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Abstract. We explore the relation between Arens regularity of a bilinear operator and the weak compact-
ness of the related linear operators. Since every bilinear operator has natural factorization through the
projective tensor product a special attention is given to Arens regularity of the tensor operator. We consider
topological centers of a bilinear operator and we present a few results related to bilinear operators which
can be approximated by linear operators.

1. Introduction

There are two natural ways how to extend a bilinear operator m : X ×Y→ Z, where X,Y,Z are complex
Banach spaces, to a bilinear operator from X∗∗ × Y∗∗ to Z∗∗. However, in general, those natural extensions
are not equal. Arens [1] was the first who considered this phenomena. He characterized those bilinear
operators, called (Arens) regular, which have a unique natural extension to second duals (see [1, Theorems
2.3, 3.3]). Arens regularity is intimately connected with weakly compact linear operators. For instance,
Hennefeld [5, Theorem 2.1] proved that multiplication in a Banach algebra A is Arens regular if and only
if every operator Lξ : A → A∗ (ξ ∈ A∗), which is defined by Lξa = ξ · a (a ∈ A), is weakly compact. Here
ξ · a ∈ A∗ is defined by 〈ξ · a, b〉 = 〈ξ, ab〉 (b ∈ A). Recently, see [12], Arens ideas have been extended to
locally convex algebras.

Arens proved that a bilinear operator m : X ×Y→ Z is Arens regular if and only if, for every ζ ∈ Z∗, the
bilinear form ζ ◦m : X × Y→ C is Arens regular. By [11, Theorem 2.2], ζ ◦m is Arens regular if and only if
it is represented by a weakly compact operator from X to Y∗. If m is not Arens regular, then those ζ ∈ Z∗ for
which ζ◦m is Arens regular form a proper weakly closed subspace of Z∗, which we call Arens space of m and
denote it by Ar(m). In Section 3 we consider Arens spaces of bilinear operators which are compositions of
m with linear operators. Since every bilinear operator m : X×Y→ Z has canonical factorization m = M ◦ τ,
where M is a linear operator from X⊗̂Y to Z and τ : X × Y→ X⊗̂Y is the tensor operator, it turns out that m
is Arens regular if and only if M∗(Z∗) ⊆ Ar(τ). Section 4 is devoted to the Arens space of the tensor operator.
It is proven that ζ ∈ (X⊗̂Y)∗ is in Ar(τ) if and only if the operator from X to Y∗ which naturally represents ζ
is weakly compact. It follows that τ is Arens regular if and only if every operator from X to Y∗ is weakly
compact. In Section 5 we consider topological centers of a bilinear operator and in the last section we prove
a few results for a special class of bilinear operators which can be approximated by linear operators.
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2. Preliminaries

Let X be a complex Banach space. We denote by X∗, X∗∗ and X∗∗∗ its topological first, second and third
dual, respectively. The pairing between a Banach space and its dual is denoted by 〈·, ·〉. The canonical
embedding of X into X∗∗ is denoted by ιX. Usually we write x̂ instead of ιX(x) and X̂ denotes the image of
ιX in X∗∗. By B(X) we denote the Banach algebra of all bounded linear operators on X and by I, or by IX, we
denote the identity operator. If Y is another complex Banach space, then B(X,Y) denotes the Banach space
of all bounded linear operators from X to Y.

Let X, Y and Z be complex Banach spaces. By Bil(X × Y,Z) we denote the Banach space of all bounded
bilinear mappings from X × Y to Z. Now on, we will call elements of Bil(X × Y,Z) bilinear operators and
elements of Bil(X × Y,C) bilinear forms.

Let m ∈ Bil(X × Y,Z). Then m∗ ∈ Bil(Z∗ × X,Y∗) is defined by 〈m∗(ζ, x), y〉 = 〈ζ,m(x, y)〉, where x ∈
X, y ∈ Y, ζ ∈ Z∗ are arbitrary. It is obvious that ‖m∗‖ = ‖m‖. Similarly one defines m∗∗ ∈ Bil(Y∗∗ × Z∗,X∗)
and m∗∗∗ ∈ Bil(X∗∗ × Y∗∗,Z∗∗) by 〈m∗∗(Γ, ζ), x〉 = 〈Γ,m∗(ζ, x)〉 and 〈m∗∗∗(Φ,Γ), ζ〉 = 〈Φ,m∗∗(Γ, ζ)〉, where x ∈
X,Φ ∈ X∗∗,Γ ∈ Y∗∗, and ζ ∈ Z∗ are arbitrary (see [1]). It is easily seen that m∗∗∗ is an extension of m, that
is, m∗∗∗ (̂x, ŷ) = m̂(x, y) for all x ∈ X, y ∈ Y. However this extension is not necessary unique. Namely, let
mt : Y × X → Z be the transpose of m, given by mt(y, x) = m(x, y) for all x ∈ X, y ∈ Y. It is easily seen
that mt∗∗∗t (̂x, ŷ) = m̂(x, y) for all x ∈ X, y ∈ Y. In general, m∗∗∗ and mt∗∗∗t do not coincide on the whole space
X∗∗ × Y∗∗. If they do coincide, then m is said to be Arens regular.

If m ∈ Bil(X × Y,Z), then for every x ∈ X one has a bounded linear operator m(x, ·) : Y→ Z which maps
y ∈ Y to m(x, y) ∈ Z. Let ρ : Bil(X × Y,Z) → B(X,B(Y,Z)) be given by ρ(m)x = m(x, ·), for all x ∈ X. It is not
hard to see that ρ is an isometric isomorphism. Similarly, mapping λ, which is given by λ(m)y = m(·, y) for
m ∈ Bil(X×Y,Z) and y ∈ Y, is an isometric isomorphism from Bil(X×Y,Z) to B(Y,B(X,Z)). We point out the
particular case when Z = C. Since B(X,C) = X∗ and B(Y,C) = Y∗ we see that the Banach space Bil(X × Y,C)
of bilinear forms can be identified with Banach spaces of bounded operators B(X,Y∗), respectively B(Y,X∗),
through the isometric isomorphisms ρ, respectively λ. More precisely, for a bilinear form ω ∈ Bil(X × Y,C),
operators ρ(ω) ∈ B(X,Y∗) and λ(ω) ∈ B(Y,X∗) are given by 〈ρ(ω)x, y〉 = ω(x, y) = 〈λ(ω)y, x〉 (x ∈ X, y ∈ Y).

We will use another representation of bilinear forms. Let X⊗̂Y be the projective tensor product of
Banach spaces X and Y (see [10]). The dual space (X⊗̂Y)∗ can be identified with Bil(X × Y,C) through
isometric isomorphism µ, which is defined as follows. For every ζ ∈ (X⊗̂Y)∗, the bilinear form µ(ζ) is
given by µ(ζ)(x, y) = 〈ζ, x ⊗ y〉, where x ∈ X, y ∈ Y are arbitrary (see [10, §2.2] for details). Hence, there
are isometric isomorphisms between Banach spaces Bil(X × Y,C), (X⊗̂Y)∗, B(X,Y∗) and B(Y,X∗). We will
denote by ϕ = ρ ◦ µ the isometric isomorphism between (X⊗̂Y)∗ and B(X,Y∗), similarly, ψ = λ ◦ µ denotes
the isometric isomorphism between (X⊗̂Y)∗ and B(Y,X∗). Hence, if ζ ∈ (X⊗̂Y)∗, then ϕ(ζ) ∈ B(X,Y∗) and
ψ(ζ) ∈ B(Y,X∗) are operators such that

〈ϕ(ζ)x, y〉 = 〈ζ, x ⊗ y〉 = 〈ψ(ζ)y, x〉 for all x ∈ X, y ∈ Y. (1)

Consider C as a one-dimensional Banach space spanned by 1. Let 1∗ : C → C be the identity map.
Then C∗ = C1∗ and for arbitrary α, β ∈ C one has 〈α1∗, β〉 = αβ. The second dual of C is C∗∗ = C1∗∗, where
1∗∗ : C∗ → C is a linear map determined by 〈1∗∗, 1∗〉 = 1. Let now Z be an arbitrary complex Banach space
and let ζ ∈ Z∗. The adjoint ζ∗ is given by 〈ζ∗(α1∗), z〉 = 〈α1∗, ζ(z)〉 = αζ(z) = 〈αζ, z〉, where α1∗ ∈ C∗ and z ∈ Z
are arbitrary. Hence ζ∗(α1∗) = αζ. Similarly we see, that for all Θ ∈ Z∗∗,

ζ∗∗(Θ) = 〈Θ, ζ〉1∗∗. (2)

Let X, Y, Z be complex Banach spaces and m ∈ Bil(X × Y,Z). Compositions of m with linear operators
give bilinear operators. Let X′, Y′ and Z′ be complex Banach spaces and let Q ∈ B(X′,X), R ∈ B(Y′,Y),
T ∈ B(Z,Z′). Then m ◦ (Q,R) ∈ Bil(X′ × Y′,Z) and T ◦m ∈ Bil(X × Y,Z′) are given by

m ◦ (Q,R)(x′, y′) = m(Qx′,Ry′) (x′ ∈ X′, y′ ∈ Y′)
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and
T ◦m(x, y) = T(m(x, y)) (x ∈ X, y ∈ Y).

Since the statements in the following lemmas are easy to check the proofs are omitted.

Lemma 2.1. Let m ∈ Bil(X × Y,Z), Q ∈ B(X′,X) and R ∈ B(Y′,Y) be arbitrary. Then
(i) (m ◦ (Q,R))t = mt

◦ (R,Q);
(ii)

(
m ◦ (Q,R)

)∗
= R∗ ◦m∗ ◦ (IZ∗ ,Q);

(iii)
(
m ◦ (Q,R)

)∗∗
= Q∗ ◦m∗∗ ◦ (R∗∗, IZ∗ );

(iv)
(
m ◦ (Q,R)

)∗∗∗
= m∗∗∗ ◦ (Q∗∗,R∗∗) and

(
m ◦ (Q,R)

)t∗∗∗t
= mt∗∗∗t

◦ (Q∗∗,R∗∗).

Lemma 2.2. Let m ∈ Bil(X × Y,Z) and T ∈ B(Z,Z′) be arbitrary. Then
(i) (T ◦m)t = T ◦mt;
(ii) (T ◦m)∗ = m∗ ◦ (T∗, IX);
(iii) (T ◦m)∗∗ = m∗∗ ◦ (IY∗∗ ,T∗);
(iv) (T ◦m)∗∗∗ = T∗∗ ◦m∗∗∗ and (T ◦m)t∗∗∗t = T∗∗ ◦mt∗∗∗t.

3. Arens functionals of a bilinear operator

Let m ∈ Bil(X×Y,Z). We say that ζ ∈ Z∗ is Arens functional of m if the bilinear form ζ ◦m : X×Y→ C is
Arens regular. Of course, 0 is Arens functional of every m. Let Ar(m) ⊆ Z∗ be the set of all Arens functionals
of m. As a special example we mention that for a bilinear form ω ∈ Bil(X×Y,C) we have Ar(ω) = C1∗ if and
only ifω is Arens regular and Ar(ω) = {0} otherwise. Arens [1] proved that m ∈ Bil(X×Y,Z) is Arens regular
if and only if Ar(m) = Z∗. We include a slightly more general result. To prove it, we need the following
proposition.

Proposition 3.1. Ar(m) is a weakly closed subspace of Z∗.

Proof. It is obvious that Ar(m) is a linear subspace of Z∗. Let (ζi)i∈I ⊆ Ar(m) be a net which converges to
ζ ∈ Z∗ in the weak topology. Then

〈m∗∗∗(Φ,Γ) −mt∗∗∗t(Φ,Γ), ζ〉 = lim
i∈I
〈m∗∗∗(Φ,Γ) −mt∗∗∗t(Φ,Γ), ζi〉 = 0

for arbitrary Φ ∈ X∗∗, Γ ∈ Y∗∗. It follows, by (2), that ζ∗∗
(
m∗∗∗(Φ,Γ) − mt∗∗∗t(Φ,Γ)

)
= 0 and therefore (ζ ◦

m)∗∗∗(Φ,Γ) = (ζ ◦m)t∗∗∗t(Φ,Γ), by Lemma 2.2 (iv).

We will call Ar(m) the Arens space of a bilinear operator m.

Theorem 3.2 (cf. Theorem 2.3 [1]). The following are equivalent for m ∈ Bil(X × Y,Z):
(i) m is Arens regular;
(ii) for every complex Banach space Z′ and every T ∈ B(Z,Z′), the bilinear mapping T ◦m is Arens regular;
(iii) there exists a subset D ⊆ Z∗ whose linear span is weakly dense in Z∗ and ζ ◦ m is Arens regular for every

ζ ∈ D.

Proof. (i)⇒(ii). Let Z′ be a complex Banach space and T ∈ B(Z,Z′). Since m is Arens regular we have
(T ◦ m)∗∗∗ = (T ◦ m)t∗∗∗t, by Lemma 2.2 (iv). To prove (ii)⇒(iii), take Z′ = C. To see (iii)⇒(i), assume that m
is not Arens regular. Then there exist Φ ∈ X∗∗ and Γ ∈ Y∗∗ such that m∗∗∗(Φ,Γ) , mt∗∗∗t(Φ,Γ). Hence, there
exists ζ ∈ Z∗ such that 〈m∗∗∗(Φ,Γ), ζ〉 , 〈mt∗∗∗t(Φ,Γ), ζ〉. By (2), ζ∗∗ ◦ m∗∗∗(Φ,Γ) , ζ∗∗ ◦ mt∗∗∗t(Φ,Γ) which gives,
by Lemma 2.2 (iv), (ζ ◦ m)∗∗∗ , (ζ ◦ m)t∗∗∗t. It follows that ζ < Ar(m). Since, by Proposition 3.1, Ar(m) is a
weakly closed subspace of Z∗ we conclude that there does not existD ⊆ Z∗ such that (iii) holds.
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In the following theorem the inclusion relations between the Arens space of m ∈ Bil(X × Y,Z) and the
Arens spaces of compositions of m with linear operators and their consequences for Arens regularity are
presented.

Theorem 3.3. Let X,X′,Y,Y′,Z,Z′ be complex Banach spaces and m ∈ Bil(X × Y,Z). Then, for arbitrary Q ∈
B(X′,X), R ∈ B(Y′,Y), T ∈ B(Z,Z′), the following hold.

(i) Ar(m) ⊆ Ar(m ◦ (Q,R)).
(ii) If m is Arens regular, then m ◦ (Q,R) is Arens regular.
(iii) If m ◦ (Q,R) is Arens regular and Q∗∗,R∗∗ are surjective, then m is Arens regular.
(iv) Ar(T ◦m) = {ζ′ ∈ Z′∗; T∗ζ′ ∈ Ar(m)}; in particular, T ◦m is Arens regular if and only if T∗(Z′∗) ⊆ Ar(m).
(v) If m is Arens regular, then T ◦m is Arens regular.
(vi) If T ◦m is Arens regular and T∗∗ is injective, then m is Arens regular.

Proof. (i) Let ζ ∈ Ar(m). Then (ζ ◦ m)∗∗∗ = (ζ ◦ m)t∗∗∗t. By using Lemma 2.1 it is not hard to see that(
ζ ◦m ◦ (Q,R)

)∗∗∗
= (ζ ◦m)∗∗∗ ◦ (Q∗∗,R∗∗) = (ζ ◦m)t∗∗∗t

◦ (Q∗∗,R∗∗) =
(
ζ ◦m ◦ (Q,R)

)t∗∗∗t
. Hence ζ ∈ Ar(m ◦ (Q,R)).

(ii) If m is Arens regular, then Ar(m) = Z∗. It follows, by (i), that Ar(m ◦ (Q,R)) = Z∗.
(iii) Let Φ ∈ X∗∗ and Γ ∈ Y∗∗ be arbitrary. By the surjectivity, there exist Φ′ ∈ X′∗∗ and Γ′ ∈ Y′∗∗ such that

Φ = Q∗∗Φ′ and Γ = R∗∗Γ′. Hence

mt∗∗∗t(Φ,Γ) = mt∗∗∗t(Q∗∗Φ′,R∗∗Γ′) =
(
m ◦ (Q,R)

)t∗∗∗t
(Φ′,Γ′)

=
(
m ◦ (Q,R)

)∗∗∗
(Φ′,Γ′) = m∗∗∗(Φ,Γ).

(iv) Let ζ′ ∈ Z′∗ be arbitrary. Since (T∗ζ′) ◦ m(x, y) = 〈T∗ζ′,m(x, y)〉 = ζ′ ◦ T ◦ m(x, y), for all x ∈ X, y ∈ Y,
we have ζ′ ◦ T ◦m = (T∗ζ′) ◦m. Hence, ζ′ ∈ Ar(T ◦m) if and only if T∗ζ′ ∈ Ar(m).

(v) If m is Arens regular, then Ar(m) = Z∗ and therefore T∗ζ′ ∈ Ar(m) for every ζ′ ∈ Z′∗. It follows, by
(iv), Ar(T ◦m) = Z′∗.

(vi) Since T ◦m is Arens regular Ar(m) contains the image of T∗, by (iv). By injectivity of T∗∗, the image
of T∗ is a weakly dense subset of Z∗. We conclude, by Proposition 3.1, that Ar(m) = Z∗.

Let U ⊆ X, V ⊆ Y be a closed subspace and Q : U ↪→ X, R : V ↪→ Y be the embeddings. For
m ∈ Bil(X × Y,Z), let m|(U,V) = m ◦ (Q,R) be the restriction of m to U × V. It follows easily from Theorem
3.3 that m|(U,V) is Arens regular whenever m is Arens regular. In particular, ifA is an Arens regular Banach
algebra, i.e., the multiplication inA is Arens regular, then every closed subalgebra ofA is Arens regular.

4. Arens regularity of the tensor operator

Let X and Y be complex Banach spaces and let τ : X×Y→ X⊗̂Y be given by τ(x, y) = x⊗y (x ∈ X, y ∈ Y). It
is clear that τ is a bilinear operator. Now on we call this mapping the tensor operator and if we want to point
out the underlying spaces, then we denote it by τX,Y. If Z is a complex Banach space and m ∈ Bil(X × Y,Z),
then there exists a unique linear operator M : X⊗̂Y → Z such that m(x, y) = M(x ⊗ y) for all x ∈ X, y ∈ Y,
that is, m = M ◦ τ (see [10, Theorem 2.9]). We call m = M ◦ τ the canonical factorization of m. Note that, by
Theorem 3.3 (iv), Ar(m) = {ζ ∈ Z∗; M∗ζ ∈ Ar(τ)} and m is Arens regular if and only if M∗(Z∗) ⊆ Ar(τ).

In order to describe Ar(τ), recall that an operator T ∈ B(X,Y) is said to be weakly compact if T({x ∈
X; ‖x‖ ≤ 1}) is relatively weakly compact in Y. The set W(X,Y) of all weakly compact operators from X to
Y is an operator ideal (see [9, Corollary 4.1]). In the proof of the following theorem we will use the fact that
T ∈ B(X,Y) is weakly compact if and only if T∗∗(X∗∗) ⊆ ιY(Y) (see [9, Theorem 4.5]).

Theorem 4.1. Let X and Y be complex Banach spaces. Then ζ ∈ (X⊗̂Y)∗ is in Ar(τ) if and only if ϕ(ζ) is weakly
compact, that is, ϕ(Ar(τ)) = W(X,Y∗). Similarly, ψ(Ar(τ)) = W(Y,X∗).
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Proof. Let ζ ∈ (X⊗̂Y)∗. Denote by τζ the bilinear form ζ ◦ τ : X × Y → C. Hence τζ(x, y) = 〈ϕ(ζ)x, y〉 for all
x ∈ X and y ∈ Y. Straightforward computations show that

τ∗ζ(α1∗, x) = αϕ(ζ)x, τ∗∗ζ (Γ, α1∗) = αϕ(ζ)∗Γ, τ∗∗∗ζ (Φ,Γ) = 〈ϕ(ζ)∗∗Φ,Γ〉1∗∗,

τt
ζ(y, x) = 〈ϕ(ζ)∗ ŷ, x〉, τt∗

ζ (α1∗, y) = αϕ(ζ)∗ ŷ, τt∗∗
ζ (Φ, α1∗) = αι∗Y(ϕ(ζ)∗∗Φ),

τt∗∗∗
ζ (Γ,Φ) = 〈Γ, ι∗Y(ϕ(ζ)∗∗Φ)〉1∗∗, and τt∗∗∗t

ζ (Φ,Γ) = 〈ιY∗
(
ι∗Y(ϕ(ζ)∗∗Φ)

)
,Γ〉1∗∗,

where α ∈ C, x ∈ X, y ∈ Y, Φ ∈ X∗∗ and Γ ∈ Y∗∗ are arbitrary. Hence, τζ is Arens regular if and only if
〈ιY∗

(
ι∗Y(ϕ(ζ)∗∗Φ)

)
,Γ〉 = 〈ϕ(ζ)∗∗Φ,Γ〉 holds for all Φ ∈ X∗∗ and Γ ∈ Y∗∗.

Assume that ϕ(ζ) is weakly compact. Let Φ ∈ X∗∗ be arbitrary. By [9, Theorem 4.5], there exists η ∈ Y∗

such that ϕ(ζ)∗∗Φ = η̂. It follows that 〈ϕ(ζ)∗∗Φ,Γ〉 = 〈Γ, η〉 and 〈ιY∗
(
ι∗Y(ϕ(ζ)∗∗Φ)

)
,Γ〉 = 〈Γ, ι∗Y(η̂)〉 = 〈Γ, η〉 for

every Γ ∈ Y∗∗. This proves that τζ is Arens regular. The proof of the opposite implication is shorter: if, for
Φ ∈ X∗∗, equality 〈ιY∗

(
ι∗Y(ϕ(ζ)∗∗Φ)

)
,Γ〉 = 〈ϕ(ζ)∗∗Φ,Γ〉 holds for every Γ ∈ Y∗∗, then ϕ(ζ)∗∗Φ = ιY∗

(
ι∗Y(ϕ(ζ)∗∗Φ)

)
.

Hence, ϕ(ζ)∗∗(X∗∗) ⊆ ιY∗ (Y∗) which is equivalent to the weak compactness of ϕ(ζ). It is obvious that the
equality ψ(Ar(τ)) = W(Y,X∗) can be proven similarly.

The following corollary states the equivalence of items (i) and (iv) of [7, Theorem 2.1].

Corollary 4.2. For m ∈ Bil(X × Y,Z) with the canonical factorization m = M ◦ τ, the following assertions are
equivalent:

(i) m is Arens regular,
(ii) ϕ(M∗ζ) ∈ B(X,Y∗) is weakly compact for every ζ ∈ Z∗,
(iii) ψ(M∗ζ) ∈ B(Y,X∗) is weakly compact for every ζ ∈ Z∗.

Proof. The equivalences hold by Theorems 3.3 (iv) and 4.1.

Corollary 4.3. The bilinear mapping τ : X × Y → X⊗̂Y is Arens regular if and only if every operator in B(X,Y∗),
or every operator in B(Y,X∗), is weakly compact.

If X or Y is reflexive, then every T ∈ B(X,Y) is weakly compact. However there exist pairs of non-
reflexive Banach spaces X and Y such that B(X,Y) = W(X,Y). Recall from [9, §4.3] that a Banach space X
is said to be a Grothendieck space if every sequence (ξn)∞n=1 ⊆ X∗ which converges to 0 in the w∗-topology
converges to 0 in the weak topology, as well. A Banach space X is WCG (weakly compactly generated) if
there exists a weakly compact subset K ⊆ X such that X is the closed linear span of K. By [9, Theorem 4.9],
B(X,Y) = W(X,Y) if X is a Grothendieck space and Y is WCG.

Corollary 4.4. Let X be a Grothendieck space, Y∗ a WCG space, and Z an arbitrary Banach space. Then every
m ∈ Bil(X × Y,Z) is Arens regular.

Proof. By the assumptions, B(X,Y∗) = W(X,Y∗) which implies, by Corollary 4.3, that τ is Arens regular. Now
the assertion follows by Theorem 3.3 (iv).

Corollary 4.5 (Ülger, Theorem 2.2 [11]). Let X and Y be complex Banach spaces. A bilinear form µ ∈ Bil(X×Y,C)
is Arens regular if and only if ρ(µ) ∈ B(X,Y∗) (or λ(µ) ∈ B(Y,X∗)) is weakly compact.

Example 4.6. Let X be a complex Banach space. Then γ(ξ, x) = 〈ξ, x〉 is a bounded bilinear form on X∗ ×X. Let X′,
Y′ be complex Banach spaces and let Q ∈ B(X′,X∗), R ∈ B(Y′,X) be arbitrary operators. Let γQ,R(x′, y′) = 〈Qx′,Ry′〉.
This is a bilinear form on X′ × Y′. Since 〈ρ(γQ,R)x′, y′〉 = 〈Qx′,Ry′〉 = 〈R∗Qx′, y′〉 for all x′ ∈ X′ and y′ ∈ Y′ we
have ρ(γQ,R) = R∗Q. Hence, γQ,R is Arens regular if and only if R∗Q is a weakly compact operator from X′ to Y′∗. In
particular, the bilinear form γ is Arens regular if and only if I∗XIX∗ = IX∗ is weakly compact. It is well known that the
identity operator is weakly compact if and only if the underlying space is reflexive. Hence, γ is Arens regular if and
only if X is a reflexive space.
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Proposition 4.7. Let X,X′,Y,Y′ and Z be complex Banach spaces. Let m ∈ Bil(X × Y,Z) and Q ∈ B(X′,X),
R ∈ B(Y′,Y) be arbitrary. Let m = M ◦ τ be the canonical factorization of m. Then Ar(m ◦ (Q,R)) = {ζ ∈
Z∗; R∗ϕ(M∗ζ)Q ∈W(X′,Y′∗)}.

Proof. Denote τ′ = τX′,Y′ and let m◦ (Q,R) = M′ ◦τ′ be the canonical factorization of m◦ (Q,R). For arbitrary
x′ ∈ X′, y′ ∈ Y′ we have m ◦ (Q,R)(x′, y′) = M ◦ τ(Qx′,Ry′) = M(Q ⊗ R)(x′ ⊗ y′) = M(Q ⊗ R)τ′(x′, y′). Hence,
M′ = M(Q⊗R). It follows, by Corollary 4.2, that ζ ∈ Z∗ is in Ar(m ◦ (Q,R)) if and only if ϕ′

(
(Q⊗R)∗M∗ζ

)
is a

weakly compact operator, where by ϕ′ we have denoted the natural isometric isomorphism from (X′⊗̂Y′)∗

to B(X′,Y′∗). It is easily seen that ϕ′
(
(Q ⊗ R)∗M∗ζ

)
= R∗ϕ(M∗ζ)Q.

LetA be a complex Banach algebra and let a complex Banach space X be a left Banach module overA
through the multiplication m(a, x) = a · x (a ∈ A, x ∈ X). It is assumed that ‖m‖ ≤ 1, that is ‖a · x‖ ≤ ‖a‖‖x‖ for
all a ∈ A, x ∈ X. Through the mapping m∗ : X∗ ×A → X∗ the dual space X∗ is equipped with the structure
of a right Banach A-module. For every ξ ∈ X∗, we have a bounded linear operator Lξ : A → X∗ given by
Lξa = ξ · a. The following proposition is an extension of [5, Theorem 2.1], see also [4, Theorem 3.4].

Proposition 4.8. Let X be a left Banach A-module through the multiplication m. Then m is Arens regular if and
only if Lξ ∈ B(A,X∗) is a weakly compact operator for every ξ ∈ X∗.

Proof. Let m = M ◦ τ be the canonical factorization. Then, for every ξ ∈ X∗, we have 〈ϕ(M∗ξ)a, x〉 =
〈M∗ξ, a ⊗ x〉 = 〈ξ,m(a, x)〉 = 〈Lξa, x〉 for all a ∈ A, x ∈ X. Hence ϕ(M∗ξ) = Lξ. Now the assertion follows by
Corollary 4.2.

Let A be a complex Banach algebra and let m denotes the multiplication in A. A functional ζ ∈ A∗ is
said to be weakly almost periodic on A if Lζ ∈ B(A,A∗) is a weakly compact operator. Hence in this case
Arens functionals of m are precisely the weakly almost periodic functionals.

5. Topological centers

The left topological center of m ∈ Bil(X × Y,Z) is

Z
`(m) = {Φ ∈ X∗∗; m∗∗∗(Φ, · ) : Y∗∗ → Z∗∗ is w∗-w∗ continuous}

and the right topological center of m is Zr(m) = Z`(mt) (see [2, 3, 6]). It is not hard to see that
Z
`(m) = {Φ ∈ X∗∗; m∗∗∗(Φ,Γ) = mt∗∗∗t(Φ,Γ) for all Γ ∈ Y∗∗}, and therefore Zr(m) = {Γ ∈ Y∗∗; m∗∗∗(Φ,Γ) =

mt∗∗∗t(Φ,Γ) for all Φ ∈ X∗∗}. Hence, a bilinear operator m ∈ Bil(X × Y,Z) is Arens regular if and only if
Z
`(m) = X∗∗ orZr(m) = Y∗∗. It is clear that X̂ ⊆ Z`(m) and Ŷ ⊆ Zr(m). If m is such thatZ`(m) = X̂, then m

is said to be left strongly Arens irregular. Similarly, if Zr(m) = Ŷ, then m is right strongly Arens irregular.
There exist bilinear operators which are left strongly Arens irregular but not right strongly Arens irregular
(and vice versa), see [3].

Lemma 5.1. Let m ∈ Bil(X × Y,Z) and let m = M ◦ τ be its canonical factorization. If ζ ∈ Z∗, then

(ζ ◦m)∗∗∗(Φ,Γ) = 〈ϕ(M∗ζ)∗∗Φ,Γ〉1∗∗ = 〈Φ, ι∗Xψ(M∗ζ)∗∗Γ〉1∗∗ (3)

and

(ζ ◦m)t∗∗∗t(Φ,Γ) = 〈ψ(M∗ζ)∗∗Γ,Φ〉1∗∗ = 〈Γ, ι∗Y
(
ϕ(M∗ζ)∗∗Φ

)
〉1∗∗ (4)

for every Φ ∈ X∗∗, Γ ∈ Y∗∗.



J. Bračič / Filomat 32:14 (2018), 4993–5002 4999

Proof. We will prove the first equality in (3) and the second equality in (4). By (1), we have ζ ◦ m(x, y) =
〈ζ,M◦τ(x, y)〉 = 〈M∗ζ, x⊗y)〉 = 〈ϕ(M∗ζ)x, y〉 for every x ∈ X, y ∈ Y. Hence 〈(ζ◦m)∗(1∗, x), y〉 = 〈1∗, ζ◦m(x, y)〉 =
〈1∗, 〈ϕ(M∗ζ)x, y〉〉 = 〈ϕ(M∗ζ)x, y〉 for every x ∈ X, y ∈ Y which gives (ζ ◦m)∗(1∗, x) = ϕ(M∗ζ)x for every x ∈ X.
Let Γ ∈ Y∗∗ be arbitrary. Then 〈(ζ ◦ m)∗∗(Γ, 1∗), x〉 = 〈Γ, (ζ ◦ m)∗(1∗, x)〉 = 〈Γ, ϕ(M∗ζ)x〉 = 〈ϕ(M∗ζ)∗Γ, x〉
for every x ∈ X and therefore (ζ ◦ m)∗∗(Γ, 1∗) = ϕ(M∗ζ)∗Γ. Let Φ ∈ X∗∗,Γ ∈ Y∗∗ be arbitrary. We have
〈(ζ◦m)∗∗∗(Φ,Γ), 1∗〉 = 〈Φ, (ζ◦)∗∗(Γ, 1∗)〉 = 〈Φ, ϕ(M∗ζ)∗Γ〉 = 〈ϕ(M∗ζ)∗∗Φ,Γ〉 = 〈〈ϕ(M∗ζ)∗∗Φ,Γ〉1∗∗, 1∗〉which shows
that the first equality in (3) holds.

Since (ζ ◦ m)t(y, x) = 〈ϕ(M∗ζ)x, y〉 we have 〈(ζ ◦ m)t∗(1∗, y), x〉 = 〈1∗, 〈ϕ(M∗ζ)x, y〉〉 = 〈ϕ(M∗ζ)x, y〉 =
〈ϕ(M∗ζ)∗ιY(y), x〉 for every x ∈ X, y ∈ Y which gives (ζ ◦ m)t∗(1∗, y) = ϕ(M∗ζ)∗ιY(y). Let Φ ∈ X∗∗ be arbitrary.
Then 〈(ζ ◦ m)t∗∗(Φ, 1∗), y〉 = 〈Φ, ϕ(M∗ζ)∗ιY(y)〉 = 〈ι∗Yϕ(M∗ζ)∗∗Φ, y〉 (y ∈ Y) and therefore (ζ ◦ m)t∗∗(Φ, 1∗) =
ι∗Yϕ(M∗ζ)∗∗Φ. Now, for arbitrary Φ ∈ X∗∗ and Γ ∈ Y∗∗, it follows from 〈(ζ◦m)t∗∗∗(Γ,Φ), 1∗〉 = 〈Γ, ι∗Yϕ(M∗ζ)∗∗Φ〉 =
〈〈Γ, ι∗Yϕ(M∗ζ)∗∗Φ〉1∗∗, 1∗〉 that the second equality in (4) holds.

Proposition 5.2. Let m ∈ Bil(X × Y,Z) and let m = M ◦ τ be its canonical factorization. If ζ ∈ Z∗, then
Z
`(ζ ◦m) = {Φ ∈ X∗∗; ϕ(M∗ζ)∗∗Φ ∈ Ŷ∗} andZr(ζ ◦m) = {Γ ∈ Y∗∗; ψ(M∗ζ)∗∗Γ ∈ X̂∗}.

Proof. Assume that Φ ∈ X∗∗ is such that ϕ(M∗ζ)∗∗Φ ∈ Ŷ∗, say ϕ(M∗ζ)∗∗Φ = η̂, where η ∈ Y∗. Note that
〈η, y〉 = 〈η̂, ŷ〉 = 〈ι∗Yϕ(M∗ζ)∗∗Φ, y〉 for every y ∈ Y which gives η = ι∗Yϕ(M∗ζ)∗∗Φ. Hence 〈ϕ(M∗ζ)∗∗Φ,Γ〉 =

〈Γ, η〉 = 〈Γ, ι∗Y
(
ϕ(M∗ζ)∗∗Φ

)
〉 holds for every Γ ∈ Y∗∗. It follows, by Lemma 5.1, that (ζ ◦ m)∗∗∗(Φ,Γ) =

(ζ ◦m)t∗∗∗t(Φ,Γ) for every Γ ∈ Y∗∗, that is, Φ ∈ Z`(m). To see the opposite inclusion, suppose that Φ ∈ Z`(m).
Then (ζ ◦ m)∗∗∗(Φ,Γ) = (ζ ◦ m)t∗∗∗t(Φ,Γ) for every Γ ∈ Y∗∗ which gives, by Lemma 5.1, 〈ϕ(M∗ζ)∗∗Φ,Γ〉 =

〈Γ, ι∗Y
(
ϕ(M∗ζ)∗∗Φ

)
〉 for every Γ ∈ Y∗∗. We conclude that ϕ(M∗ζ)∗∗Φ = ιY∗

(
ι∗Y

(
ϕ(M∗ζ)∗∗Φ

))
∈ Ŷ∗.

The second equality follows now from the first equality. Indeed, note thatZr(ζ◦m) = Z`((ζ◦m)t) which
means that the second equality is actually the first one with X and Y interchanged.

By [9, Theorem 4.5], it follows from Proposition 5.2 that ϕ(M∗ζ) is a weakly compact operator if and
only if Z`(ζ ◦ m) = X∗∗, that is, if and only if ζ ∈ Ar(m). Similarly, ψ(M∗ζ) is a weakly compact operator if
and only ifZr(ζ ◦m) = Y∗∗.

For an arbitrary m ∈ Bil(X × Y,Z), we have the following characterization of the left and the right
topological center of m.

Proposition 5.3. The topological centers of m ∈ Bil(X × Y,Z) are

Z
`(m) =

⋂
ζ∈Z∗
Z
`(ζ ◦m) and Z

r(m) =
⋂
ζ∈Z∗
Z

r(ζ ◦m).

Proof. Let m ∈ Bil(X×Y,Z) and let m = M◦τ be its canonical factorization. If ζ ∈ Z∗, then ϕ(M∗ζ)x = m∗(ζ, x)
for all x ∈ X. It follows that m∗∗(Γ, ζ) = ϕ(M∗ζ)∗Γ for all Γ ∈ Y∗∗ and finally we have 〈m∗∗∗(Φ,Γ), ζ〉 =
〈ϕ(M∗ζ)∗∗Φ,Γ〉 for all Φ ∈ X∗∗ and Γ ∈ Y∗∗. Similarly, it is straightforward that mt∗(ζ, y) = ϕ(M∗ζ)∗ ŷ for all
y ∈ Y. This gives mt∗∗(Φ, ζ) = ι∗Y

(
ϕ(M∗ζ)∗∗Φ

)
for all Φ ∈ X∗∗. Hence, 〈mt∗∗∗t(Φ,Γ), ζ〉 = 〈Γ, ι∗Y

(
ϕ(M∗ζ)∗∗Φ

)
=

〈ιY∗
(
ι∗Y

(
ϕ(M∗ζ)∗∗Φ

))
,Γ〉 for all Φ ∈ X∗∗ and Γ ∈ Y∗∗.

Assume that Φ ∈ Z`(m). Let ζ ∈ Z∗ be arbitrary. Since m∗∗∗(Φ,Γ) = mt∗∗∗t(Φ,Γ) for all Γ ∈ Y∗∗ we conclude
that ϕ(M∗ζ)∗∗Φ is equal to ιY∗

(
ι∗Y

(
ϕ(M∗ζ)∗∗Φ

))
∈ Ŷ∗, which shows that Φ ∈ Z`(ζ ◦m).

Suppose now that Φ ∈ X∗∗ is not in Z`(m). Then there exists Γ ∈ Y∗∗ such that m∗∗∗(Φ,Γ) , mt∗∗∗t(Φ,Γ).
It follows that there exists ζ ∈ Z∗ such that 〈m∗∗∗(Φ,Γ), ζ〉 , 〈mt∗∗∗t(Φ,Γ), ζ〉. By the previous paragraph,
ϕ(M∗ζ)∗∗Φ , ιY∗

(
ι∗Y

(
ϕ(M∗ζ)∗∗Φ

))
. If there were η ∈ Y∗ such that ϕ(M∗ζ)∗∗Φ = η̂, then we would have 〈η, y〉 =

〈η̂, ŷ〉 = 〈ϕ(M∗ζ)∗∗Φ, ιY(y)〉 = 〈ι∗Y
(
ϕ(M∗ζ)∗∗Φ

)
, y〉 for every y ∈ Y. Hence, we would have η = ι∗Y

(
ϕ(M∗ζ)∗∗Φ

)
and consequently ϕ(M∗ζ)∗∗Φ = ιY∗ (η) = ιY∗

(
ι∗Y

(
ϕ(M∗ζ)∗∗Φ

))
which is a contradiction. We conclude that

ϕ(M∗ζ)∗∗Φ < Ŷ∗, that is Φ < Z`(ζ ◦m).
The second equality is proven similarly.
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Assume that m ∈ Bil(X × Y,Z) is a left strongly Arens irregular bilinear operator, that is,Z`(m) = X̂. By
Proposition 5.3, for every Φ ∈ X∗∗ \ X̂, there exists ζΦ ∈ Z∗ such that Φ < Z`(ζΦ ◦m). It would be interesting
to know, for which left strongly Arens irregular bilinear operators m, there exists ζ0 ∈ Z∗ such that ζ0 ◦m is
left strongly Arens irregular, that is,Z`(ζ0 ◦m) = X̂.

6. Bilinear operators approximable by linear operators

If m ∈ Bil(X×Y,Z), then m∗ ∈ Bil(Z∗×X,Y∗). Let m∗ = M̃◦ τ̃ be the canonical factorization (hence τ̃ = τZ∗,X)
and let ϕ̃ : (Z∗⊗̂X)∗ → B(Z∗,X∗) be the natural isometric isomorphism (see (1)). It is not hard to see that, for
arbitrary ζ ∈ Z∗ and Γ ∈ Y∗∗, we have m∗∗(Γ, ζ) = ϕ̃(M̃∗Γ)ζ. It follows that the adjoint of ϕ̃(M̃∗Γ) ∈ B(Z∗,X∗)
satisfies m∗∗∗(Φ,Γ) = ϕ̃(M̃∗Γ)∗Φ for every Φ ∈ X∗∗. If Γ = ŷ, where y ∈ Y, let Aŷ ∈ B(X,Z) be defined by
Aŷx = m(x, y) (x ∈ X). Then 〈m∗∗(ŷ, ζ), x〉 = 〈ζ,m(x, y)〉 = 〈A∗

ŷ
ζ, x〉 for every x ∈ X. Hence ϕ̃(M̃∗ ŷ) = A∗

ŷ
and

therefore ϕ̃(M̃∗ ŷ)∗ = A∗∗
ŷ

. However, if Γ ∈ Y∗∗ is arbitrary, then it is not necessary that ϕ̃(M̃∗Γ)∗ is the second
adjoint of an operator in B(X,Z).

Example 6.1. Let X,Y be complex Banach spaces, Y non-reflexive. Let ξ ∈ X∗ be non-zero. Then m(x, y) = 〈ξ, x〉y,
where x ∈ X, y ∈ Y are arbitrary, defines m ∈ Bil(X×Y,Y). It is easily seen that m∗∗∗ is given by m∗∗∗(Φ,Γ) = 〈Φ, ξ〉Γ

for every Φ ∈ X∗∗,Γ ∈ Y∗∗. Assume that Γ ∈ Y∗∗ \ Ŷ. If ϕ̃(M̃∗Γ)∗ were the second adjoint of AΓ ∈ B(X,Y), then we
would have 〈Φ,A∗Γη〉 = 〈ϕ̃(M̃∗Γ)∗Φ, η〉 = 〈Φ,m∗∗(Γ, η)〉 for all Φ ∈ X∗∗, η ∈ Y∗ which would give A∗Γη = m∗∗(Γ, η) for
all η ∈ Y∗. It would follow that for x ∈ X we have 〈m∗∗∗ (̂x,Γ), η〉 = 〈m∗∗(Γ, η), x〉 = 〈ÂΓx, η〉 for all η ∈ Y∗. Hence
ÂΓx = m∗∗∗ (̂x,Γ) = 〈ξ, x〉Γ for every x ∈ X. But this is impossible since ξ , 0 and Γ < Ŷ. Note that this holds even
in the case when X is reflexive and therefore m is Arens regular, which means that Γ ∈ Zr(m) = Y∗∗.

Proposition 6.2. Let m ∈ Bil(X × Y,Z). As in the paragraph before Example 6.1, let ϕ̃(M̃∗Γ) ∈ B(Z∗,X∗) be such
that m∗∗(Γ, ζ) = ϕ̃(M̃∗Γ)ζ (ζ ∈ Z∗,Γ ∈ Y∗∗). For Γ ∈ Y∗∗, there exists AΓ ∈ B(X,Z) such that ϕ̃(M̃∗Γ) = A∗Γ if and
only if Γ ∈ Zr(m) and ϕ̃(M̃∗Γ)∗(X̂) ⊆ Ẑ.

Proof. Assume that for Γ ∈ Y∗∗ there exists AΓ ∈ B(X,Z) such that ϕ̃(M̃∗Γ) = A∗Γ. Then ϕ̃(M̃∗Γ)∗ = m∗∗∗(·,Γ) is
w∗-continuous, by [9, Proposition 4.6], which means that Γ ∈ Zr(m), by the definition of the right topological
center. For an arbitrary x ∈ X, we have 〈ϕ̃(M̃∗Γ)∗x̂, ζ〉 = 〈̂x,A∗Γζ〉 = 〈ÂΓx, ζ〉 for every ζ ∈ Z∗. It follows that
ϕ̃(M̃∗Γ)̂x = ÂΓx ∈ Ẑ.

Suppose now that Γ ∈ Zr(m) and ϕ̃(M̃∗Γ)∗(X̂) ⊆ Ẑ. Then for every x ∈ X there exists a unique AΓx ∈ Z
such that ϕ̃(M̃∗Γ)∗x̂ = ÂΓx. It is not hard to see that x 7→ AΓx defines an operator AΓ ∈ B(X,Z). Since
ÂΓx = A∗∗Γ x̂ for every x ∈ X and ϕ̃(M̃∗Γ)∗ is w∗-continuous, by the definition of the right topological center,
we conclude that ϕ̃(M̃∗Γ)∗Φ = A∗∗Γ Φ for every Φ ∈ X∗∗ which gives ϕ̃(M̃∗Γ) = A∗Γ.

Let m ∈ Bil(X×Y,Z) and Γ ∈ Y∗∗ be such that there exists AΓ ∈ B(X,Z) satisfying A∗Γζ = m∗∗(Γ, ζ) for every
ζ ∈ Z∗. By the Goldstine’s Theorem (see [8, Theorem 2.6.26]), there exists a net (y j) j∈J ⊆ Y, bounded by
‖Γ‖, such that Γ is the w∗-limit of (ŷ j) j∈J. Hence, if x ∈ X, then 〈ζ,AΓx〉 = 〈m∗∗(Γ, ζ), x〉 = lim j∈J〈ŷ j,m∗(ζ, x)〉 =
lim j∈J〈ζ,m(x, y j)〉 for every ζ ∈ Z∗ which means that (m(x, y j) j∈J converges to AΓx in the weak topology.

Definition 6.3. A bilinear operator m ∈ Bil(X×Y,Z) is approximable by a linear operator A ∈ B(X,Z) at a bounded
net (y j) j∈J ⊆ Y if w−lim j∈Jm(x, y j) = Ax for every x ∈ X.

Our definition is inspired by the notion of approximately unital bilinear mappings which are considered
in [6]. In the following proposition we state a few conditions on m ∈ Bil(X × Y,Z) which are equivalent to
the condition formulated in Definition 6.3.
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Proposition 6.4. Let m ∈ Bil(X × Y,Z) and Γ ∈ Y∗∗. Let (y j) j∈J ⊆ Y be a bounded net such that Γ = w∗−lim j∈J ŷ j.
Let AΓ ∈ B(X,Z). The following assertions are equivalent:

(i) m is approximable by AΓ at (y j) j∈J;
(ii) m∗∗(Γ, ζ) = A∗Γζ for every ζ ∈ Z∗;
(ii’) m∗t∗(Γ, x) = A∗∗Γ x̂ for every x ∈ X;
(iii) m∗∗∗(Φ,Γ) = A∗∗Γ Φ for every Φ ∈ X∗∗;
(iii’) m∗t∗∗(Ω,Γ) = ι∗X(A∗∗∗Γ Ω) for every Ω ∈ Z∗∗∗.

Proof. (i)⇒(ii). Let ζ ∈ Z∗ be arbitrary. For every x ∈ X, we have |〈m∗∗(Γ, ζ) − A∗Γζ, x〉| ≤ |〈Γ,m
∗(ζ, x)〉 −

〈ŷ j,m∗(ζ, x)〉| + |〈ζ,m(x, y j)〉 − 〈ζ,AΓx〉|. Since Γ is a w∗-limit of (ŷ j) j∈J and AΓx is w-limit of (m(x, y j)) j∈J we
conclude that m∗∗(Γ, ζ) = A∗Γζ.

(ii)⇒(i). Let x ∈ X be arbitrary. For every ζ ∈ Z∗, we have 〈ζ,m(x, y j) − AΓx〉 = 〈m∗∗(ŷ j, ζ) − A∗Γζ, x〉 =
〈m∗∗(ŷ j, ζ) −m∗∗(Γ, ζ), x〉 = 〈ŷ j − Γ,m∗(ζ, x)〉. Since (ŷ j) j∈J converges to Γ in the w∗-topology we conclude that
(m(x, y j)) j∈J converges to AΓx in the weak topology.

(ii) ⇐⇒ (ii’). Let x ∈ X and ζ ∈ Z∗ be arbitrary. Then 〈m∗∗(Γ, ζ) − A∗Γζ, x〉 = 〈Γ,m∗t(x, ζ)〉 − 〈A∗∗Γ x̂, ζ〉 =
〈m∗t∗(Γ, x) − A∗∗Γ x̂, ζ〉. Hence, m∗∗(Γ, ζ) = A∗Γζ for every ζ ∈ X∗ if and only if m∗t∗(Γ, x) = A∗∗Γ x̂ for every x ∈ X.

(ii) ⇐⇒ (iii). Let Φ ∈ X∗∗ and ζ ∈ Z∗ be arbitrary. Then 〈m∗∗∗(Φ,Γ0) − A∗∗Γ Φ, ζ〉 = 〈Φ,m∗∗(Γ, ζ) − A∗Γζ〉.
Hence, m∗∗∗(Φ,Γ) = A∗∗Γ Φ for every Φ ∈ X∗∗ if and only if m∗∗(Γ, ζ) = A∗Γζ for every ζ ∈ Z∗.

(ii’) ⇐⇒ (iii’). Let x ∈ X and Ω ∈ Z∗∗∗ be arbitrary. Then 〈m∗t∗∗(Ω,Γ) − ι∗X(A∗∗∗Γ Ω), x〉 = 〈Ω,m∗t∗(Γ, x)〉 −
〈A∗∗∗Γ Ω, x̂〉 = 〈Ω,m∗t∗(Γ, x) − A∗∗Γ x̂〉. Hence, m∗t∗∗(Ω,Γ) = ι∗X(A∗∗∗Γ Ω) for every Ω ∈ Z∗∗∗ if and only if m∗t∗(Γ, x) =
A∗∗Γ x̂ for every x ∈ X.

Let m ∈ Bil(X×Y,Z). If for Γ ∈ Y∗∗ there exists AΓ ∈ B(X,Y) such that m∗∗∗(Φ,Γ) = A∗∗Γ Φ for all Φ ∈ X∗∗, then
AΓ is uniquely determined. Let App(m) be a subset of Y∗∗ of all those Γ such that there exists AΓ ∈ B(X,Z)
satisfying m∗∗∗(Φ,Γ) = A∗∗Γ Φ for every Φ ∈ X∗∗. It is clear that App(m) is a linear subspace of Y∗∗. We have
already observed that Ŷ ⊆ App(m) and, by Proposition 6.2, App(m) ⊆ Zr(m). This last inclusion can be
proper as we have seen in Example 6.1. Hence, in general, the condition App(m) = Y∗∗ is stronger than the
conditionZr(m) = Y∗∗, which is equivalent to the Arens regularity of m. Of course, every bilinear operator
satisfying the former condition satisfies the latter condition, as well. The converse does not hold in general
as shows the bilinear operator m from Example 6.1 — if in that example X is reflexive and Y is non-reflexive,
then App(m) = Ŷ andZr(m) = Y∗∗ which means that App(m) is a proper subspace ofZr(m).

Theorem 6.5. Let m ∈ Bil(X×Y,Z). Assume that for Γ ∈ Y∗∗ there exists AΓ ∈ B(X,Z) such that m∗∗∗(Φ,Γ) = A∗∗Γ Φ

for every Φ ∈ X∗∗. Then A∗∗∗Γ

(
Z
`(m∗)

)
⊆ X̂∗ and A∗∗Γ

(
Z

r(m∗)
)
⊆ Ẑ . In particular, if m∗ is Arens regular, then AΓ is

weakly compact.

Proof. Let Ω ∈ Z`(m∗) be arbitrary. For every Φ ∈ X∗∗ we have

〈A∗∗∗Γ Ω,Φ〉 = 〈Ω,m∗∗∗(Φ,Γ)〉 = 〈m∗∗∗∗(Ω,Φ),Γ)〉 = 〈m∗t∗∗∗t(Ω,Φ),Γ)〉

= 〈Φ,m∗t∗∗(Ω,Γ)〉 = 〈Φ, ι∗X(A∗∗∗Γ Ω)〉 = 〈ιX∗
(
ι∗X(A∗∗∗Γ Ω)

)
,Φ〉,

where we used equivalence (iii)⇐⇒ (iii’) of Proposition 6.4. It follows that A∗∗∗Γ Ω = ιX∗
(
ι∗X(A∗∗∗Γ Ω)

)
∈ X̂∗.

Let (y j) j∈J ⊆ Y be a bounded net such that Γ = w∗−lim j∈J ŷ j. For an arbitrary Φ ∈ Zr(m∗), let (xi)i∈I ⊆ X
be a bounded net such that Φ = w∗−limi∈I x̂i. We want to show that A∗∗Γ Φ is the weak limit of (ÂΓxi)i∈I. Let
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Ω ∈ Z∗∗∗ be arbitrary and let (ζk)k∈K ⊆ Z∗ be a bounded net such that Ω = w∗−limk∈K ζ̂k. Then we have

〈Ω,A∗∗Γ Φ〉 = 〈Ω,m∗∗∗(Φ,Γ)〉 = 〈m∗∗∗∗(Ω,Φ),Γ〉 = 〈m∗t∗∗∗t(Ω,Φ),Γ〉

= 〈Φ,m∗t∗∗(Ω,Γ)〉 = lim
i∈I
〈̂xi,m∗t∗∗(Ω,Γ)〉 = lim

i∈I
〈m∗t∗∗(Ω,Γ), xi〉

= lim
i∈I
〈Ω,m∗t∗(Γ, xi)〉 = lim

i∈I
lim
k∈K
〈ζ̂k,m∗t∗(Γ, xi)〉 = lim

i∈I
lim
k∈K
〈m∗t∗(Γ, xi), ζk〉

= lim
i∈I

lim
k∈K
〈Γ,m∗t(xi, ζk)〉 = lim

i∈I
lim
k∈K

lim
j∈J
〈ŷ j,m∗(ζk, xi)〉 = lim

i∈I
lim
k∈K

lim
j∈J
〈ζk,m(xi, y j)〉

= lim
i∈I

lim
k∈K
〈ζk,AΓxi〉,

where the last equality follows by the definition of AΓ — see the paragraph before Definition 6.3 and the
equivalence of (i) and (ii) in Proposition 6.4. Hence, 〈Ω,A∗∗Γ Φ〉 = limi∈I limk∈K〈ζ̂k, ÂΓxi〉 = limi∈I〈Ω, ÂΓxi〉,
that is, A∗∗Γ Φ is the weak limit of (ÂΓxi)i∈I. Since Ẑ is a weakly closed subspace of Z∗∗ we conclude that
A∗∗Γ Φ ∈ Ẑ.

If m∗ is Arens regular, then Z`(m∗) = Z∗∗∗. Hence, A∗∗∗Γ maps Z∗∗∗ into X̂∗ which is equivalent, by [9,
Theorem 4.5], to the weak compactness of A∗Γ. Since A∗Γ is weakly compact if and only if AΓ is weakly
compact (see [9, Theorem 4.7]), we conclude that AΓ is weakly compact.

Corollary 6.6. Let m ∈ Bil(X × Y,Z) and for each y ∈ Y let Aŷ ∈ B(X,Z) be given by Aŷx = m(x, y) (x ∈ X). If m∗

is Arens regular, then every operator Aŷ (y ∈ Y) is weakly compact.

Proof. It is clear that m∗∗∗(Φ, ŷ) = A∗∗
ŷ
Φ for every Φ ∈ X∗∗. Hence the assumption of Theorem 6.5 is satis-

fied.

Next corollary generalizes Theorem 4.1 in [6] as well as some results in [3, Section 2].

Corollary 6.7. Let m ∈ Bil(X × Y,X). Assume that for Γ ∈ Y∗∗ there exists an invertible AΓ ∈ B(X) such that
m∗∗∗(Φ,Γ) = A∗∗Γ Φ for every Φ ∈ X∗∗. Then m∗ ∈ Bil(X∗ × X,Y∗) is left and right strongly Arens irregular. In
particular, m∗ is Arens regular if and only if X is reflexive.

Proof. By Theorem 6.5, for every Ω ∈ Z`(m∗) there exists ξ ∈ X∗ such that A∗∗∗Γ Ω = ξ̂. Since AΓ is invertible
we have Ω = (A∗∗∗Γ )−1ξ̂ = ̂(A∗

Γ
)−1ξ ∈ X̂∗. Hence,Z`(m∗) = X̂∗. Similarly,Zr(m∗) = Ẑ.
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