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Abstract. In this paper we study para-Kenmotsu manifolds. We characterize this manifolds by tensor
equations and study their properties. We are devoted to a study of η−Einstein manifolds. We show that a
locally conformally flat para-Kenmotsu manifold is a space of constant negative sectional curvature −1 and
we prove that if a para-Kenmotsu manifold is a space of constant ϕ−para-holomorphic sectional curvature
H, then it is a space of constant sectional curvature and H = −1. Finally the object of the present paper is to
study a 3-dimensional para-Kenmotsu manifold, satisfying certain curvature conditions. Among other, it
is proved that any 3-dimensional para-Kenmotsu manifold with η−parallel Ricci tensor is of constant scalar
curvature and any 3-dimensional para-Kenmotsu manifold satisfying cyclic Ricci tensor is a manifold of
constant negative sectional curvature −1.

1. Introduction

In this paper we study a class of paracontact pseudo-Riemannian manifolds satisfying some special
conditions. These manifolds are analogues to the Kenmotsu manifolds and they belong of the class G6
of the classification given in [8]. We characterize these manifolds by tensor equations and study their
properties. From the definition by means of the tensor equations, it is easily verified that the structure
is normal, but not quasi-para-Sasakian (and not para-Sasakian). We are devoted to a study of η−Einstein
manifolds. We show that a locally conformally flat para-Kenmotsu manifold is a space of constant negative
sectional curvature −1 and we prove that if a para-Kenmotsu manifold is a space of constant ϕ−para-
holomorphic sectional curvature H, then it is a space of constant sectional curvature and H = −1. In the
last section we study the 3-dimensional para-Kenmotsu manifolds. We prove that any 3-dimensional para-
Kenmotsu manifold satisfying the condition R(X,Y).Ric = 0 is a manifold of constant negative sectional
curvature, where R(X,Y) is considered as a derivation of the tensor algebra at each point of manifold (X,Y
are tangent vectors). We study locally ϕ−symmetric para-Kenmotsu manifolds and obtain a necessary and
sufficient condition 3-dimensional para-Kenmotsu manifold to be locally ϕ−symmetric. We obtain some
interesting results about a 3-dimensional para-Kenmotsu manifolds with η−parallel Ricci tensor. We give
a example for 3-dimensional para-Kenmotsu manifold with a scalar curvature equal to −6.
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2. Preliminaries

A (2n+1)-dimensional smooth manifold M(2n+1) has an almost paracontact structure (ϕ, ξ, η) if it admits a
tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η satisfying the following compatibility conditions

(i) ϕ(ξ) = 0, η ◦ ϕ = 0,

(ii) η(ξ) = 1 ϕ2 = id − η ⊗ ξ,

(iii) distributionD : p ∈M −→ Dp ⊂ TpM :
Dp = Kerη = {X ∈ TpM : η(X) = 0} is called paracontact
distribution generated by η.

(1)

The tensor field ϕ induces an almost paracomplex structure [3] on each fibre onD and (D, ϕ, 1|D) is a 2n-
dimensional almost paracomplex distribution. Since 1 is non-degenerate metric on M and ξ is non-isotropic,
the paracontact distributionD is non-degenerate.

An immediate consequence of the definition of the almost paracontact structure is that the endomor-
phism ϕ has rank 2n, ϕξ = 0 and η ◦ ϕ = 0, (see [1, 2] for the almost contact case).

If a manifold M(2n+1) with (ϕ, ξ, η)-structure admits a pseudo-Riemannian metric 1 such that

1(ϕX, ϕY) = −1(X,Y) + η(X)η(Y), (2)

then we say that M(2n+1) has an almost paracontact metric structure and 1 is called compatible. Any compatible
metric 1with a given almost paracontact structure is necessarily of signature (n + 1,n).

Note that setting Y = ξ, we have η(X) = 1(X, ξ).
Further, any almost paracontact structure admits a compatible metric.

Definition 2.1. If 1(X, ϕY) = dη(X,Y) (where dη(X,Y) = 1
2 (Xη(Y)−Yη(X)−η([X,Y]) then η is a paracontact form

and the almost paracontact metric manifold (M, ϕ, η, ξ, 1) is said to be a paracontact metric manifold.

A paracontact metric manifold for which ξ is Killing is called a K − paracontact manifold. A paracontact
structure on M(2n+1) naturally gives rise to an almost paracomplex structure on the product M(2n+1)

×<. If
this almost paracomplex structure is integrable, then the given paracontact metric manifold is said to be a
para-Sasakian. Equivalently, (see [7]) a paracontact metric manifold is a para-Sasakian if and only if

(∇Xϕ)Y = −1(X,Y)ξ + η(Y)X, (3)

for all vector fields X and Y (where ∇ is the Livi-Civita connection of 1).

Definition 2.2. If (∇Xϕ)Y = 1(X,Y)ξ−η(Y)X, then the manifold (M, ϕ, η, ξ, 1) is said to be a quasi-para-Sasakian manifold.

From De f inition 2.2 (see [5]) we have

∇Xξ = ϕX. (4)

Definition 2.3. If (∇Xϕ)Y = η(Y)ϕX+1(X, ϕY)ξ, then the manifold (M, ϕ, η, ξ, 1) is said to be a para-Kenmotsu manifold.

From De f inition 2.3 (see [5]) we have

∇Xξ = −X + η(X)ξ. (5)

Definition 2.4. A (2n + 1)-dimensional almost paracontact metric manifold is called

normal if N(x, y)−2dη(x, y)ξ = 0, where N(x, y) = ϕ2[x, y]+ [ϕx, ϕy]−ϕ[ϕx, y]−ϕ[x, ϕy] is the Nijenhuis torsion
tensor of ϕ (see [7]).

In [8], it is proved that (M, ϕ, η, ξ, 1) is normal, since ξ is not a Killing vector field and the manifold is not
quasi-para-Sasakian. Thus we have
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Proposition 2.5. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold. Then (M, ϕ, η, ξ, 1) is normal but neither quasi-
para-Sasakian nor para-Sasakian.

Denoting by £ the Lie differentiation of 1, we see

Proposition 2.6. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold. Then we have

(∇Xη)Y = −1(X,Y) + η(X)η(Y), (6)

(£ξ1)(X,Y) = −2(1(X,Y) − η(X)η(Y)), (7)

£ξϕ = 0, (8)

£ξη = 0, (9)

where X,Y ∈ TpM.

Since the proof of Proposition 2.6 follows by routine calculation, we shall omit it.
Denoting by R the curvature tensor of ∇, we have the following

Definition 2.7. An almost paracontact structure (ϕ, ξ, η, 1) is said to be locally symmetric if (∇WR)(X,Y,Z) = 0,
for all vector fields W,X,Y,Z ∈ TpM .

Definition 2.8. An almost paracontact structure (ϕ, ξ, η, 1) is said to be locally ϕ− symmetric ifϕ2(∇WR)(X,Y,Z) =
0, for all vector fields W,X,Y,Z orthogonal to ξ.

Finally, the sectional curvature K(ξ,X) = εXR(X, ξ, ξ,X), where |X| = εX = ±1, of a plane section
spanned by ξ and the vector X orthogonal to ξ is called ξ-sectional curvature, whereas the sectional curvature
K(X, ϕX) = −R(X, ϕX, ϕX,X), where |X| = −|ϕX| = ±1, of a plane section spanned by vectors X and ϕX
orthogonal to ξ is called a ϕ-para-holomorphic sectional curvature.

3. Some properties of para-Kenmotsu manifolds

The following result is well-known from the theory of para-Sasakian manifolds: K(X, ξ) = −1 and if a
para-Sasakian manifold is locally symmetric, then it is of constant negative sectional curvature −1([6]). On
para-Kenmotsu manifolds we get

Proposition 3.1. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold. Then we have

R(X,Y)ξ = η(X)Y − η(Y)X, (10)

R(X, ξ)Y = 1(X,Y)ξ − η(Y)X, (11)

Ric(X, ξ) = −2nη(X), (12)

K(X, ξ) = −1, (13)

(∇ZR)(X,Y, ξ) = R(X,Y)Z + 1(Y,Z)X − 1(X,Z)Y, (14)

where Ric is the Ricci tensor and X,Y,Z ∈ TpM.

Proof. The equation (10) follows directly from (5), (6) and the definition of the curvature R. The equations
(11), (12) and (13) are a consequence of (10). By virtue of (5) (6) and (10) we get (14):

(∇ZR)(X,Y, ξ) = ∇Z(R(X,Y)ξ) − R(∇ZX,Y)ξ − R(X,∇ZY)ξ − R(X,Y)∇Zξ =

= R(X,Y)Z + 1(Y,Z)X − 1(X,Z)Y.
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Theorem 3.2. If (M, ϕ, η, ξ, 1) is locally symmetric, then it is of constant negative sectional curvature −1.

Proof. Theorem 3.2 follows from (14).

We can generalize Theorem 3.2 slightly as follows:

Proposition 3.3. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold. If M is a semi-symmetric space, i.e., R(X,Y)R = 0,
for any X,Y ∈ TpM, then it is of constant negative sectional curvature −1.

Proof. Let X,Y ∈ D and 1(X,Y) = 0. Then, using (10) and (11) above, we obtain

(R(X, ξ)R)(X,Y)Y = R(X, ξ)R(X,Y)Y − R(R(X, ξ)X,Y)Y − R(X,R(X, ξ)Y)Y−

−R(X,Y)R(X, ξ)Y = R(X,Y,Y,X)ξ − R(X,Y,Y, ξ)X − 1(X,X)R(ξ,Y)Y =

= (R(X,Y,Y,X) + 1(X,X)1(Y,Y))ξ.

From the identity R(X,Y)R = 0, we get R(X,Y,Y,X) = −1(X,X)1(Y,Y), which implies that (M, ϕ, η, ξ, 1) is of
constantϕ−para-holomorphic sectional curvature−1, and hence it is of constant sectional curvature−1.

4. η−Einstein manifolds

An almost para-contact pseudo-Riemannian manifold is called η−Einstein, if the Ricci tensor Ric satisfies
Ric = a.d + b.η ⊗ η, where a, b are smooth scalar functions on M. If a para-Sasakian manifold is η−Einstein
and n > 1, then a and b are constant (see [7]).

Proposition 4.1. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold. If M is an η−Einstein manifold, we have

a + b = −2n, (15)

Z(b) − 2bη(Z) = 0, n > 1 (16)

for any Z ∈ TpM.

Proof. The equation (15) follows from Ric(X, ξ) = −2nη(X) which is derived from (10). As M is an η−Einstein
manifold, the scalar curvature scal is equal to 2n(a−1). We define the Ricci operator Q as follows: 1(QX,Y) =
Ric(X,Y). By identity Y(scal) = 2nY(a) and the trace of the map [X→ (∇XQ)Y], we have

Z(a) + ξ(b)η(Z) − 2nbη(Z) = nZ(a).

Setting Z = ξ, we get ξ(b) = 2b. Therefore we have Z(b) − 2bη(Z) = 0.

Corollary 4.2. If (M, ϕ, η, ξ, 1) is a para-Kenmotsu manifold and b =constant (or a =constant), then M is an Einstein
one.

5. Curvature tensor

At first we shall prove the following

Proposition 5.1. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold. Then we have the following identities

R(X,Y)ϕZ − ϕR(X,Y)Z = 1(Y,Z)ϕX − 1(X,Z)ϕY − 1(Y, ϕZ)X+, (17)

+1(X, ϕZ)Y,

R(ϕX, ϕY)Z = −R(X,Y)Z − 1(Y,Z)X + 1(X,Z)Y+ (18)

+1(Y, ϕZ)ϕX − 1(X, ϕZ)ϕY,

where X,Y,Z ∈ TpM.



S. Zamkovoy / Filomat 32:14 (2018), 4971–4980 4975

Proof. The equation (17) follows from the Ricci’s identity:

∇X∇Yϕ − ∇Y∇Xϕ − ∇[X,Y]ϕ = R(X,Y)ϕZ − ϕR(X,Y)Z.

We verify (18): By (17), we have

R(X,Y, ϕZ, ϕW) − 1(ϕR(X,Y)Z, ϕW) =

= 1(Y,Z)1(ϕX, ϕW) − 1(X,Z)1(ϕY, ϕW)−

−1(Y, ϕZ)1(X, ϕW) + 1(X, ϕZ)1(Y, ϕW).

Using η(R(X,Y)Z) = −η(X)1(Y,Z) + η(Y)1(X,Z), the above formula takes the form

R(ϕZ, ϕW,X,Y) = −R(Z,W,X,Y) − 1(Y,Z)1(X,W) + 1(X,Z)1(Y,W)−

−1(Y, ϕZ)1(X, ϕW) + 1(X, ϕZ)1(Y, ϕW).

As an application of Proposition 5.1, we shall prove the following proposition.

Proposition 5.2. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold of dimension greater than 3. If M is locally
conformally flat, then M is a space of constant negative sectional curvature −1.

Proof. Since M is conformally flat, the curvature tensor of M is written as

R(X,Y)Z =
1

2n − 1
(Ric(Y,Z)X − Ric(X,Z)Y + 1(Y,Z)QX − 1(X,Z)QY)− (19)

+
scal

2n(2n − 1)
(1(X,Z)Y − 1(Y,Z)X).

We calculate R(ξ,Y)ξ using the previous formula. Using (10) and

Ric(X, ξ) = −2nη(X),

we get

2nRic(Y,Z) = (scal + 2n)1(Y,Z) − (scal + 4n2 + 2n)η(Y)η(Z). (20)

By virtue of (17), (19) and (20), we have

(scal + 4n2 + 2n)(1(Y, ϕZ)X − 1(X, ϕZ)Y + 1(X,Z)ϕY − 1(Y,Z)ϕX+ (21)

+1(X, ϕZ)η(Y)ξ − 1(Y, ϕZ)η(X)ξ + η(Y)η(Z)ϕX − η(X)η(Z)ϕY) = 0.

Let (e1, ..., en, ϕe1, ..., ϕen, ξ) be an orthonormal basis of TpM. Setting X = e1,Y = e2 and Z = ϕe2 in (21), we
see scal = −2n(2n + 1). Thus we have Ric = −2n1. Proposition 5.1 follows from (19).

In a para-Sasakian manifold with constantϕ−para-holomorphic sectional curvature, say H, the curvature
tensor has a special feature (see [6]): The necessary and sufficient condition for a para-Sasakian manifold
to have constant ϕ−para-holomorphic sectional curvature H is

4R(X,Y)Z = (H − 3)(1(Y,Z)X − 1(X,Z)Y) + (H + 1)(η(X)η(Z)Y − η(Y)η(Z)X+

+η(Y)1(X,Z)ξ − η(X)1(Y,Z)ξ + 1(Y, ϕZ)ϕX − 1(X, ϕZ)ϕY + 21(ϕX,Y)ϕZ).

In our case we have
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Proposition 5.3. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold of dimension greater than 3. The necessary and
sufficient condition for M to have constant ϕ−para-holomorphic sectional curvature H is

4R(X,Y)Z = (H − 3)(1(Y,Z)X − 1(X,Z)Y) + (H + 1)(η(X)η(Z)Y − η(Y)η(Z)X+ (22)

+η(Y)1(X,Z)ξ − η(X)1(Y,Z)ξ + 1(Y, ϕZ)ϕX − 1(X, ϕZ)ϕY + 21(ϕX,Y)ϕZ),

where X,Y,Z ∈ TpM.

Proof. For any vector fields X,Y ∈ D, we have

R(X, ϕX,X, ϕX) = H12(X,X) (23)

By identity (17) we get

R(X, ϕY,X, ϕY) = R(X, ϕY,Y, ϕX) − 12(X, ϕY) + 12(X,Y) − 1(X,X)1(Y,Y), (24)

R(X, ϕX,Y, ϕX) = R(X, ϕX,X, ϕY). (25)

Substituting X + Y in (17) and using the Bianchi identity, we obtain

2R(X, ϕX,X, ϕY) + 2R(Y, ϕY,Y, ϕX) + 3R(X, ϕY,Y, ϕX) − R(X,Y,X,Y) = (26)

= H(212(X,Y) + 1(X,X)1(Y,Y) + 21(X,Y)1(X,X) + 21(X,Y)1(Y,Y)).

Replacing Y by −Y in (26) and summing it to (26) we have

3R(X, ϕY,Y, ϕX) − R(X,Y,X,Y) = H(212(X,Y) + 1(X,X)1(Y,Y)). (27)

Replacing Y by ϕY in (27) and from identities (28), (24) and (27), we get

4R(X,Y,X,Y) = (H − 3)(12(X,Y) − 1(X,X)1(Y,Y)) + (H + 1)12(X, ϕY). (28)

Let X,Y,Z,W ∈ D, we calculate R(X + Z,Y + W,X + Z,Y + W) and using (28) we see

4R(X,Y,Z,W) + 4R(X,W,Z,Y) = (H − 3)(1(X,Y)1(Z,W) + 1(X,W)1(Y,Z)− (29)

−21(X,Z)1(Y,W)) + 3(H + 1)(1(X, ϕY)1(Z, ϕW) + 1(X, ϕW)1(Z, ϕY)).

and we have

−4R(X,Z,Y,W) − 4R(X,W,Y,Z) = −(H − 3)(1(X,Z)1(Y,W) + 1(X,W)1(Y,Z)− (30)

−21(X,Y)1(Z,W)) − 3(H + 1)(1(X, ϕZ)1(Y, ϕW) + 1(X, ϕW)1(Y, ϕZ)).

Adding (29) to (30) we get by virtue of the Bianchi identity

4R(X,Y,Z,W) = (H − 3)(1(X,W)1(Y,Z) − 1(X,Z)1(Y,W))+ (31)

+(H + 1)(1(X, ϕW)1(ϕY,Z) − 1(X, ϕZ)1(ϕY,W) + 21(X, ϕY)1(Z, ϕW)).

For any vector fields X,Y,Z,W ∈ TpM we have ϕX, ϕY, ϕZ, ϕW ∈ D, and using (31), (10), (17) and (18), we
get (22).

Contracting the equation (22), we obtain

Ric =
1
2

(n(H − 3) + H + 1)1 −
1
2

(n + 1)(H + 1)η ⊗ η. (32)

Contracting the last equation, we obtain

scal =
1
2

(n(H − 3) + H + 1)(2n + 1) −
1
2

(n + 1)(H + 1). (33)
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On the other hand, from the second Bianchi identity and equations (32) and (33), we get

(n − 1)X(H) + ξ(H)η(X) = 0. (34)

Setting X = ξ in (34), we get ξ(H) = 0 and hence (34) implies

X(H) = 0 (n > 1).

Thus, the ϕ−para-holomorphic sectional curvature H is constant.

Recall that, if a para-Sasakian manifold has a constant ϕ−para-holomorphic section curvature, then it is
η-Einstein. Unlike this, we have the following theorem in our case:

Theorem 5.4. Let (M, ϕ, η, ξ, 1) be a para-Kenmotsu manifold of dimension greater than 3. If M is a space of constant
ϕ−para-holomorphic sectional curvature H, then M is a space of constant sectional curvature and H = −1.

Proof. By virtue of Proposition 5.3, M is an η−Einstein manifold and

Ric =
1
2

(n(H − 3) + H + 1)1 −
1
2

(n + 1)(H + 1)η ⊗ η.

Since the coefficients of Ric are constant on M, we have H = −1 by Corollary 4.2.

6. 3-dimensional para-Kenmotsu manifolds

In a 3-dimensional pseudo-Riemannian manifold, we have

R(X,Y)Z = 1(Y,Z)QX − 1(X,Z)QY + 1(QY,Z)X − 1(QX,Z)Y− (35)

−
scal

2
(1(Y,Z)X − 1(X,Z)Y).

Setting Z = ξ in (31) and using (10) and (12), we have

η(Y)QX − η(X)QY = (
scal

2
+ 1)(η(Y)X − η(X)Y). (36)

Setting Y = ξ in (36) and then using (12) (for n=1), we get

QX =
1
2

[(scal + 2)X − (scal + 6)η(X)ξ]

i.e.,

Ric(Y,Z) =
(scal + 2)

2
1(Y,Z) −

(scal + 6)
2

η(Y)η(Z). (37)

Lemma 6.1. A 3-dimensional para-Kenmotsu manifold is a manifold of constant negative sectional curvature if and
only if the scalar curvature scal = −6.

Proof. Using (37) in (35), we get

R(X,Y)Z =
(scal + 4)

2
(1(Y,Z)X − 1(X,Z)Y)− (38)

−
(scal + 6)

2
(1(Y,Z)η(X)ξ − 1(X,Z)η(Y)ξ + η(Y)η(Z)X − η(X)η(Z)Y)

and now the Lemma is obvious.
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Let us consider a 3-dimensional para-Kenmotsu manifold which satisfies the condition

R(X,Y).Ric = 0, (39)

for any vector fields X,Y ∈ TpM.

Theorem 6.2. A 3-dimensional para-Kenmotsu manifold (M, ϕ, η, ξ, 1) satisfying the condition R(X,Y).Ric = 0 is
a manifold of constant negative sectional curvature −1.

Proof. From (39), we have

Ric(R(X,Y)U,V) + Ric(U,R(X,Y)V) = 0. (40)

Setting X = ξ and using (11)

η(U)Ric(Y,V) − 1(Y,U)Ric(ξ,V) + η(V)Ric(U, ξ) − 1(Y,V)Ric(ξ,U) = 0. (41)

Using (12) in (41), we have

η(U)Ric(Y,V) + 21(Y,U)η(V) + η(V)Ric(Y,U) + 21(Y,V)η(U) = 0. (42)

Taking the trace in (42), we get

Ric(ξ,V) + 8η(V) + scalη(V) = 0. (43)

Using (12) in (43), we obtain
(scal + 6)η(V) = 0.

This gives scal = −6 (since η(V) , 0), which implies, by Lemma 6.1, that the manifold is of constant negative
sectional curvature −1.

Theorem 6.3. A 3-dimensional para-Kenmotsu manifold (M, ϕ, η, ξ, 1) is locally ϕ−symmetric if and only if the
scalar curvature scal is constant.

Proof. Differentiating (38) covariantly with respect to W we get

(∇WR)(X,Y,Z) =
W(scal)

2
(1(Y,Z)X − 1(X,Z)Y)− (44)

−
W(scal)

2
(1(Y,Z)η(X)ξ − 1(X,Z)η(Y)ξ + η(Y)η(Z)X − η(X)η(Z)Y)−

−
(scal + 6)

2
(1(Y,Z)(∇Wη)Xξ − 1(X,Z)(∇Wη)Yξ + 1(Y,Z)η(X)∇Wξ−

−1(X,Z)η(Y)∇Wξ + (∇Wη)Yη(Z)X + η(Y)(∇Wη)ZX−

−(∇Wη)Xη(Z)Y − η(X)(∇Wη)ZY).

Taking X,Y,Z,W orthogonal to ξ and using (5) and (6), we get from the above

(∇WR)(X,Y,Z) =
W(scal)

2
(1(Y,Z)X − 1(X,Z)Y)− (45)

−
(scal + 6)

2
(−1(Y,Z)1(X,W)ξ + 1(X,Z)1(Y,W)ξ).

From (45) it follows that

ϕ2(∇WR)(X,Y,Z) =
W(scal)

2
(1(Y,Z)X − 1(X,Z)Y). (46)
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Definition 6.4. The Ricci tensor Ric of a para-Kenmotsu manifold M is calledη−parallel if it satisfies (∇XRic)(ϕY, ϕZ) =
0 for all vector fields X,Y and Z.

The notation for Ricci-η−parallelity for Sasakian manifolds was introduce in [4].

Proposition 6.5. If a 3-dimensional para-Kenmotsu manifold (M, ϕ, η, ξ, 1) has η− parallel Ricci tensor, then the
scalar curvature scal is constant and (M, ϕ, η, ξ, 1) is locally ϕ−symmetric.

Proof. From (37), we get, by virtue of (2) and η ◦ ϕ = 0,

Ric(ϕX, ϕY) = −
(scal + 2)

2
(1(X,Y) − η(X)η(Y)). (47)

Differentiating (47) covariantly along Z, we get

(∇ZRic)(ϕX, ϕY) = −
Z(scal)

2
(1(X,Y) − η(X)η(Y))+ (48)

+
(scal + 2)

2
(η(Y)(∇Zη)X + η(X)(∇Zη)Y).

By using (∇XRic)(ϕY, ϕZ) = 0 and (48), we get

−Z(scal)(1(X,Y) − η(X)η(Y))+ (49)

+(scal + 2)(η(Y)(∇Zη)X + η(X)(∇Zη)Y) = 0.

Taking the trace in (49), we get Z(scal) = 0, for all Z. From Theorem 6.3 we have that (M, ϕ, η, ξ, 1) is locally
ϕ−symmetric.

Let us suppose that a 3-dimensional para-Kenmotsu manifold satisfies the cyclic Ricci tensor.
Then we have

(∇XRic)(Y,Z) + (∇YRic)(Z,X) + (∇ZRic)(X,Y) = 0. (50)

We have the following

Theorem 6.6. If a 3-dimensional para-Kenmotsu manifold (M, ϕ, η, ξ, 1) satisfies the condition (50), then the mani-
fold is a manifold of constant negative sectional curvature −1.

Proof. Taking the trace in (50), we obtain

X(scal) = 0, (51)

for any vector field X. From (37), we have

(∇ZRic)(X,Y) =
Z(scal)

2
(1(X,Y) − η(X)η(Y))− (52)

−
(scal + 6)

2
(η(Y)(∇Zη)X + η(X)(∇Zη)Y).

Now using (51) and (52), we have

(∇ZRic)(X,Y) = −
(scal + 6)

2
(η(Y)(∇Zη)X + η(X)(∇Zη)Y) (53)

By virtue of (53), we get from (50) that

(scal + 6)(η(Z)(∇Xη)Y + η(Y)(∇Xη)Z + η(Y)(∇Zη)X+ (54)
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+η(X)(∇Zη)Y + η(Z)(∇Yη)X + η(X)(∇Yη)Z) = 0.

Taking the trace in (54), we obtain

(scal + 6)η(X) = 0, (55)

which implies that scal = −6. The rest of the proof follows immediately from this (again see the proof of
Lemma 6.1).

Unlike the case when the dimension is greater than 3, when the dimension is equal to 3 the right-hand
parenthesis in (21) is trivially equal to 0 and thus nothing follows (from (21)) about the scalar curvature.
We shall give an example of a 3-dimensional para-Kenmotsu manifold, which has scalar curvature equal
to −6.

Example 6.7. Let L be a 3-dimensional real connected Lie group and g be its Lie algebra with a basis {E1,E2,E3} of
left invariant vector fields (see [8]), by the following commutators:

[E1,E2] = 0, [E1,E3] = E1 + βE2, [E2,E3] = βE1 + E2, (56)

where β , 0.
We define an almost paracontact structure (ϕ, ξ, η) and a pseudo-Riemannian metric 1 in the following way:

ϕE1 = E2, ϕE2 = E1, ϕE3 = 0
ξ = E3, η(E3) = 1, η(E1) = η(E2) = 0,
1(E1,E1) = 1(E3,E3) = −1(E2,E2) = 1,
1(Ei,E j) = 0, i , j ∈ {1, 2, 3}.

Then (L, ϕ, ξ, η, 1) is a 3-dimensional almost paracontact metric manifold. Since the metric 1 is left invariant the
Koszul equality becomes

∇E1 E1 = −E3, ∇E1 E2 = 0, ∇E1 E3 = E1,
∇E2 E1 = 0, ∇E2 E2 = E3, ∇E2 E3 = E2,
∇E3 E1 = −βE2, ∇E3 E2 = −βE1, ∇E3 E3 = 0.

It is not hard to see that
Ric(X,Y) = −21(X,Y) and R(X,Y)Z = −(1(Y,Z)X − 1(X,Z)Y).
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