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Abstract. The authors consider the third order neutral delay difference equation with positive and negative
coefficients

∆(an∆(bn∆(xn + pxn−m))) + pn f (xn−k) − qn1(xn−l) = 0, n ≥ n0,

and give some new sufficient conditions for the existence of nonoscillatory solutions. Banach’s fixed point
theorem plays a major role in the proofs. Examples are provided to illustrate their main results.

1. Introduction

Consider the third order neutral delay difference equation with positive and negative coefficients

∆(an∆(bn∆(xn + pxn−m))) + pn f (xn−k) − qn1(xn−l) = 0, n ≥ n0, (1)

where n0 is a nonnegative integer, subject to the following conditions:

(H1) p is a real number, and m, k, and l are positive integers;
(H2) {an}, {bn}, {pn}, and {qn} are positive real sequences for all n ≥ n0;
(H3) f and 1 are continuous functions with x f (x) > 0 and x1(x) > 0 for x , 0;
(H4) f and 1 satisfy local Lipschitz conditions, and the Lipschitz constants are denoted by L f (A) and L1(A),

where A is a closed subset of the domain of f and 1.

Let θ = max{m, k, l}. By a solution of equation (1), we mean a real sequence {xn} defined for all n ≥ n0 −θ,
and which satisfies equation (1) for all n ≥ n0. A solution of equation (1) is said to be nonoscillatory if it is
either eventually positive or eventually negative, and is oscillatory otherwise.

Recently there has been an increasing interest in investigating the oscillatory and nonoscillatory behavior
of various classes of third and higher order difference equations; see for example, the monograph [1], papers
[2–4, 6–11, 13–17], and the references cited therein.
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In [6], the authors studied the existence of nonoscillatory solutions of the higher-order nonlinear neutral
difference equation

∆m(x(n) + p(n)x(τ(n))) + f1(n, x(σ1(n))) − f2(n, x(σ2(n))) = 0, (2)

where f1 and f2 are continuous functions satisfying local Lipschitz condition with x fi(n, x) > 0 for i = 1, 2
and x , 0. Using the Banach contraction principle, the authors obtained some sufficient conditions for the
existence of nonoscillatory solutions to equation (2).

In [11], the authors investigated the existence of nonoscillatory solutions to the third order neutral
difference equation

∆3(xn + pxn−k) + qn f (xn−l) = hn, n ≥ n0, (3)

where p ∈ R, k, l, n0 ∈ N, hn, qn ∈ R, and f ∈ C(R,R) satisfies a local Lipschitz condition with x f (x) > 0 for
x , 0. Some other special cases of equation (3) were considered in [7, 9, 10].

There appears to be few results available for third order nonlinear difference equations with positive and
negative coefficients. This most likely is due to the technical difficulties arising in their analysis. Motivated
by the above observations, in this paper we obtain some new sufficient conditions for the existence of
nonoscillatory solutions to equation (1) for p , −1. Our method of proof involves defining appropriate
subsets of a Banach space and then using Banach’s fixed point theorem. Examples are provided to illustrate
our main results.

2. Existence Theorems

In this section, we present nonoscillation results for equation (1) for different ranges of values of p. We
begin with the following theorem.

Theorem 2.1. Assume that p = 1,

∞∑
n=n0

Rn

an

n∑
s=n0

ps < ∞, and
∞∑

n=n0

Rn

an

n∑
s=n0

qs < ∞, (4)

where Rn =
∑n

s=n0
1
bs

. Then equation (1) has a bounded nonoscillatory solution.

Proof. Let B(n0) be the Banach space of all bounded real sequences x = {xn}with the norm ||x|| = supn≥n0
|xn|.

In view of conditions (H4) and (4), we can choose an integer n1 ≥ n0 + θ sufficiently large such that, for all
n ≥ n1,

∞∑
s=n

(Rs − Rn−1

as

) s∑
t=n1

pt ≤
1
α
,

∞∑
s=n

(Rs − Rn−1

as

) s∑
t=n1

qt ≤
1
β
,

∞∑
s=n

(Rs − Rn−1

as

) s∑
t=n1

(pt + qt) < min
{

1
L
,

1
α

+
1
β

}
,

(5)

where α = max1≤x≤3{ f (x)}, β = max1≤x≤3{1(x)}, and L = max{L f ([1, 3]),L1([1, 3])}. Define the closed,
bounded, and convex subset S of B(n0) by

S = {x = {xn} ∈ B(n0) : 1 ≤ xn ≤ 3, n ≥ n0}
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and the operator T : S→ B(n0) by

(Tx)n =


2 −

∞∑
j=1

n+2 jm∑
s=n+(2 j−1)m

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

(pu f (xu−k) − qu1(xu−l)), n ≥ n1,

(Tx)n1 , n0 ≤ n ≤ n1.

Clearly, T is a continuous mapping on S. For every x = {xn} ∈ S and n ≥ n1, we have

(Tx)n ≤ 2 +

∞∑
j=1

 n+2 jm∑
s=n+(2 j−1)m

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

qu1(xu−l)

+

n+(2 j−1)m∑
s=n+(2 j−2)m

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

qu1(xu−l)


= 2 +

∞∑
s=n

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

qu1(xu−l)

= 2 +

∞∑
t=n

t∑
s=n

1
bs

1
at

t−1∑
u=n1

qu1(xu−l)

= 2 +

∞∑
t=n

(Rt − Rn−1

at

) t−1∑
u=n1

qu1(xu−l)

≤ 2 + β
∞∑

t=n

(Rt − Rn−1

at

) t∑
u=n1

qu ≤ 3,

and

(Tx)n ≥ 2 −
∞∑
j=1

 n+2 jm∑
s=n+(2 j−1)m

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

pu f (xu−k)

+

n+(2 j−1)m∑
s=n+(2 j−2)m

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

pu f (xu−k)


= 2 −

∞∑
s=n

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

pu f (xu−k)

= 2 −
∞∑

t=n

t∑
s=n

1
bs

1
at

t−1∑
u=n1

pu f (xu−k)

= 2 −
∞∑

t=n

(Rt − Rn−1

at

) t−1∑
u=n1

pu f (xu−k)

≥ 2 − α
∞∑

t=n

(Rt − Rn−1

at

) t∑
u=n1

pu ≥ 1.

Thus, TS ⊆ S.
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To show that T is a contraction mapping on S, let x, y ∈ S. Then for n ≥ n1, we have

|Txn − Tyn| ≤

∞∑
j=1

n+2 jm∑
s=n+(2 j−1)m

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

(
pu| f (xu−k) − f (yu−k)| + qu|1(xu−l) − 1(yu−l)|

)
≤ L||x − y||

∞∑
s=n

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

(pu + qu)

≤ L||x − y||
∞∑

t=n

t∑
s=n

1
bs

1
at

t−1∑
u=n1

(pu + qu)

≤ L||x − y||
∞∑

t=n

(Rt − Rn−1

at

) t∑
u=n1

(pu + qu).

This implies that
||Tx − Ty|| ≤ C0||x − y||

where C0 = L
∑
∞

t=n

(
Rt−Rn−1

at

)∑t
u=n1

(pu + qu). In view of (5), we see that C0 < 1, and so T is a contraction
mapping. Hence, T has a unique fixed point x = {xn}. That is,

xn =

2 −
∑
∞

j=1
∑n+2 jm

s=n+(2 j−1)m
1
bs

∑
∞

t=s
1
at

∑t−1
u=n1

[
pu f (xu−k) − qu1(xu−l)

]
, n ≥ n1,

(Tx)n1 , n0 ≤ n ≤ n1.

Furthermore, we have

xn + xn−m = 4 −
m∑

j=1

 n+2 jm∑
s=n+(2 j−1)m

+

n+(2 j−1)m∑
s=n+(2 j−2)m

 1
bs

∞∑
t=s

1
at

t−1∑
u=n1

[
pu f (xu−k) − qu1(xu−l)

]
= 4 −

∞∑
s=n

1
bs

∞∑
t=s

1
at

t−1∑
u=n1

[
pu f (xu−k) − qu1(xu−l)

]
.

Therefore,
∆(an∆(bn∆(xn + xn−m))) + pn f (xn−k) − qn1(xn−l) = 0,

and {xn} is clearly a positive solution of equation (1). This completes the proof of the theorem.

Our next result is for the case 0 ≤ p < 1.

Theorem 2.2. Assume that 0 ≤ p < 1 and condition (4) holds. Then equation (1) has a bounded nonoscillatory
solution.

Proof. Let B(n0) be the Banach space defined in the proof of Theorem 2.1. By conditions (H4) and (4), we
can choose n3 ≥ n0 + θ sufficiently large such that

∞∑
s=n

Rs

as

s∑
t=n3

pt ≤
p − (1 −N1)

α1
,

∞∑
s=n

Rs

as

s∑
t=n3

qt ≤
1 − p − pN1 −M1

β1
,

∞∑
s=n

Rs

as

s∑
t=n3

(pt + qt) <
1 − p

L1

(6)



K. S. Vidhyaa et al. / Filomat 32:14 (2018), 4981–4991 4985

hold for all n ≥ n3, where N1 ≥ M1 > 0, 1 − N1 < p < (1−M1)
(1+N1) , α1 = maxM1≤x≤N1 { f (x)}, β1 = maxM1≤x≤N1 {1(x)}

and L1 = max{L f ([M1,N1]),L1([M1,N1])}. Set

S1 = {x = {xn} ∈ B(n0) : M1 ≤ xn ≤ N1, n ≥ n0};

then S1 is a closed, bounded, and convex subset of B(n0). Define the operator T : S1 → B(n0) by

(Tx)n =



1 − p − pxn−m + Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n3

(pt f (xt−k) − qt1(xt−l))

+

n−2∑
s=n3

Rs

as

s−1∑
t=n3

(pt f (xt−k) − qt1(xt−l)), n ≥ n3,

(Tx)n3 , n0 ≤ n ≤ n3.

Clearly T is a continuous mapping on S1. For every x ∈ S1 and n ≥ n3, we have

(Tx)n ≤ 1 − p + α1Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n3

pt + α1

n−2∑
s=n3

Rs

as

s−1∑
t=n3

pt

≤ 1 − p + α1

∞∑
s=n3

Rs

as

s∑
t=n3

pt ≤ N1,

and

(Tx)n ≥ 1 − p − pN1 − β1Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n3

qt − β1

n−2∑
s=n3

Rs

as

s−1∑
t=n3

qt

≥ 1 − p − pN1 − β1

∞∑
s=n3

Rs

as

s∑
t=n3

qt ≥M1.

Thus, TS1 ⊆ S1. Now for x, y ∈ S1 and n ≥ n3, we obtain

|Txn − Tyn| ≤ p|xn−m − yn−m| + Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n3

pt| f (xt−k) − f (yt−k)|

+

n−2∑
s=n3

Rs

as

s−1∑
t=n3

pt| f (xt−k) − f (yt−k)|

+Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n3

qt|1(xt−l) − 1(yt−l)|

+

n−2∑
s=n3

Rs

as

s−1∑
t=n3

qt|1(xt−l) − 1(yt−l)|

≤ p||x − y|| + L1||x − y||
∞∑

n=n3

Rn

an

n∑
s=n3

(ps + qs)

= C1||x − y||,

where C1 = p + L1
∑
∞

n=n3

Rn
an

∑n
s=n3

(ps + qs) < 1 in view of (6). This implies

||Tx − Ty|| ≤ C1||x − y||,

and so T is a contraction mapping. Hence, by the Banach contraction mapping theorem, T has a unique
fixed point that in turn is a positive solution of equation (1). This completes the proof.
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Theorem 2.3. Assume that 1 < p < ∞ and (4) holds. Then equation (1) has a bounded nonoscillatory solution.

Proof. Let B(n0) be as in the proof of Theorem 2.1. By conditions (H4) and (4), we can choose an integer
n2 ≥ n0 + θ such that

∞∑
s=n

Rs

as

s∑
t=n2

pt ≤
1 − p(1 −N2)

α2
,

∞∑
s=n

Rs

as

s∑
t=n2

qt ≤
(1 −M2)p − (1 + N2)

β2
,

∞∑
s=n

Rs

as

s∑
t=n2

(pt + qt) <
p − 1

L2

(7)

for all n ≥ n2, where N2 ≥ M2 > 0, (1 − M2)p > 1 + N2, p(1 − N2) < 1, α2 = maxM2≤x≤N2 { f (x)}, β2 =
maxM2≤x≤N2 {1(x)}, and L2 = max{L f ([M2,N2]),L1([M2,N2])}. Let

S2 = {x = {xn} ∈ B(n0) : M2 ≤ xn ≤ N2, n ≥ n0}.

Define the operator T : S2 → B(n0) by

(Tx)n =



1 −
1
p
−

1
p

xn+m +
1
p

Rn+m−1

∞∑
s=n+m−1

1
as

s−1∑
t=n2

(pt f (xt−k) − qt1(xt−l))

+
1
p

n+m−2∑
s=n2

Rs

as

s−1∑
t=n2

(pt f (xt−k) − qt1(xt−l)), n ≥ n2,

(Tx)n2 , n0 ≤ n ≤ n2.

Clearly T is continuous on S2. For every x ∈ S2 and n ≥ n2, we have

(Tx)n ≤ 1 −
1
p

+
1
p
α2

∞∑
s=n+m−1

Rs

as

s−1∑
t=n2

pt +
1
p
α2

n+m−2∑
s=n2

Rs

as

s−1∑
t=n2

pt

≤ 1 −
1
p

+
1
p
α2

∞∑
s=n2

Rs

as

s∑
t=n2

pt ≤ N2,

and

(Tx)n ≥ 1 −
1
p
−

1
p

N2 −
1
p
β2

∞∑
s=n+m−1

Rs

as

s−1∑
t=n2

qt −
1
p
β2

n+m−2∑
s=n2

Rs

as

s−1∑
t=n2

qt

≥ 1 −
1
p
−

1
p

N2 −
1
p
β2

∞∑
s=n2

Rs

as

s∑
t=n2

pt ≥M2.

Thus, TS2 ⊆ S2. Since S2 is a bounded, closed, and convex subset of B(n0), we need to prove that T is a
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contraction in order to apply the contraction mapping principle. Now for x, y ∈ S2 and n ≥ n2, we see that

|Txn − Tyn| ≤
1
p
|xn+m − yn+m| +

1
p

Rn+m−1

∞∑
s=n+m−1

1
as

s−1∑
t=n2

pt| f (xt−k) − f (yt−k)|

+
1
p

n+m−2∑
s=n2

Rs

as

s−1∑
t=n2

pt| f (xt−k) − f (yt−k)|

+
1
p

Rn+m−1

∞∑
s=n+m−1

1
as

s−1∑
t=n2

qt|1(xt−l) − 1(yt−l)|

+
1
p

n+m−2∑
s=n2

Rs

as

s−1∑
t=n2

qt|1(xt−l) − 1(yt−l)|

≤
1
p
||x − y|| +

1
p

L2||x − y||
∞∑

s=n2

Rs

as

s∑
t=n2

(pt + qt)

= C2||x − y||,

which implies
||Tx − Ty|| ≤ C2||x − y||.

From (7), we have C2 = 1
p

(
1 + L2

∑
∞

s=n2

Rs
as

∑s
t=n2

(pt + qt)
)
< 1, and therefore T is a contraction mapping.

Hence, T has a unique fixed that is a positive solution of equation (1). This proves the theorem.

Our next two theorems are for cases where p < 0.

Theorem 2.4. Assume that −1 < p < 0 and condition (4) holds. Then equation (1) has a bounded nonoscillatory
solution.

Proof. Let B(n0) be as in Theorem 2.1. By conditions (H4) and (4), we can choose n4 ≥ n0 + θ such that

∞∑
s=n

Rs

as

s∑
t=n4

pt ≤
(1 + p)N3 − (1 + p)

α3
,

∞∑
s=n

Rs

as

s∑
t=n4

qt ≤
1 + p −M3(1 + p)

β3
,

∞∑
s=n

Rs

as

s∑
t=n4

(pt + qt) <
1 + p

L3

(8)

hold for n ≥ n4, where M3 and N3 are positive constants satisfying 0 < M3 < 1 < N3, α3 = maxM3≤x≤N3 { f (x)},
β3 = maxM3≤x≤N3 {1(x)}, and L3 = max{L f ([M3,N3]),L1([M3,N3])}. Set

S3 = {x = {xn} ∈ B(n0) : M3 ≤ xn ≤ N3, n ≥ n0}.

Then S3 is a bounded, closed, and convex subset of B(n0). Define the operator T : S3 → B(n0) by

(Tx)n =



1 + p − pxn−m + Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n4

(pt f (xt−k) − qt1(xt−l))

+

n−2∑
s=n4

Rs

as

s−1∑
t=n4

(pt f (xt−k) − qt1(xt−l)), n ≥ n4,

(Tx)n4 , n0 ≤ n ≤ n4.



K. S. Vidhyaa et al. / Filomat 32:14 (2018), 4981–4991 4988

Then T is a continuous mapping on S3 and for every x ∈ S3 and n ≥ n4,

(Tx)n ≤ 1 + p − pN3 + α3

∞∑
s=n−1

Rs

as

s−1∑
t=n4

pt + α3

n−2∑
s=n4

Rs

as

s−1∑
t=n4

pt

≤ 1 + p − pN3 + α3

∞∑
s=n4

Rs

as

s∑
t=n4

pt ≤ N3.

Similarly,

(Tx)n ≥ 1 + p − pM3 − β3

∞∑
s=n4

Rs

as

s∑
t=s4

qt ≥M3,

and so TS3 ⊆ S3.
To prove that T is a contraction mapping on S3, take x, y ∈ S3, Then for n ≥ n4, we have

|Txn − Tyn| ≤ −p|xn−m − yn−m| + Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n4

pt| f (xt−k) − f (yt−k)|

+

n−2∑
s=n4

Rs

as

s−1∑
t=n4

pt| f (xt−k) − f (yt−k)|

+Rn−1

∞∑
s=n−1

1
as

s−1∑
t=n4

qt|1(xt−l) − 1(yt−l)|

+

n−2∑
s=n4

Rs

as

s−1∑
t=n4

qt|1(xt−l) − 1(yt−l)|

≤ −p||x − y|| + L3||x − y||
∞∑

s=n4

Rs

as

s∑
t=n4

(pt + qt)

= C3||x − y||.

Hence,
||Tx − Ty|| ≤ C3||x − y||

where C3 = −p + L3
∑
∞

n=n4

Rn
an

∑n
s=n4

(ps + qs) < 1 by (8). Hence, T is a contraction mapping, and therefore T has
a unique fixed point that is a positive solution of equation (1). This completes the proof of the theorem.

Theorem 2.5. Assume that −∞ < p < −1 and condition (4) holds. Then equation (1) has a bounded nonoscillatory
solution.

Proof. Again let B(n0) be as in Theorem 2.1. In view of conditions (H4) and (4), we can choose an integer
n5 ≥ n0 + θlarge such that

∞∑
s=n

Rs

as

s∑
t=n5

pt ≤
−(p + 1)(N4 − 1)

β4
,

∞∑
s=n

Rs

as

s∑
t=n5

qt ≤
−(1 + p)(1 −M4)

α4
,

∞∑
s=n

Rs

as

s∑
t=n5

(pt + qt) <
−(p + 1)

L4

(9)
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for n ≥ n5, where M4 and N4 are positive constants satisfying 0 < M4 < 1 < N4, α4 = maxM4≤xn≤N4 { f (x)},
β4 = maxM4≤x≤N4 {1(x)}, and L4 = max{L f ([M4,N4]),L1([M4,N4])}. Set

S4 = {x = {xn} ∈ B(n0) : M4 ≤ xn ≤ N4, n ≥ n0}

which we see is a closed, bounded, and convex subset of B(n0). Define the operator T : S4 → B(n0)

(Tx)n =



1 +
1
p
−

1
p

xn+m +
1
p

Rn+m−1

∞∑
s=n+m−1

1
as

s−1∑
t=n5

(pt f (xt−k) − qt1(xt−l))

+
1
p

n+m−2∑
s=n5

Rs

as

s−1∑
t=n5

(pt f (xt−k) − qt1(xt−l)), n ≥ n5,

(Tx)n5 , n0 ≤ n ≤ n5

Now T is continuous on S4, and for every x ∈ S4 and n ≥ n5, we have

(Tx)n ≤ 1 +
1
p
−

1
p

N4 −
1
p
β4

∞∑
s=n+m−1

Rs

as

s−1∑
t=n5

qt −
1
p
β4

n+m−2∑
s=n5

Rs

as

s−1∑
t=n5

qt

≤ 1 +
1
p
−

1
p

N4 −
1
p
β4

∞∑
s=n5

Rs

as

s∑
t=n5

qt ≤ N4,

and

(Tx)n ≥ 1 +
1
p
−

1
p

M4 +
1
p
α4

∞∑
s=n+m−1

Rs

as

s−1∑
t=n5

pt +
1
p
α4

n+m−2∑
s=n5

Rs

as

s−1∑
t=n5

pt

≥ 1 +
1
p
−

1
p

M4 + α4

∞∑
s=n5

Rs

as

s∑
t=n5

pt ≥M4.

Thus, TS4 ⊆ S4.
To prove that T is a contraction, let x, y ∈ S4. Then for n ≥ n5, we have

|Txn − Tyn| ≤ −
1
p
|xn+m − yn+m| −

1
p

Rn+m−1

∞∑
s=n+m−1

1
as

s−1∑
t=n5

pt| f (xt−k) − f (yt−k)|

−
1
p

Rn+m−1

∞∑
s=n+m−1

1
as

s−1∑
t=n5

qt|1(xt−l) − 1(yt−l)|

−
1
p

n+m−2∑
s=n5

Rs

as

s−1∑
t=n5

pt| f (xt−k) − f (yt−k)|

−
1
p

n+m−2∑
s=n5

Rs

as

s−1∑
t=n5

qt|1(xt−l) − 1(yt−l)|

≤ −
1
p
||x − y|| −

1
p

L4||x − y||
∞∑

s=n5

Rs

as

s∑
t=n5

(pt + qt)

= C4||x − y||,

which implies that
||Tx − Ty|| ≤ C4||x − y||.

In view of (9), C4 = 1
p (−1−L4

∑
∞

s=n5

Rs
as

∑s
t=n5

(pt + qt)) < 1, and this implies T is a contraction mapping. Hence,
T has a unique fixed point that a positive solution of equation (1). This proves the theorem.
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Remark 2.6. It is easy to see that Theorems 4–8 include the results in [11] as a special case. They also include the
results in [6] for m = 3. The results obtained in this paper are new and extend or complement those in [6, 7, 11, 16, 17].

3. Examples

In this section, we provide some examples to illustrate our results.

Example 3.1. Consider the third order neutral difference equation

∆ (n(n − 1)∆ (n(n + 1)∆(xn + xn−1))) +
8(n − 2)

n4(2n − 3)
xn−2 −

8(n − 2)3

n4(2n − 3)3 x3
n−2 = 0, n ≥ 2. (10)

Here, p = 1, an = n(n − 1), bn = n(n + 1), f (x) = x, 1(x) = x3, pn =
8(n−2)

n4(2n−3) , and qn =
8(n−2)3

n4(2n−3)3 . Simple calculations
show that

Rn =

n∑
s=2

1
s(s + 1)

=
n − 1

2(n + 1)
,

∞∑
n=2

Rn

an

n∑
s=2

ps =

∞∑
n=2

1
2n(n + 1)

n∑
s=2

8(s − 2)
s4(2s − 3)

< ∞,

and
∞∑

n=2

Rn

an

n∑
s=2

qs =

∞∑
n=2

1
2n(n + 1)

n∑
s=2

8(s − 2)3

s4(2s − 3)3 < ∞,

Hence condition (4) is satisfied. By Theorem 2.1, the equation (10) has a bounded nonoscillatory solution. In fact, the
sequence {xn} = {2 + 1

n } is such a solution of equation (10).

Example 3.2. Consider the equation

∆
(
2n∆

(
2n∆

(
xn +

1
2

xn−1

)))
+

1
4n(2n + 16)

xn−2 −
16

(2n + 16)3 x3
n−2 = 0, n ≥ 1 (11)

We have an = 2n, bn = 2n, p = 1
2 , f (x) = x, 1(x) = x3, pn = 1

4n(2n+16) , and qn = 16
(2n+16)3 . Simple calculations give

Rn =

n∑
s=1

1
bs

=

n∑
s=1

1
2s =

(
1 −

1
2n

)
,

and
∞∑

n=1

Rn

an

n∑
s=1

ps =

∞∑
n=1

1
2n

(
1 −

1
2n

) n∑
s=1

1
4s(2s + 16)

< ∞,

∞∑
n=1

Rn

an

n∑
s=1

qs =

∞∑
n=1

1
2n

(
1 −

1
2n

) n∑
s=1

16
(2s + 16)3 < ∞.

Hence, condition (4) holds. By Theorem 2.2, the equation (11) has a bounded nonoscillatory solution in [M1,N1]. In
fact by taking M1 = 1

16 and N1 = 3
4 , we see that the sequence {xn} = { 14 + 1

2n } is such a solution of equation (11) in
[ 1

16 ,
3
4 ].

Example 3.3. Consider the equation

∆
(
3n∆

(
3n∆

(
xn −

1
3

xn−1

)))
+

1
(3n + 9)3 x3

n−2 −
1

9n(3n + 3)
xn−1 = 0, n ≥ 1 (12)
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In this case an = 3n, bn = 3n, p = − 1
3 , f (x) = x3, 1(x) = x, pn = 1

(3n+9)3 , and qn = 1
9n(3n+3) . We see that

Rn =

n∑
s=1

1
bs

=

n∑
s=1

1
3s =

1
2

(3n
− 1

3n

)
,

∞∑
n=1

Rn

an

n∑
s=1

ps =

∞∑
n=1

1
2

( 1
3n −

1
9n

) n∑
s=1

1
(3n + 9)3 < ∞,

and
∞∑

n=1

Rn

an

n∑
s=1

qs =

∞∑
n=1

1
2

( 1
3n −

1
9n

) n∑
s=1

1
9n(3n + 3)

< ∞.

By Theorem 2.4, equation (3.3) has a bounded nonoscillatory solution in [M3,N3]. Taking M3 = 1
2 and N3 = 3, we

see that the sequence {xn} = {1 + 1
3n } is a solution of equation (3.3) in [ 1

2 , 3].

Remark 3.4. In conclusion, we have shown that for any value of p , −1, condition (4) implies that equation (1) has a
bounded nonoscillatory solution. It is well known that for neutral equations, the value p = −1 behaves as a bifurcation
point in the behavior of solutions, so it is no surprise that it is eliminated from consideration here (see [5, 12]).
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