [6]):
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(1) (Rz,D) is a complete metric space,

(2) D(u ⊕ w, v ⊕ w) = D(u, v) ∀ u, v,w ∈ Rz,

(3) D(k � u, k � v) = |k|D(u, v) ∀ u, v ∈ Rz ∀ k ∈ R,

(4) D(u ⊕ v,w ⊕ e) ≤ D(u,w) + D(v, e) ∀ u, v,w, e ∈ Rz.

Theorem 1 (See [2, 3]).

(1) The pair (Rz,⊕) is a commutative semigroup with 0̃ = χ0 zero element.

(2) For fuzzy numbers which are not crisp, there is no opposite element ( that is, (Rz,⊕) cannot be a
group).

(3) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and for any u ∈ Rz, we have
(a + b) � u = a � u ⊕ b � u.
For arbitrary a, b ∈ R, this property is not fulfilled.

(4) For any λ, µ ∈ R and u ∈ Rz, we have
λ � (u ⊕ v) = λ � u ⊕ λ � u.

(5) For any λ ∈ R and u, v ∈ Rz, we have
λ � (µ � u) = (λ.µ) � u.

(6) The function of ‖.‖z : Rz → R by ‖u‖z = D(u, 0̃) has the usual properties of the norm, that is, ‖u‖z = 0
if and only if
u = õ, ‖λ � u‖z = |λ|‖u‖z and ‖u ⊕ v‖z ≤ ‖u‖z + ‖v‖z.

(7) |‖u‖z − ‖v‖z| ≤ D(u, v) and D(u, v) ≤ |u‖z + ‖v‖z for any u, v ∈ Rz.

Definition 4 (See [17]). A fuzzy real number valued function f : [a, b] → Rz is said to be continuous in
x0 ∈ [a, b], if for each ε > 0 there exist δ > 0 such that D( f (x), f (x0)) < ε, whenever x ∈ [a, b] and |x − x0| < δ.
We say that f is fuzzy continuous on [a, b] if f is continuous at each x0 ∈ [a, b], and denote the space of all
such functions by Cz[a, b].

Definition 5 (See[3, 13]). If X = { f : [a, b] × [c, d]→ Rz| f is continuous}, then X together with the metric

D∗( f , 1) = sup
a≤s,t≤b

D( f (s, t), 1(s, t))

is complete metric space.

Definition 6 (See[10, 13]). Let f : [a, b] × [c, d] → Rz, be a bounded mapping, then function ω [a,b]×[c,d]( f , .) :
R+ ∪ {0} → R+ defined by

ω [a,b]×[c,d]( f , δ) = sup
{
D( f (x, y), f (s, t))| x, y ∈ [a, b], s, t ∈ [c, d],

√
(x − s)2 + (y − t)2 ≤ δ

}
, (2)

is called the modulus of oscillation of f on [a, b] × [c, d]. In addition, if f ∈ Cz([a, b] × [c, d])(i.e. f :
[a, b] × [c, d]→ Rz is continuous on [a, b] × [c, d]), then ω [a,b]×[c,d]( f , δ) is called the modulus of continuity of
f on [a, b] × [c, d].
Some properties of the modulus of continuity are given in below

Theorem 2 (See[6, 13]). The following properties hold:

(1) D( f (x, y), f (s, t)) ≤ ω [a,b]×[c,d]( f ,
√

(x − s)2 + (y − t)2) for any x, y ∈ [a, b], s, t ∈ [c, d],
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(2) ω [a,b]×[c,d]( f , δ) is increasing function of δ,

(3) ω [a,b]×[c,d]( f , 0) = 0,

(4) ω [a,b]×[c,d]( f , δ1 + δ2) ≤ ω [a,b]×[c,d]( f , δ1) + ω [a,b]×[c,d]( f , δ2) for any δ1, δ2 ≥ 0,

(5) ω [a,b]×[c,d]( f ,nδ) ≤ nω [a,b]×[c,d]( f , δ) for any δ ≥ 0 n ∈ N,

(6) ω [a,b]×[c,d]( f , λδ) ≤ (λ + 1)ω [a,b]×[c,d]( f , δ) for any δ, λ ≥ 0,

(7) if [a, b] × [c, d] ⊆ [e, f ] × [1, h] then ω [a,b]×[c,d]( f , δ) ≤ ω [e, f ]×[1,h]( f , δ) .

Definition 7 (See[13, 23]). Let f : [a, b] × [c, d] → Rz, for ∆x : a = x0 < x1 < ... < xn = b and
∆y : c = y0 < y1 < ... < yn = d, two partitions of the intervals [a, b] and [c, d], respectively. Let us consider
the intermediates points ξi ∈ [xi−1, xi] and ηi ∈ [y j−1, y j], i = 1, ...,n; j = 1, ...,n, and δ : [a, b] → R+ and
σ : [c, d]→ R+ . The division Px = ([xi−1, xi]; ξi); i = 1, ...,n and Py = ([y j−1, y j]; η j); j = 1, ...,n, denoted shortly
by Px = (∆n, ξ) and Py = (∆n, η) are said to be δ-fine and σ-fine respectively if [xi−1, xi] ⊆ (ξi − δ(ξi), ξi + δ(ξi))
and [y j−1, y j] ⊆ (η j − σ(η j), η j + σ(η j)).

The function f is called two-dimensional Henstock integrable to I ∈ Rz if for any ε > 0, there are functions
δ : [a, b] → R+ and σ : [c, d] → R+ such that for any δ-fine and σ-fine division we have D(

∑n
i=0

∑n
j=0(xi −

xi−1)(y j − y j−1) � f (ξi, η j), I), where Σ denotes the fuzzy summation. Then I is called the two -dimensional

Henstock integral of f and denoted by I( f ) = (FH)
∫ b

a (FH)
∫ d

c f (s, t)dsdt. If the above δ and σ are constant
functions, then one recaptures the concept of Riemann integral. In this case I ∈ Rzwill be called two-

dimensional integral of f on [a, b] × [c, d] and will be denoted by (FR)
∫ b

a (FR)
∫ d

c f (s, t)dsdt.
In [13], the authors proved that if f ∈ Cz([a, b] × [c, d]), its definite integral exists, and also,

(FR)
∫ b

a (FR)
∫ d

c f (s, t; r)dsdt =
∫ b

a

∫ d

c f (s, t, r)dsdt,

(FR)
∫ b

a (FR)
∫ d

c f (s, t; r)dsdt =
∫ b

a

∫ d

c f (s, t, r)dsdt.

Lemma 1 (See [13, 14]). If f , 1 : [a, b]× [c, d] ⊆ R×R→ Rz are fuzzy continuous functions, then the function
F : [a, b] × [c, d]→ R+ by F(t) = D( f (s, t), 1(s, t)) is continuous on A = [a, b] × [c, d], and

D
(
(FR)

∫ b

a
(FR)

∫ d

c
f (s, t)dsdt, (FR)

∫ b

a
(FR)

∫ d

c
1(s, t)dsdt

)
≤

∫ b

a

∫ d

c
D( f (s, t), 1(s, t))dsdt. (3)

3. Hybrid Bernstein polynomials and block pulse functions

Now, we recall some definitions and properties of hybrid Bernstein polynomials and block pulse func-
tions. Then we generalize them to the fuzzy sets.

Definition 8 (See [16]). Block-pulse functions ϕi(t), i = 1, 2, ...,M on the interval [0, 1), are defined as

ϕi(t) =

{
1, i−1

M ≤ t < i
M

0, otherwise.

where M is an arbitrary positive integer number and h = 1
M . Similar to one dimensional, a set of two

dimensional(2D) block pulse functions ϕi, j(t1, t2); i = 1, 2, ...,M1; j = 1, 2...,M2 is defined in the region of
t1 ∈ [0, 1) and t2 ∈ [0, 1) as:

ϕi, j(t1, t2) =

{
1 , i−1

M1
≤ t1 < i

M1
and j−1

M2
≤ t2 <

j
M2

0 , otherwise,
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where M1 and M2 are arbitrary positive integers. Similar to one dimensional(1D), the 2D block pulse
functions are disjointed with each other:

ϕi, j(t1, t2)ϕp,q(t1, t2) =

{
ϕi, j(t1, t2), i = p and j = q
0, otherwise.

Also the functions are orthogonal with each other:∫ 1

0

∫ 1

0
ϕi, j(t1, t2)ϕp,q(t1, t2)dt1dt2 =

{
h1h2, i = p and j = q
0, otherwise.

Since each 2D block pulse function takes only one value in its subregion, the 2D block pulse functions can
be expressed by two one dimensional block pulse functions

ϕi, j(t1, t2) = ϕi(t1)ϕ j(t2)

where ϕi(t1) and ϕ j(t2) are the one dimensional block pulse functions related to variables t1 and t2 , respec-
tively.

Definition 9 (See[16, 22]). The Bernstein polynomials of degree n are defined on the interval [0, 1] as:

Bn,p(x) =

(
n
p

)
xp(1 − x)n−p ; p = 0, 1, ...,n. (4)

There are (n + 1) Bernstein basis polynomials of degree n. For mathematical convenience, we usually set
Bn,p(x) = 0 if p < 0 or p > n.
It is obvious that ∀x ∈ [0, 1],Bnp(x) ≥ 0; {Bn0(x),Bn1(x), ...,Bnn(x)} are linearly independent algebraic polyno-
mials of degree≤ n and

∑n
p=0 Bnp(x) = 1, ∀n ∈ N .

Lemma 2 (See[20]). Let x ∈ [0, 1] then

n∑
p=0

| x −
p
n
| Bnp(x) ≤

1
2
√

n

Definition 10 (See[16]). The set two variable of hybrid Bernstein block-pulse functions,
hBBipjq(x, y), i = 1, 2, ..,M1, j = 1, 2, ..,M2; p, q = 0, 1, . . . ,n; on interval [0, 1) × [0, 1) is defined as:

hBBipjq(x, y) =

{
Bnp(M1x − i + 1)Bnq(M2 y − j + 1), (i−1)

M1
≤ x < i

M1
, ( j−1)

M2
≤ y < j

M2

0, otherwise.
(5)

where i = 1, 2, ...,M1 and j = 1, 2, ...,M2 are the order of block-pulse functions, p = 0, 1, ...,n is the order of
Bernstein polynomials. M1,M2 denotes the number of subinterval of [0, 1].

3.1. Function approximation
For f ∈ Cz([0, 1] × [0, 1]), let us consider a fuzzy hybrid polynomial of degree 2n as below

BF
pq( f )(x, y) =

M1∑
i=1

n∑
p=0

M2∑
j=1

n∑
q=0

cipjqhBBipjq(x, y), (6)

where

cipjq = f (
i0 − 1
M1

+
p

nM1
,

j0 − 1
M2

+
q

nM2
) (7)
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Theorem 3. If f ∈ Cz([0, 1] × [0, 1]) then

D∗(BF
pq( f ), f ) ≤ 2ω( f ,

1
µ
√

n
), (8)

where µ = min{M1,M2}.

Proof. Let (x, y) ∈ [0, 1) × [0, 1), so there exists i0 ∈ {1, 2, ...,M1} and j0 ∈ {1, 2, ...,M2}, such that x ∈ [ i0−1
M1
, i0

M1
)

and y ∈ [ j0−1
M2
,

j0
M2

). Then, from Eqs. (4)-(6), we observe that

D(BF
pq( f )(x, y), f (x, y)) = D

 M1∑
i=1

n∑
p=0

M2∑
j=1

n∑
q=0

cipjqhBBipjq(x, y), f (x, y)


= D

 n∑
p=0

n∑
q=0

f (
i0 − 1
M1

+
p

nM1
,

j0 − 1
M2

+
q

nM2
)Bnp(M1x − i0 + 1)Bnq(M2y − j0 + 1), f (x, y)

 .
For notational simplicity, let X = M1x − i0 + 1, Y = M2y − j0 + 1.Then

D(BF
pq( f )(x, y), f (x, y)) = D

 n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y) f (
i0 − 1
M1

+
p

nM1
,

j0 − 1
M2

+
q

nM2
), f (x, y)


= D

 n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y) f (
i0 − 1
M1

+
p

nM1
,

j0 − 1
M2

+
q

nM2
),

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y) f (x, y)


≤

n∑
p=0

n∑
q=0

D
(
Bnp(X)Bnq(Y) f (

i0 − 1
M1

+
p

nM1
,

j0 − 1
M2

+
q

nM2
),Bnp(X)Bnq(Y) f (x, y)

)

≤

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)D
(

f (
i0 − 1
M1

+
p

nM1
,

j0 − 1
M2

+
q

nM2
), f (x, y)

)

≤

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)ω

 f ,

√
(x −

i0 − 1
M1

−
p

nM1
)2 + (y −

j0 − 1
M2

−
q

nM2
)2


≤

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)ω

 f , δ

√
(x − i0−1

M1
−

p
nM1

)2 + (y − j0−1
M2
−

q
nM2

)2

δ


≤

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)

1 +

√
(x − i0−1

M1
−

p
nM1

)2 + (y − j0−1
M2
−

q
nM2

)2

δ

ω( f , δ)

≤

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)

1 +
| x − i0−1

M1
−

p
nM1
| + | y − j0−1

M2
−

q
nM2
|

δ

ω( f , δ)

≤

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)

1 +
| X − p

n |

M1δ
+
| Y − q

n |

M2δ

ω( f , δ)
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≤

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)ω( f , δ) +

n∑
p=0

n∑
q=0

Bnp(X)Bnq(Y)

 | X − p
n |

M1δ
+
| Y − q

n |

M2δ

ω( f , δ)

≤ ω( f , δ)
n∑

p=0

n∑
q=0

Bnp(X)Bnq(Y) +

(
1

2M1δ
√

n
+

1
2M2δ

√
n

)
ω( f , δ).

Putting δ = 1
µ
√

n
and µ = min{M1,M2}, we conclude that D(BF

pq( f )(x, y), f (x, y)) ≤ 2ω( f , 1
µ
√

n
). Therefore

D∗(BF
pq( f ), f ) ≤ 2ω( f ,

1
µ
√

n
) (9)

Remark 1. Theorem (3) demonstrates that limµ,n→∞D∗(BF
pq( f ), f ) = 0.

4. Convergence and numerical stability analysis

We consider the two dimensional nonlinear fuzzy Fredholm integral equation (2DNFFIE) (1), where
K(x, y, s, t) is a continuous positive crisp kernel defined on [a, b] × [c, d] × [a, b] × [c, d] and G : Rz → Rz is
continuous and therefore uniformly continuous with respect to x, y. This property implies that there exists
M > 0 such that

M = max |K(x, y, s, t)|.

Now we prove the convergence of the proposed method.

Theorem 4. (See [11]). Let K(x, y, s, t) is continuous and positive defined on [a, b] × [c, d] × [a, b] × [c, d],
f : [a, b] × [c, d]→ Rz is a continuous fuzzy. Moreover assume that there exists L > 0 such that

D(G(u1(x, y)),G(u2(x, y))) ≤ L.D(u1(x, y),u2(x, y)).

If B = ML(b− a)(d− c) < 1, then the fuzzy integral equation (1) has a unique solution and it can be obtained
by the following successive approximation method

u0(x, y) = f (x, y)

um(x, y) = f (x, y) ⊕ (FR)
∫ b

a
(FR)

∫ d

c
K(x, y, s, t) � G(um−1(s, t))dsdt.

Moreover the sequence of successive approximation (um)m≥1 converges to the solution u∗, furthermore the
following error bound holds

D∗(u∗,um) ≤
M0Bm+1

L(1 − B)
, where M0 = sup(s,t)∈[a,b]×[c,d] ‖ G( f (s, t)) ‖ (10)

4.1. Presentation of the numerical method and its convergence analysis
Now, we introduce the numerical method to find the approximate solution of the 2DNFFIE (1). For this

porpose, we consider the uniform partition of [a, b] × [c, d] as ∆x : a = t0 < t1 < ... < tM1−1 < tM1 = b, ∆y :
c = s0 < s1 < ... < sM2−1 < sM2 = d, with t j = t0 + ih1, s j = s0 + jh2 where h1 =

(b−a)
M1

and h2 =
(d−c)
M2

. Then the
following procedure gives the approximate solution of (1) as

z0(x, y) = f (x, y)
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zm(x, y) = f (x, y) ⊕ (FR)
∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � BF

pq(G(zm−1(s, t)))dsdt. (11)

The recursive relation (11) can be written in compact form as follows:

z0(x, y) = f (x, y)

zm(x, y) = f (x, y) ⊕
M1∑
i=1

n∑
p=0

M2∑
j=1

n∑
q=0

G
(
zm−1(

i0 − 1
M1

+
p

nM1
,

j0 − 1
M2

+
p

nM2
)
)

Iipjq(x, y), (12)

where

Iipjq(x, y) =

∫ 1

0

∫ 1

0
K(x, y, s, t)hBBipjq(s, t)dsdt (13)

Theorem 5. Assume equation (1) satisfies the following conditions

(1) f : [0, 1] × [0, 1]→ Rz is continuous.

(2) K : [0, 1]×[0, 1]×[0, 1]×[0, 1]→ R+ is continuous and there exists M > 0 such that M = max0≤x,t≤1;0≤s,y≤1|K(x, y, s, t)|,

(3) G : Rz → Rz is continuous , in addition there exists L > 0 such that

D
(
G(u1(x, y)),G(u2(x, y))) ≤ L.D(u1(x, y),u2(x, y)

)
,

where B = ML(b − a)(d − c) < 1.

Then the iterative procedure (11) converges to the unique solution of Eq (1), u∗, and its error estimate is as
follows

D∗(u∗, zm) ≤
B

L(1 − B)
(M0Bm + 2LΓ), (14)

where

Γ = max(0≤p≤m−1)ω(zp,
1

µ
√

n
) and M0 = sup(s,t)∈[0,1]×[0,1] ‖ G( f (s, t)) ‖ . (15)

Proof. Since u1(x, y) = f (x, y) ⊕ (FR)
∫ 1

0 (FR)
∫ 1

0 K(x, y, s, t) � G(u0(s, t))dsdt, we have

D(u1(x, y), z1(x, y)) = D( f (x, y), f (x, y))

+ D
(
(FR)

∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � G(u0(s, t))dsdt, (FR)

∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � BF

pq(G(z0(s, t)))dsdt
)

≤

∫ 1

0

∫ 1

0
D

(
K(x, y, s, t) � G( f (s, t)),K(x, y, s, t) � BF

pq(G( f (s, t)))
)

dsdt

≤

∫ 1

0

∫ 1

0
|K(x, y, s, t)|D

(
G( f (s, t)),BF

pq(G( f (s, t)))
)

dsdt

≤M
∫ 1

0

∫ 1

0
D

(
G( f (s, t)),BF

pq(G( f (s, t)))
)

dsdt

≤M
∫ 1

0

∫ 1

0
2ω(G( f ),

1
µ
√

n
)dsdt ≤ 2MLω( f ,

1
µ
√

n
) = 2Bω(z0,

1
µ
√

n
).
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Now, since u2(x, y) = f (x, y) ⊕ (FR)
∫ 1

0 (FR)
∫ 1

0 K(x, y, s, t) � G(u1(s, t))dsdt, we conclude that:

D(u2(x, y), z2(x, y)) = D( f (x, y), f (x, y))

+ D
(
(FR)

∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � G(u1(s, t))dsdt, (FR)

∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � BF

pq(G(z1(s, t)))dsdt
)

≤M
∫ 1

0

∫ 1

0
D

(
G(u1(s, t)),BF

pq(G(z1(s, t)))
)

dsdt

≤M
(∫ 1

0

∫ 1

0
D (G(u1(s, t)), (G(z1(s, t)))) dsdt +

∫ 1

0

∫ 1

0
D

(
G(z1(s, t)),BF

pq(G(z1(s, t)))
)

dsdt
)

≤ML
∫ 1

0

∫ 1

0
D (u1(s, t), z1(s, t)) dsdt + M

∫ 1

0

∫ 1

0
D

(
G(z1(s, t)),BF

pq(G(z1(s, t)))
)

dsdt

≤ 2MLBω( f ,
1

µ
√

n
) + 2Mω(G(z1),

1
µ
√

n
) ≤ 2B2ω( f ,

1
µ
√

n
) + 2MLω(z1,

1
µ
√

n
)

≤ 2B2ω(z0,
1

µ
√

n
) + 2Bω(z1,

1
µ
√

n
).

By induction, for m ≥ 3, we have:

D(um(x, y), zm(x, y)) ≤ 2Bmω(z0,
1

µ
√

n
) + 2Bm−1ω(z1,

1
µ
√

n
) + ... + 2Bω(zm−1,

1
µ
√

n
). (16)

Thus

D(um(x, y), zm(x, y)) ≤ (2Bm + 2Bm−1 + ... + 2B)Γ = 2BΓ
1 − Bm

1 − B
, (17)

for each x, y ∈ [0, 1]. Since B < 1, according to 1−Bm

1−B ≤
1

1−B for each m ∈ N, we get:

D∗(um, zm) ≤
2BΓ

1 − B
. (18)

Considering inequalities (10,18), we have

D∗(u∗, zm) ≤ D∗(u∗,um) + D∗(um, zm) (19)

≤
M0Bm+1

L(1 − B)
+

2BΓ

1 − B
=

B
L(1 − B)

(M0Bm + 2LΓ), (20)

which completes the proof of theorem (5).

Remark 2. SinceB < 1, it is easy to show that

limµ,m,n→∞D∗(u∗, zm) = 0. (21)

Thus, the proposed method is convergent.

4.2. Numerical stability analysis
For the presented iterative numerical method, we study the stability of the first iteration. So, in order to

investigate the numerical stability of the iterative algorithm (11) with respect to a small perturbation in the
starting approximation, we consider another starting approximation v0 ∈ Cz([0, 1] × [0, 1]) such that there
exists ε > 0 for which D(u0(x, y), v0(x, y)) < ε,∀(x, y) ∈ [0, 1] × [0, 1]. The obtained sequence of successive
approximation is

v0(x, y) = f (x, y),
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vm(x, y) = f (x, y) ⊕ (FR)
∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � G(vm−1(s, t))dsdt. (22)

and using the same iterative method, the terms of the produced sequence are

vm(x, y) = f (x, y) ⊕
M1∑
i=1

n∑
p=0

M2∑
j=1

n∑
q=0

G(vm−1(x, y))Iipjq(x, y). (23)

As in [7, 12], we give the following definition and derive the following numerical stability result.

Definition 11(See [7, 12]). We say that the algorithm of approximation applied to integral equation (1) is
numerically stable with respect to the choice of the first iteration iff there exist two constants K1,K2 ,which
are independent by h = 1

µ , and a function β(h), such that limh→0β(h) = 0 and

D(zm(x, y), vm(x, y)) < K1ε + K2β(h), ∀m ∈ N; x, y ∈ [0, 1]. (24)

Theorem 6. With assumptions of Theorem (4), and B = ML(b − a)(d − c) < 1, the proposed method (11) is
numerically stable with respect to the choice of the first iteration.

Proof. Similarly as Theorem (5), it follows that

D∗(vm, vm) ≤
2BΓ

1 − B
,

where Γ = max(0≤p≤m−1)ω(vp, 1
µ
√

n
).

From Definition 1, we obtain

D(zm(x, y), vm(x, y)) ≤ D(zm(x, y),um(x, y)) + D(um(x, y), vm(x, y)) + D(vm(x, y), vm(x, y))

≤
2B

1 − B
Γ +

2B
1 − B

Γ + D(um(x, y), vm(x, y)).

Since D(u0(x, y), v0(x, y)) < ε for all (x, y) ∈ [0, 1] × [0, 1], we have

D(u1(x, y), v1(x, y))

≤ D
(
(FR)

∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � G(u0(s, t))dsdt, (FR)

∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � G(v0(s, t)))dsdt

)
< MLε < ε.

By induction, we have D(um(x, y), vm(x, y)) < Bmε < ε, thus

D(zm(x, y), vm(x, y)) ≤
2B

(1 − B)
(Γ + Γ) + ε

= K1ε + K2β(h),

with K1 = 1 , K2 = 2B
1−B , and β(h) = Γ + Γ.

So, we proved the numerical stability of the proposed method.
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5. Numerical examples

To illustrate the efficiency of the presented method in the previous Section, we give two examples. Also,
we compare the numerical solution obtained by using the proposed method with the exact solution.

Example 1(See [11]). Consider the following nonlinear fuzzy Fredholm integral equations of the second
kind:

u(x, y) = f (x, y) ⊕ (FR)
∫ 1

0
(FR)

∫ 1

0
K(x, y, s, t) � G(u(s, t))dsdt, (25)

where

f (x, y) = ( f (x, y, α), f (x, y, α)) (26)

f (x, y, α) = (2 + α)xy −
1
16

(2 + α)2xy (27)

f (x, y, α) = (4 − α)xy −
1
16

(−4 + α)2xy (28)

K(x, y, s, t) = xyst (29)

G(β) = β2, (30)

the exact solution is given by

u(x, y) = (u(x, y, α),u(x, y, α)) (31)

u(x, y, α) = (2 + α)xy (32)

u(x, y, α) = (4 − α)xy. (33)

To obtain numerical solution, we use the proposed method in Section 4. So, to compare the numerical and
exact solutions, one can see Table 1. Also for comparing the result of proposed method in Section 4 and the
method of [11], see Table 1.

Table 1. The accuracy on the level sets for Example 1 in x = 0.5, y = 0.5
proposed method proposed method method of [11]

n=5, m=10 n=7, m=20 n=50, m=20
r-level |u − zm| |u − zm| |u − zm| |u − zm| |u − zm| |u − zm|

0.0 0 1e-4 0 0 4e-10 7e-10
0.2 0 1e-4 0 0 3e-11 3e-11
0.4 0 5e-5 0 0 8e-10 4e-12
0.6 1e-6 2e-5 0 0 8e-11 9e-13
0.8 3e-6 1e-5 0 0 1e-10 5e-12
1.0 7e-6 7e-6 0 0 5e-11 8e-11

Example 2. Consider the following nonlinear fuzzy Fredholm integral equations of the second kind:

u(x, y) = f (x, y) ⊕ (FR)
∫ 2

1
(FR)

∫ 2

1
K(x, y, s, t) � G(u(s, t))dsdt, (34)

where

f (x, y) = ( f (x, y, α), f (x, y, α)) (35)

f (x, y, α) = αxy −
α2

64
(x2 + y2

− 2) (36)
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f (x, y, α) = (2 − α)xy −
(2 − α)2

64
(x2 + y2

− 2) (37)

K(x, y, s, t) = (x2 + y2
− 2)st/4 (38)

G(β) = β2, (39)

the exact solution is given by

u(x, y) = (u(x, y, α),u(x, y, α)) (40)

u(x, y, α) = αxy (41)

u(x, y, α) = (2 − α)xy. (42)

To obtain numerical solution, we use the proposed method in Section 4. So, to compare the numerical and
exact solutions, one can see Table 2.

Table 2. The accuracy on the level sets for Example 2 in x = 0.5, y = 0.5
n=3, m=5 n=4, m=10 n=5, m=15

r-level |u − zm| |u − zm| |u − zm| |u − zm| |u − zm| |u − zm|

0.0 0 7e-4 0 5e-6 0 0
0.2 0 3e-4 0 2e-6 0 0
0.4 0 5e4 0 1e-6 0 0
0.6 1e-6 6e-6 0 0 0 0
0.8 1e-6 2e-5 0 0 0 0
1.0 6e-6 6e-6 0 4e-5 0 0

6. Conclusions

In this paper we proposed a new approach for solving nonlinear 2DFFIE using HBB method. To
this end, we applied the HBB for approximation of the unique solution of 2DNFFIE. The efficiency and
simplicity of the proposed method illustrated by introducing some numerical examples with known exact
solutions. The main advantage of this method is low cost of setting up the equations without using any
projection method and any integration.
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