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Abstract. In the paper we concentrate on lower, almost-lower and semi-lower density operators on
measurable spaces. The existence of maximal element in the families of such operators is investigated.
Moreover, we consider topologies generated by the above operators. Among others the existence of the
greatest of such topologies (with respect to the inclusion) is studied.

1. Introduction and Preliminaries

In the paper we will concentrate on measurable spaces and density type operators defined on some
families of subsets of this space. By a measurable space we will mean a triple 〈X,S,J〉, where X is a non-
empty set,S is an algebra of subsets of X andJ ⊂ S is a proper ideal of sets. Moreover, from now on we will
assume that

⋃
J = X i.e.J contains all singletons. One can see at once thatS0 = {A ∈ S : A ∈ J∨X\A ∈ J}

is the smallest algebra containing the family J .
We will use the symbols L and L to denote the σ-algebra of Lebesgue measurable sets and the σ-ideal

of Lebesgue measure zero sets in R, respectively. If we consider R with natural topology τnat then we will
use the symbol Ba to denote the σ-algebra of set with the Baire property and the symbol K to denote the
σ-ideal of the first category sets in (R, τnat).

Let X be a non-empty set. The family of all subsets of X will be denoted by 2X. For any A,B ∈ 2X

the symbol A4B will stand for the set (A \ B) ∪ (B \ A). Moreover, for any measurable space 〈X,S,J〉 and
A,B ⊂ X the symbol A ∼ B will mean that A4B ∈ J . We will write A ⊂

∼
B to state that A \ B ∈ J . If {Tw}w∈W

is a family of topologies on X then the smallest topology generated by
⋃

w∈W
Tw will be denoted by σ(

⋃
w∈W
Tw).

We shall say that a measurable space 〈X,S,J〉 has the hull property if for any set A ⊂ X there is a set
V ∈ S such that A ⊂ V and for any Z ∈ S if Z ⊂ V \ A then Z ∈ J .

As mentioned at the beginning of this section we will consider particular operators, so now we briefly
recall their definitions. We will start with a lower density operator has played a special role in many
considerations (e.g. [2, 12]).

Definition 1.1. Let 〈X,S,J〉 be a measurable space. We shall say that Φ : S → 2X is a lower density
operator on 〈X,S,J〉 if
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[I] Φ(∅) = ∅ and Φ(X) = X;
[II] Φ(A ∩ B) = Φ(A) ∩Φ(B) for any A,B ∈ S;

[III] for any A,B ∈ S if A4B ∈ J then Φ(A) = Φ(B);
[IV] Φ(A)4A ∈ J for any A ∈ S.

If Φ satisfies the additional condition:

[V] Φ(A ∪ B) = Φ(A) ∪Φ(B) for any A,B ∈ S

we shall call it a lifting. If the operator Φ satisfies conditions [I]–[III] then it is called a semi-lower density
operator on 〈X,S,J〉 (see [5]). If we replace condition [IV] by the following one:

[IV*] Φ(A) \ A ∈ J for any A ∈ S,

we obtain an almost-lower density operator on 〈X,S,J〉 (see [3]).
For any measurable space 〈X,S,J〉 the family of all lower density operators on 〈X,S,J〉will be denoted

byLDO(〈X,S,J〉), the family of all almost-lower density operators byALDO(〈X,S,J〉) and the family of
all semi-lower density operators bySLDO(〈X,S,J〉). The family of all liftings on 〈X,S,J〉will be denoted
by LLDO(〈X,S,J〉). We will write simply LDO, ALDO, SLDO and LLDO when no confusion can
arise.

Obviously for any measurable space 〈X,S,J〉we have LLDO ⊂ LDO ⊂ ALDO ⊂ SLDO. Moreover,
one can see at once that if Φ ∈ LDO then Φ(A) ∈ S for any A ∈ S, so Φ : S → S. It is worth adding that
condition [V] can be replaced by the following one

[V*] Φ(A) ∪Φ(X \ A) = X for any A ∈ S.

Let 〈X,S,J〉 be a measurable space andP be any family of operators included inSLDO. Let Φ1,Φ2 ∈ P.
We shall say that Φ2 is greater than or equal to Φ1 (Φ1 � Φ2) if and only if Φ1(A) ⊂ Φ2(A) for every A ∈ S.
The relation � is of course a partial order in P.

In this paper we will also focus on topologies generated by operators mentioned above. We will
investigate, among others, the existence of the largest topology with respect to the inclusion. The existence
of the smallest with respect to the relation ⊂ topology generated by lower and almost-lower density
operators was investigated in [6]. Moreover, some other relations in the family of all topologies generated
by operators mentioned above were studied in [10].

Definition 1.2. Let 〈X,S,J〉 be a measurable space and Φ be an operator such that Φ : S → 2X. If the
family

TΦ = {A ∈ S : A ⊂ Φ(A)}

is a topology on X then we say that Φ generates topology TΦ on X.

The following definition is well known.

Definition 1.3. Let 〈X,S,J〉 be a measurable space. We shall say that a topology τ ⊂ 2X is an abstract
density topology on 〈X,S,J〉 if there exists Φ ∈ LDO generating topologyTΦ such that τ = TΦ. The family
of all abstract density topologies on 〈X,S,J〉 will be denoted by T〈X,S,J〉 (or simply T when no confusion
can arise) .

Analogously, we can define an almost-abstract (a semi-abstract) density topology.

Definition 1.4. Let 〈X,S,J〉 be a measurable space. We shall say that a topology τ ⊂ 2X is an almost-
abstract (a semi-abstract) density topology on 〈X,S,J〉 if there exists Φ ∈ ALDO (Φ ∈ SLDO) generating
topology TΦ such that τ = TΦ. The family of all almost-abstract (semi-abstract) density topologies on
〈X,S,J〉will be denoted by Ta

〈X,S,J〉 (Ts
〈X,S,J〉 ) or simply Ta (Ts) when no confusion can arise.
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2. The FamiliesLDO and T.

There exists a close connection between the hull property and the existence of a topology generated by
operator from LDO (see [8, 11]).

Theorem 2.1. Let 〈X,S,J〉 be a measurable space and Φ ∈ LDO. The space 〈X,S,J〉 has the hull property if and
only if the operator Φ generates the topology TΦ on X.

Clearly, the above theorem implies that if 〈X,S,J〉 is a measurable space having the hull property and
LDO , ∅ than T , ∅. Moreover, there is a connection between the partial order in the family LDO and the
partial order in T connected with the relation ⊂. It is obvious that

Property 2.2. If TΦ1 and TΦ1 are abstract density topologies on 〈X,S,J〉 generated by Φ1,Φ2 ∈ LDO then
TΦ1 ⊂ TΦ2 if and only if Φ1 � Φ2.

Taking into account the above property we see that examination of the existence of the smallest or the
largest topology in the family T ordered by the relation ⊂ is equivalent to the study of existence of the least
or the greatest element in the family of all lower density operators ordered by the relation �.

Topologies from the families T〈R,L,L〉 and T〈R,Ba,K〉 are investigated in many papers (e.g. [9, 12, 13]). It
turns out that in none of these families there is the smallest and the largest topology with respect to the
relation ⊂. In the case of the smallest topology, the appropriate justification could be found in [6]. Now, we
would like to concentrate on the smallest topology containing the union of all abstract density topologies
on 〈R,L,L〉.

Let us start with a reminder of information about J-density operator introduced in [9].
We shall say that a sequence {Jn}n∈N of non-degenerate closed intervals tends to 0 if lim

n→∞
diam(Jn∪{0}) = 0,

where diam(Jn ∪ {0}) is the diameter of the set Jn ∪ {0}. Let J denote the family of all sequences of non-
degenerate closed intervals tending to 0. To shorten notation we will write J instead of a sequence {Jn}n∈N
from the family J. Moreover, we will denote by Jα the set of all sequences J ∈ J such that

lim sup
n→∞

diam(Jn ∪ {0})
|Jn|

< ∞.

Let J ∈ J and A ∈ L. Putting

ΦJ(A) =

{
x ∈ R : lim

n→∞

A ∩ (Jn + x)
|Jn|

= 1
}

we obtain an almost lower density operator on (R,L,L) called a J-density operator. Moreover, we have
that the family TΦJ = {A ∈ L : ΦJ(A) ⊂ A} is a topology on R (see [9]). If J ∈ Jα, then ΦJ is a lower density
operator.

Theorem 2.3. The family
⋃

J∈Jα
TΦJ is not a topology. The smallest topology containing the family

⋃
J∈Jα
TΦJ is equal to

2R.

Proof. Let J = {Jn}n∈N and K = {Kn}n∈N be sequences from Jα such that Jn ⊂ [0,∞) and Kn ⊂ (−∞, 0]
for any n ∈ N. It is easy to see that for any α < 0 and any β > 0 we get (α, 0] ∈ TΦK ⊂

⋃
J∈Jα
TΦJ and

[0, β) ∈ TΦJ ⊂
⋃

J∈Jα
TΦJ . Clearly, (α, 0] ∩ [0, β) = {0} <

⋃
J∈Jα
TΦJ , so

⋃
J∈Jα
TΦJ is not a topology.

Let T ∗ be a topology containing the family
⋃

J∈Jα
TΦJ . Obviously, (α, 0] ∩ [0, β) = {0} ∈ T ∗. Since for every

J ∈ Jα the topology TΦJ is invariant under translation (see [7]), it follows that {x} ∈ T ∗ for every x ∈ R.
Therefore T ∗ = 2R.



J. Hejduk et al. / Filomat 32:14 (2018), 4949–4957 4952

If we consider J-density operators connected with category (see [15]) we can prove the analogue of
the above theorem. From these facts it follows that the smallest topology containing the union of all
abstract density topologies on 〈R,L,L〉 and 〈R,Ba,K〉 is equal to 2R. Clearly, if for 〈X,S,J〉 we have
σ(
⋃

Φ∈LDO

TΦ) = 2X, then there is no largest topology in T with respect to the relation ⊂. Therefore there is

no largest abstract density topology in 〈R,L,L〉 and 〈R,Ba,K〉 with respect to the relation ⊂. One can ask
about a general case.

In [6] one can find that in a measurable space 〈X,S,J〉 such that
⋃
J = X, the existence of the smallest

topology in the family T ordered by relation ⊂ is equivalent to the equality S = S0. The existence of the
largest topology in the family T ordered by the relation ⊂ is also connected with the analogous condition.
In fact we have

Theorem 2.4. Let 〈X,S,J〉 be a measurable space such that T , ∅. Then σ(
⋃
T) = 2X if and only if S , S0.

Proof. If S = S0 then the family T consists of the one topology T = {A ⊂ X : A = ∅ ∧ X \ A ∈ J} which is
generated by a lower density operator

Φ0(A) =

∅ if A ∈ J ,
X if X \ A ∈ J ,

so the smallest topology generated by the family
⋃
T is equal to T and, in consequence, it is not equal to

2X.
Assume that S , S0. Since T , ∅, Theorem 2.1 implies that 〈X,S,J〉 has the hull property. Moreover,

we have LDO , ∅ and, in consequence, there is lifting Ψ on 〈X,S,J〉 (see [14]). Obviously, by Theorem
2.1, Ψ generates topology TΨ.

Let A ⊂ X be such that A ∈ S\S0. Clearly, X \A ∈ S\S0. Fix x1 ∈ Ψ(A) and x2 ∈ Ψ(X \A). Let x ∈ Ψ(A).
Putting

Φx(B) =

Ψ(B) ∪ {x} if x2 ∈ Ψ(B),
Ψ(B) \ {x} if x2 < Ψ(B)

for any B ∈ Swe obtain a lower density operator on 〈X,S,J〉. Theorem 2.1 gives that Φx generates topology
TΦx . We check at once that Φx(X \ A) ∈ TΦx ∈ T and Ψ(A) ∈ TΨ ∈ T. Therefore, {x} = Ψ(A) ∩ Φx(X \ A) ∈
σ(
⋃
T).

The same conclusion can be drawn for x ∈ Ψ(X \ A). In this case, it suffices to consider the operator
defined as follows:

Φx(B) =

Ψ(B) ∪ {x} if x1 ∈ Ψ(B),
Ψ(B) \ {x} if x1 < Ψ(B)

for any B ∈ S.
Since Ψ is a lifting, X = Ψ(A) ∪Ψ(X \A). Therefore, for any x ∈ X we obtain {x} ∈ σ(

⋃
T), which means

that σ(
⋃
T) = 2X.

From the above we immediately obtain the following theorem

Theorem 2.5. Let 〈X,S,J〉 be a measurable space such that T , ∅. There is the largest abstract density topology in
T ordered by relation ⊂ if and only if S = S0.

Taking into account the above theorem and Property 2.2 we obtain immediately

Theorem 2.6. Let 〈X,S,J〉 be a measurable space such that LDO , ∅. The following statements are equivalent:

(i) S = S0;
(ii) there exists the greatest (with respect to �) element in the family LDO.
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The considerations associated with maximal elements in the family LDO ordered by � will end this
section. It turns out that operators from the family LLDO play a special role in the considerations. As we
mentioned earlier in [14] one can find that for any measurable space 〈X,S,J〉 ifLDO , ∅ thenLLDO , ∅.
We start with the following lemma useful in the next part of the paper.

Lemma 2.7. Let 〈X,S,J〉 be a measurable space and Φ ∈ ALDO. If there are a set C ∈ S and x0 ∈ X such that
x0 < Φ(C)∪Φ(X \C) then there exists an operator Φ∗ ∈ ALDOwhich is greater than Φ with respect to �. Moreover,
if we additionally assume that Φ ∈ LDO then Φ∗ ∈ LDO.

Proof. Assume, first that Φ ∈ ALDO. For any A ∈ Swe put

Φ∗(A) =

Φ(A) ∪ {x0} if there exists K ∈ S such that x0 ∈ Φ(K) and (K ∩ C) ⊂
∼

A;
Φ(A) otherwise.

Obviously, Φ∗(X) = X. Moreover, Φ∗(∅) = ∅, because if it existed K ∈ S such that (K ∩ C) ⊂
∼
∅ and x0 ∈ Φ(K),

then we would have x0 ∈ Φ(K) ⊂ Φ(X \ C), which is impossible. Conditions [III] and [IV*] are easy to see.
To prove the condition [II], first observe that for any D,E ∈ S if x0 ∈ Φ2(D) and D ⊂ E then x0 ∈ Φ∗(E).
Therefore, we get that Φ∗(A ∩ B) ⊂ Φ∗(A) ∩ Φ∗(B). To prove the converse inclusion let us assume that
x0 ∈ Φ∗(A) ∩Φ∗(B). There are three cases:

1. if x0 ∈ Φ(A) ∩Φ(B) then x0 ∈ Φ(A ∩ B) ⊂ Φ∗(A ∩ B).
2. x0 ∈ Φ(A) but x0 < Φ(B). Then there is K ∈ S such that (K ∩ C) ⊂

∼
B and x0 ∈ Φ(K). Thus x0 ∈ Φ(A ∩ K)

and ((A ∩ K) ∩ C) ⊂
∼

A ∩ B, so x0 ∈ Φ∗(A ∩ B).
3. x0 < Φ(A) and x0 < Φ(B). Then there are K,L ∈ S such that (K ∩ C) ⊂

∼
A, (L ∩ C) ⊂

∼
B and x0 ∈ Φ(K ∩ L).

This gives ((K ∩ L) ∩ C) ⊂
∼

A ∩ B and, in consequence, x0 ∈ Φ∗(A ∩ B).

To end the proof it is sufficient to observe that Φ(P) ⊂ Φ∗(P) for any P and Φ(C) , Φ∗(C).
It is easy to check that if Φ ∈ LDO then the operator Φ∗ defined above satisfies condition [IV].

Theorem 2.8. Let 〈X,S,J〉 be a measurable space such thatLDO , ∅. For any Φ ∈ LDO the following conditions
are equivalent:

(i) Φ is a maximal element in the family LDO ordered by the relation �;
(ii) Φ is a lifting.

Proof. (i)⇒ (ii) Let Φ be a maximal element in the family LDO ordered by the relation �. Suppose that Φ
is not a lifting. Observe that for any C,B ∈ S the following inclusion holds : Φ(C)∪Φ(B) ⊂ Φ(C∪ B). Hence
there exist C,B ∈ S and x0 ∈ X such that x0 ∈ Φ(C ∪ B) \ (Φ(C) ∪Φ(B)).

At the beginning observe that x0 < Φ(X \ C). Indeed, otherwise we would have

x0 ∈ Φ(X \ C) ∩Φ(C ∪ B) = Φ((X \ C) ∩ (C ∪ B)) = Φ(B \ C) ⊂ Φ(B),

which is impossible.
Lemma 2.7 gives that there is an operator Φ∗ ∈ LDO such that Φ � Φ∗ and Φ , Φ∗, contrary to our

assumption. This contradiction ends the proof of this implication.
Now, we will prove the implication (ii)⇒ (i). Let us assume that Φ is a lifting and suppose that there is

Φ2 ∈ LDO such that Φ � Φ2 and Φ , Φ2. Then there exist A ∈ S and a ∈ X such that a ∈ Φ2(A) \Φ(A). Since
Φ is a lifting, we have a ∈ Φ(X \A) ⊂ Φ2(X \A). Therefore a ∈ Φ2(X \A)∩Φ2(A) = Φ2(∅), a contradiction.

3. The FamiliesALDO and Ta.

There exists a measurable space 〈X,S,J〉 having the hull property such that LDO = ∅ and, in conse-
quence, T = ∅ (see [1]). For the familyALDO the situation is different.
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Property 3.1. For any 〈X,S,J〉 we haveALDO , ∅ and Ta , ∅.

Proof. To see thatALDO , ∅ it is enough to consider the following operator:

Φ0(A) =

∅ if A ∈ J ,
X if X \ A ∈ J .

(1)

One can prove at once that Φ0 is an almost-lower density operator. The fact that Ta , ∅ is obvious.

As in the case of lower density operators we have that for Φ1,Φ2 ∈ ALDO generating topologies
TΦ1 ,TΦ2 , respectively, if Φ1 � Φ2 then TΦ1 ⊂ TΦ2 . However, for operators from familyALDO the converse
theorem is not true. For these reasons, in the first part of this section we focus on the familyALDO ordered
by the relation � and in the next part we focus on the family Ta ordered by the relation ⊂.

We start with considerations connected with maximal element in the family ALDO ordered by �.
Lemma 2.7 implies immediately the following fact

Lemma 3.2. Let 〈X,S,J〉 be a measurable space and Φ ∈ ALDO. If there are a set C ∈ S and x0 ∈ X such that
x0 < Φ(C) ∪Φ(X \ C), then Φ is not a maximal element in the familyALDO ordered by the relation �.

Moreover, we have

Theorem 3.3. Let 〈X,S,J〉 be a measurable space. If Φ ∈ ALDO is a maximal element in the family ALDO
ordered by the relation � then Φ ∈ LDO.

Proof. Suppose that Φ < LDO, so there is A ∈ S such that A \ Φ(A) < J . Clearly, A ∩ Φ(X \ A) ∈ J . Hence
one can find x0 < Φ(A)∪Φ(X \A). By virtue of Lemma 2.7 Φ is not a maximal element in the familyALDO
ordered by the relation �, a contradiction.

The next theorem shows, among others, the connection between the existence of a maximal element in
the familyALDO in some space 〈X,S,J〉 and the existence of a lower density operator in 〈X,S,J〉.

Theorem 3.4. Let 〈X,S,J〉 be a measurable space. The following conditions are equivalent:

(i) there is a maximal element in the familyALDO ordered by the relation �;
(ii) LDO , ∅;

(iii) LLDO , ∅.

Proof. The implication (i)⇒ (ii) is a consequence of Theorem 3.3. In [14] one can find that for any measurable
space 〈X,S,J〉 if LDO , ∅ then LLDO , ∅.

Now, assume that Φ ∈ LLDO. By Theorem 2.8 we get that Φ is a a maximal element in the familyLDO
ordered by the relation �. We see at once that Φ is a maximal element in the familyALDO ordered by the
relation �. Indeed, suppose that there exists Φ1 ∈ ALDO such that Φ � Φ1 and Φ , Φ1. Thus Φ(A) ⊂ Φ1(A)
for any A ∈ S. Therefore A \Φ1(A) ⊂ A \Φ(A) ∈ J . This gives that Φ1 ∈ LDO, which is impossible.

As we mentioned earlier for any measurable space 〈X,S,J〉 such that LDO , ∅ we have LLDO , ∅.
From this fact and Theorem 2.8 we obtain that ifLDO , ∅ then there exists a maximal element in the family
LDO ordered by the relation �. It is worth adding that this property is not true for the family ALDO.
Indeed, Theorem 3.4 and the fact that there exists a measurable space 〈X,S,J〉 such that LDO = ∅, imply
that there is a measurable space 〈X,S,J〉 such that there is no maximal element in the family ALDO.
However, as in the case of the family LDO, we have

Theorem 3.5. Let 〈X,S,J〉 be a measurable space. There exists the greatest (with respect to �) element in the family
ALDO if and only if S = S0.

Now, we focus on the family Ta ordered by the relation ⊂. The following lemma, useful in the next part
of this paper, is easily seen.
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Lemma 3.6. Let 〈X,S,J〉 be a measurable space. If there is A ⊂ X such that A ∈ S \ J and X \A ∈ S \ J then the
operator Φ given by the formula

Φ(B) =


X if B ∼ X;
A if ¬(B ∼ X) ∧ A ⊂

∼
B;

∅ if ¬(B ∼ X) ∧ ¬(A ⊂
∼

B)

for B ∈ S, belongs toALDO.

As in the case of the family LDOwe obtain

Theorem 3.7. For any measurable space 〈X,S,J〉 the following conditions are equivalent:

(i) S , S0;
(ii) σ(

⋃
Ta) = 2X.

Proof. Assume (i). Thus there is A ⊂ X such that A ∈ S \ J and X \ A ∈ S \ J . Let x ∈ X. There are two
possibilities.

The first one: x ∈ A. Put for any B ∈ S

Φ1(B) =


X if B ∼ X;
A if ¬(B ∼ X) ∧ A ⊂

∼
B;

∅ if ¬(B ∼ X) ∧ ¬(A ⊂
∼

B)

and

Φ2(B) =


X if B ∼ X;
X \ A ∪ {x} if ¬(B ∼ X) ∧ (X \ A ∪ {x}) ⊂

∼
B;

∅ if ¬(B ∼ X) ∧ ¬((X \ A ∪ {x}) ⊂
∼

B).

Lemma 3.6 gives that Φ1,Φ2 ∈ ALDO. Moreover, A ∈ TΦ1 and X \ A ∪ {x} ∈ TΦ2 . Therefore {x} ∈ σ(
⋃
Ta).

The second one: x ∈ X \A. We now apply the above argument again, with A replaced by X \A, to obtain
{x} ∈ σ(

⋃
Ta).

Finally, we proved that {x} ∈ σ(
⋃
Ta) for any x ∈ X, which gives (ii). The converse implication is

obvious.

Taking into account the above theorem, we can immediately prove the following property.

Theorem 3.8. Let 〈X,S,J〉 be a measurable space. There is the largest almost-abstract density topology in Ta

ordered by the relation ⊂ if and only if S = S0.

4. The Families SLDO and Ts.

Conversely to lower and almost-lower density operators, semi-lower density operators on 〈X,S,J〉
with the hull property do not have to generate topology.

Example 4.1. Let A,B ∈ L \ L and A ∩ B = ∅. Define Φ as follows:

Φ(C) =


R if C ∼ R;
A ∪ B if A ⊂

∼
C;

∅ if ¬(B ∼ R) ∧ ¬(A ⊂
∼

C)

for any C ∈ L. It is easy to check that Φ ∈ SLDO(〈R,L,L〉). On the other hand the family TΦ is not a
topology. To see that it is sufficient to consider a set D ⊂ B and D < L. Then for any d ∈ D we have
A ∪ {d} ∈ TΦ because A ∪ {d} ⊂ Φ(A ∪ {d}) = A ∪ B. Obviously,

⋃
d∈D

(A ∪ {d}) < L and, in consequence,⋃
d∈D

(A ∪ {d}) < TΦ, so TΦ is not a topology on R.
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It is worth adding that in general there exists an operator Φ ∈ SLDO(〈X,S,J〉) not generating a
topology if and only if S0 , S , 2X (see [4]).

Obviously, for any measurable space 〈X,S,J〉 we have Ta
⊂ Ts , so Ts , ∅. Moreover, analysis similar

to that in the proof of Lemma 2.7 shows

Lemma 4.2. Let 〈X,S,J〉 be a measurable space and Φ ∈ SLDO. If there are a set C ∈ S and x0 ∈ X such that
x0 < Φ(C) ∪Φ(X \ C) then there exists an operator Φ∗ ∈ SLDO which is strictly greater than Φ with respect to �.

Using this lemma one can prove

Theorem 4.3. Let 〈X,S,J〉 be a measurable space. An operator Φ ∈ SLDO is a maximal element in the family
SLDO ordered by the relation � if and only if

∀
A∈S

Φ(A) ∪Φ(X \ A) = X. (2)

Proof. Let Φ be a maximal element in the family SLDO ordered by the relation �. Suppose that Φ(A) ∪
Φ(X \ A) , X for some A ∈ S. Thus there is x0 ∈ X \ (Φ(A) ∪ Φ(X \ A)). By Lemma 4.2 we get that there
exists an operator Φ∗ ∈ SLDO such that Φ � Φ∗ and Φ , Φ∗. This contradiction ends the proof of necessity.

Now assume that an operator Φ ∈ SLDO satisfies condition (2). Suppose that Φ is not a maximal
element in the family SLDO ordered by the relation �. Therefore there exists Φ∗ ∈ SLDO such that
Φ � Φ∗ and Φ , Φ∗. Thus there are A ∈ S and a ∈ X such that a ∈ Φ∗(A) \ Φ(A). Condition (2) gives that
a ∈ Φ(X \ A) ⊂ Φ∗(X \ A). It implies that a ∈ Φ∗(X \ A) ∩Φ∗(A) = ∅, a contradiction.

Evidently the operator Φ0 defined in (1) is the smallest element in the family SLDO ordered by the
relation �. In the case of the greatest element we have the following property.

Theorem 4.4. Let 〈X,S,J〉 be a measurable space. The following statements are equivalent:

(i) S , S0;
(ii) there in no greatest element in the family SLDO ordered by the relation �.

Proof. Let us assume that S , S0 and suppose that Φ is the greatest element in the family SLDO ordered
by the relation �. There exists A ∈ S such that A ∈ S\J and X \A ∈ S\J . Let us define Φ∗ in the following
way:

Φ∗(B) =


X if B ∼ X;
A if B ⊂

∼
A ∧ ¬(A ∼ X);

X \ A if B ⊂
∼

X \ A ∧ ¬((X \ A) ∼ X);
∅ if ¬(B ∼ X) ∧ ¬(B ⊂

∼
A) ∧ ¬(B ⊂

∼
X \ A)

for B ∈ S. One could check at once that Φ∗ ∈ SLDO. By Theorem 4.3 we obtain Φ(A) ∪ Φ(X \ A) = X.
Therefore Φ(A) , ∅ or Φ(X \ A) , ∅. Without loss of generality we can assume that Φ(A) , ∅. Let us fix
a ∈ Φ(A). Since Φ∗ � Φ we get Φ∗(X \ A) = X \ A ⊂ Φ(X \ A) and, in consequence, Φ(X \ A) , ∅. Let us fix
b ∈ Φ(X \ A). Putting

Φ∗∗(B) =

Φ(B) ∪ {b} if a ∈ Φ(B);
Φ(B) \ {b} if a < Φ(B)

for every B ∈ Swe obtain an operator Φ∗∗ from SLDO. Moreover, we get Φ(A) ⊂ Φ∗∗(A) and Φ(A) , Φ∗∗(A),
which contradicts the fact that Φ is the greatest element in SLDO ordered by the relation �.

The implication (ii)⇒(i) is obvious because if S = S0 then SLDO = {Φ0}, where Φ0 is defined in (1).

Theorem 4.5. Let 〈X,S,J〉 be a measurable space. There exists a maximal element in the family SLDO ordered by
the relation �.
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Proof. To find a maximal element in SLDO we apply here a method described in the acknowledgment
section of the paper [14]. Let Φ ∈ SLDO and let Fx = {A ∈ S : x ∈ Φ(A)} for x ∈ X. Then Fx is a filter on
〈X,S,J〉 for any x ∈ X. Consider, for any x ∈ R, a maximal filter Fx containing the filter Fx. Let Ψ be the
operator defined on S in the following way:

∀
A∈S

Ψ(A) = {x ∈ X : A ∈ Fx}.

Then Ψ ∈ SLDO. Moreover, Ψ(A) ∪Ψ(X \ A) = X for every A ∈ S. Thus, by Theorem 4.3, Ψ is a maximal
element in the family SLDO ordered by the relation �.

References

[1] A. Bartoszewicz, K. Ciesielski, MB-representations and topological algebras, Real Anal. Exchange 27 (2001/2002) 749–756.
[2] O. Haupt, C. Pauc, La topologie de Denjoy envisagée comme vraie topologie, C.R. Acad. Sci. Paris 234 (1952) 390–392.
[3] J. Hejduk, One more difference between measure and category, Tatra Mount. Math. Publ. 49 (2011) 9–15.
[4] J. Hejduk, On the regularity of topologies in the family of sets having the Baire property, Filomat 27 (2013) 1291–1295.
[5] J. Hejduk, A. Loranty, On the lower and semi-lower density operator, Georgian Math. J. 14 (2007) 661–671.
[6] J. Hejduk, A. Loranty, On abstract and almost-abstract density topologies, Acta Math. Hungar. 155(2) (2018) 228-240
[7] J. Hejduk, A. Loranty, R. Wiertelak, On J-continuous functions, Tatra Mount. Math. Publ. 65 (2016) 49–59.
[8] J. Hejduk, R. Wiertelak, On the abstract of density topologies generated by lower and almost lower density operators, Traditional

and present-day topics in real analysis, University of Łódź (2013) 431–440.
[9] J. Hejduk, R. Wiertelak, On the generalization of the density topology on the real line, Math. Slovaca 64 (2014) 1267–1276.

[10] S. Lindner, M. Terepeta, On the position of abstract density topologies in the lattice of all topologies, Filomat 30 (2016) 281–286.
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