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On Some Generalizations of Horadam’s Numbers
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Abstract. In this paper, we introduce the incomplete Horadam numbers W, (k), and hyper-Horadam
numbers W,Sk), which generalize the Horadam’s numbers defined by the recurrence W, = pW,_1 + qW,_,
with Wy = a and W; = b. We give some combinatorial properties. As an application, we evaluate a lower
and upper bounds for the spectral norms of r-circulant matrices associated with these two generaliza-
tions. Moreover, we establish a new bounds for the spectral norms of r-circulant matrices associated with
Horadam’s numbers in terms of incomplete Horadam and hyper-Horadam numbers.

1. Introduction and Preliminaries

The Fibonacci numbers are defined by the recurrence relation F,, = F,,_1 + F,—; for any n > 2, with initials
Fy =0, F1 = 1. Several generalizations of the Fibonacci sequence have been investigated. One well-know
generalization is the Horadam’s numbers W,(a, b, p, q), denoted briefly W,,, and defined by the following
recurrence relation

W, = an—l + an—Zr (1)
with the initials Wy = 2 and Wy = b, where a,b,p, g € Z. An explicit formula for the sequence (W,,) is

o [p+ AP+ p— p*+4q
Wi=A|——0——| +B|—>—| . )
where
b— _
A:—aﬁ and B = ag —b

and a, f are the distinct roots of characteristic polynomial x? — px — g = 0. The generating function is given

. a+ (b—pa)x
Y W= T ®
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Some special cases of Horadam’s numbers W, (a, b, p, q) are Fibonacci numbers F,, Lucas numbers L,,
Pell numbers P,, Pell-Lucas numbers Q,, Jacobsthal numbers J,, Jacobsthal-Lucas numbers j,, Bronze
Fibonacci numbers B, Signed Fibonacci numbers §,, Signed Pell numbers B,,.

W,(0,1,1,1) =F,;  W,(2,1,1,1) = L,;
W,(0,1,2,1) =P,; W,(2,2,2,1) = Qu;
Wu(0,1,1,2) = J,;  Wau(2,1,1,2) = ju;
W,(0,1,-2,1) =B,; W,(1,1,-1,1) = &,.

Let (a,) and (a") be two real initial sequences. Bahsi et al. [3], defined the symmetric infinite matrix
associated to these sequences by the following recursive formula,

a® = a, aé") =a", (n20),
a = o +ualV, n>1k>1),

where aqu) represents the k-th row and the n-th column entry; i.e.,

{Z;k_l)
lu
El(k) l> Elg,lk)

The entry ag,k) can be expressed in terms of the first row’s and the first column’s as follows, see [3],

a n+k—i-1 S n+k—j—1
"k _ n, k—i —hT ] n—j. k )T ()
a,’ = E v"'u ( 01 )a0+;:1v u( -1 )aj. 4)

i=1

The Horadam’s numbers have numerous interesting properties and applications in various areas of
mathematics and science (see [13] for a survey). In recent years, many authors have studied the properties
of the circulant matrix and r-circulant matrix with Horadam’s numbers and the generalized Horadam
numbers. For example, Alptekin et al. [1] have established the spectral norms and eigenvalues of circulant
matrices with the Horadam’s numbers. Bozkurta and Tam gave explicit determinant and inverse of the
r-circulant matrices involving Horadam’s numbers in [6]. Yazlid and Taskara [18-20] have introduced
the generalized k-Horadam numbers and they established the determinant, lower and upper bounds for
the spectral norms of r-circulant matrices with these numbers. Further, the authors in [17] proposed a
construction of Horadam’s numbers in terms of determinant of tridiagonal matrices.

The paper is organized as follows: In section 2, we introduce the incomplete Horadam and hyper-
Horadam sequences and we give some properties. In section 3, we study some combinatorial identities
of these two generalizations and we establish that Horadam’s numbers can be expressed in terms of the
incomplete Horadam and hyper-Horadam numbers. In the last section, we give a lower and upper bounds
for the spectral norm of the r-circulant matrix with incomplete Horadam and hyper-Horadam numbers,
also we derive a new lower and upper bounds for the spectral norm of r-circulant matrix with Horadam’s
numbers. In the sequel, we give some bounds related to spectral norm of Hadamard product and Kronecker
product of these matrices.
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2. Definitions and properties

Let a,b,p and g be integers, define the incomplete Horadam numbers (W, (k; 4, b, p, 7)), denoted briefly
(Wu(k)), by

k . . K
Wk =Y %(” ]_ ])qu"—zf—l, 0<k<ln/2). 5)
=0

The sequence (W, (k)) satisfy the following recurrence relation,
Wi(k) = Pwn—l(k) + an—z(k -1). (6)

From recurrence relation (6), we can easily calculate the first few terms of the sequence (W,(k)).

nfk | 0 1 2 3

1 b

2 bp bp +aq

3 bp?>  bp? +pga+bq

4 bp>  bp® +pqa+2bpg  bpd +pPqa+ 2bpg + ¢Pa

5 bp*  bp* +p3qa+3bp?q  bp* + p3qa + 3bp>q + 2pqPa + bg?

6 bp>  PPb+piqa+4qp3b  pOb+piga+4qp°b + 3p2¢%a + 3pg’b  pPb+ ptga + Aqp3b + 3p*qPa
+3pg%b + ¢*a

Table 1: The first values of the incomplete Horadam sequence.

The connection between ordinary and incomplete Horadam numbers is
Wuk) =0 0<n<2k+1, Woy(k) = War1, Wasa(k) = Worso.
Remark 2.1. Some specializations

o For Wy(k;1,1,0,1) = F,(k), we get the incomplete Fibonacci numbers, [11].

For Wy(k;1,1,2,1) = Ly,(k), we have the incomplete Lucas numbers, [11].

For Wy(k;2,1,0,1) = P, (k), we obtained the incomplete Pell numbers.

For Wy, (k;2,1,2,2) = Qy(k), we obtained the incomplete Pell-Lucas numbers.

For Wy(k; 1,2,0,1) = J,(k), we have the incomplete Jacobsthal numbers.

For W,(k;1,2,2,1) = j,(k), we have the incomplete Jacobsthal-Lucas numbers.

Relation (6) can be transformed into non homogenous recurrence relation as follows,

Proposition 2.2. For any n > 2k + 3, we have

(n—2k —2)b + apk (n —k- 3)qk+1p"_2k_3

W (k) = an,1 (k) + qwn72(k) - n—-2k-2 k

Proof. It follows from Relations (5) and (6). O

To establish the generating function of the incomplete Horadam numbers we need the following lemma,
see [15].
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Lemma 2.3. Let (s,) be a sequence of complex numbers satisfying the non-homogeneous second order recurrence
relation

Sy = PSu—1 +qSu—2 + 1y, (M >1),
where (ry) is a sequence of complex numbers. Then the generating function U(t) of (s,) is given by

G(f) +Sg+710+ (51 —PSo — 1’1)
1-—pt—qt?

u) = ,
where G(t) is the generating function of (r,).
Theorem 2.4. The generating function of the incomplete Horadam numbers W, (k) is

. a+—ap)t gt? ak
an(k)t C 1-pt—gt? [1_(1—pt) ' ®

n>0

Proof. Let k be a fixed positive integer, and
so = War1(k), s1.= Wasa(k), su = Warrnaa (k).

From the non homogenous recurrence relation (7), we have

n—1b+apk(n+k-2
S = PWonsok () + qWossop 1 (K) — u(n

k+1,,n-2
n-1 k )q P

also

-1)b k -
rg=r1=0ar1d Tn=—u(n+k 2

k+1,.n-2
) )q P

n-—1
The generating function of (r,) is

~@+ (0~ ap)(g) !

O = =1 pn

Hence, from Lemma 2.3, we get the generating function of (s,). O

Proposition 2.5. We have,

a+(b—ap)x

W, (k)x"y* = .
,;0 e = o = pr -y

Now, we define the hyper-Horadam numbers of order k, (W,(f) (p,q,4,b)), denoted briefly (W,ik)).

Definition 2.6. For any n > 0 and k > 1, the hyper-Horadam numbers W are defined by the recurrence relation:
k k k-
W = pW® +qwi?, (10)

with initial conditions W,(f)) =W, and W(()k) = aqk, where W, is n-th Horadam’s numbers.
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The relation (10) can be written as follows :

WP =Y qp' WD, 11)
j=0

Letal = W = W, and ag”) = Wé”) = aq". Then the corresponding infinite symmetric matrix is given by
a b aq + bp bp? + bg + pq
ag  apq+bq ap®q + aq* + 2bpq ap>q + 2apq* + 3bp*q + bg?

ag?> 2apg* +bg* 3ap*q® +aq® + 3bpg*  dap>q® + 3apq® + 6bp*q* + bg®
ag® 3apg® +bg®  6ap*q® + aq* + 4bpg®  10ap’q® + 4apg* + 10bp?g® + bg*

We have some classical identities when r = 1,2 and 3.

W = Wy —bp™,
W,(f) = Wpua—(n+ 2)bqp”+1 — aqp”*z,

3 ((n + 2)b + 2ap)(n + 3)g*p"*!
w® = .

n+6 — 2
In the next theorem we give an explicit formula for the hyper-Horadam numbers.

Theorem 2.7. Forany n > 0and k > 1, we have

WY =

W& (n = 2))b + ap(k + j) (n +k—j

itk n—2j-1
L k- j+k )”7 P 12

Proof. We will prove the theorem by double induction. For any m > 0, let S, := {Wi(] i+ j = m}. The sum
(12) clearly holds for the elements of Sy and S;. Now, suppose that the result is true for any elements of
the set S;, with m < n + k + 1, we prove it for the elements of the set S,.x+1. Without lost the generality let
i=n+1and j =k, then from recurrence relation (10), we have

WEy = g
_ Z(n—Zj)b+ap(k+j)n+k—jq].+kpn_2j+2(n+1—2j)b+ap(k+j—l)n+k—jq]-+kpn_2j
= n+k—j j+k = n+k—j j+k-1
ke+jon=2j i _
B qgtip by ) n+k—j iy o n+k—j
= j20n+k—j[((n 2])b+(k+])ap)( K+ )+((n 2j+1)b +(k+7 1)ap)(k+],_l)]
S (k+ jap\(n+k-j—-1 (k+j—1Dap n+k—-j-1
— k+j ,n—=2jf S~ J
27 [(“ n-2j ke )T e ) ke

20

B S B R S e\ W L S R S
27 [b(( ki )T ko1 )T N ke

j20
+k+j—1 n+k—j-1
n=2j+1\ k+j-1
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kej noaj | (MK = n+k-j-1y (n+k-j-1
27 _b( k+j )P\ kejo1 )T\ kg2

>0

ki n—2]'— n+k—j n+k—j
27 b( kv )T Plkaj-1
=0 o

kij i | (M= 2j+ Db(n+k—j+1 k+jap (m+k-j+1
E qp P . t .
| j+1 k+j n+k—j+1 k+j

j=0

Z (n—2j+1)b+ (k+ j)ap(n +k—j+ 1)qk+jp"‘2j
= n+k-j+1 k+j '
Thus, we conclude the proof of Theorem 2.7. O

From Relations (10) and (12), we obtain the following non homogenous recurrence relation,

G w , morapk—Dfn+k=1), 4
W =pW, 2 +qW, 75 + k-1 k—1 |TP (13)
Theorem 2.8. The generating function of the hyper-Horadam numbers is
b—ap)t [ g \"
Y Wi = a+( ap)z ( 9 ) _ ”
1-pt—qgt? \1-pt

n>0

Proof. The result is obtained using Lemma 2.3 and recurrence relation (13). [

3. Some combinatorial identities

In this section, we provide some combinatorial identities involving the incomplete Horadam and hyper-
Horadam numbers.

Proposition 3.1. We have

h

h
Z(])‘W TWoinojlk+h = j) = Wyaan(k+h), 0<k<
=0

n—nh

> (15)

Proof. We proceed by induction on h. It is clearly true for # = 0 and i = 1. Assuming the result holds for
any integer > 1, we show it for i + 1.

h+1
h+1\ ., ; .
Z( - )q’ph FAW,0a itk + )

=\

+1 h
(]) = ]+ n+h ]+1(k+h - ] + 1)

j=0
h+1

h )
+Z(] ) T Wk + = j+ 1)

j=0
h

= PZ( )q] ]Wn+h ]+1(k+h_]+ 1)
j=0

\ o .
+q Z ( j)quh‘] Wien-j(k +h = j)
j=0

= PWn+2h+1(k +h+1)+ an+2h(k +h)
= Wik +h+1),

which completes the proof. [
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Proposition 3.2. For any h > 2k + 2, we have

=

-1
W W09 = Wasnia(k+ 1) = P Wosa k4 1), 1o

Il
o

j
Proof. We proceed by induction on h. It is clearly true for & = 1 and h = 2. Assuming the result holds for
any integer 1 > 1, we show it for i + 1.

h—1

h
2 Wi = p Y a8 Wi 6) + W)
e~ j=0

= p(Wasnar(k+1) = P Wia(k + 1)) + gW,(K)
= (PWasns1(k + 1) + Wy 4 (k) = pP"Wiia (k + 1)
= Wk +1) = p" "W (k + 1).

O

Proposition 3.3. Foranyn >0,r > 1and k > 0, we have

n
Wi =) gy f(” o ] ) 1)W}"’ (17)

0 T
Proof. Let a? = W® and 4! = W* = 445+, then the corresponding infinite matrix is given b
: n = Wy o — "Wy =aq-, P g given by

wo oW W
2

W(k+1) W(k+1) W;k+1) W(k+1)

W(k+2) W}k+2) k2 W(k+2)

2
(k+3) }k+3) (k+3) (k+3)
Wi Wl s

(18)

From Relation (4), we have

( i T — 1= k+i n—j n+r—j-1 (k)

al ZP ( 1 )ﬂq +]Z;P q( L
o (n+r—i - n+r—j—2

_ n_r+k T r n—j—1 A (k)

SR Aa (v 00l (s

i=0
o (n+i o [j+r
n.r - r - k
= ap q*"Z( )+q ZP’( ) we,
i=0 7=0

w k[T = , +r-
_ apq+k( )+qZp](] i ) ;lk)j
n+r-— . (j+r-1
3 Pq( )Wé")w pr(]r_l )Wi"_’,-
j=0

. - <].+1’—1 (k)
= J W™ .
1 Op( r—1 ) n-j
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Hence, from the matrix (18), we obtain
- n—j+r-1
) _ ywgk+r) _ r n—j[ "t~ - (k)
ay _Wn _q Z(;p ( r—1 )W]/
]:

which gives the formula (17). O

As consequence of Proposition 3.3, we have an expression for the hyper-Horadam numbers in terms of
Horadam numbers.

Corollary 3.4. Forany n > 0and k > 1, we have
0 N (T 19
Wi ;yp( N (19)

The following corollary provides the connection between the incomplete Horadam, hyper-Horadam
and Horadam’s numbers.

Proposition 3.5. For any n > 0and k > 1, we have

Wik = Wisai(k = 1) + WP, (20)

4. Spectral norms of r-circulant matrices

In this section, we evaluate the spectral norms of r-circulant matrices with the incomplete Horadam and
the hyper-Horadam numbers, throughout this section we will assume thatp,q,b > 0and a > 0.
A matrix A, = [a;]] € M, 4(C) is called r-circulant matrix if it is of the form

ao ay az 0 4p-2  Ap-
rap—1 ao a0 O0p-3  Ap-2
"p—2 Tap-1 4o -+ Op-4 Gp-3
A, =
rap ras rag - ap ai
raq rap ras -+ rdp—1 ap

The matrix A, is determined by its first row elements 4, a1, ...,a,-1 and by the parameter r, we denote
A, = circy (ag,a1,...,a,-1). for r = 1, the matrix A is called a circulant matrix. The circulant matrix with

eometric progression G = circ, (gp"1,qp"2,. .., q) is the matrix of the form
g prog qpr- .qp q

n-2

ar" qp ; w4
q qp" qp qp
G=| ¢ i o
qp”j QIP'H; cegpt! qp”’f
qp" qp" - g qp"”

For more information about the circulant matrix with geometric progression one can see [7]. Now, we
give some results which will be used in this section.

LetA = [ui]-] be an m X n matrix, the Frobenius (or Euclidean) norm of matrix A is defined by

m n 2%
Al =Y Y il |

i=1 j=1
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and it’s spectral norm is given by [8],

Al = /max]|Ail,
1<i<n

where A;’s are the eigenvalues of matrix AFA and AF is conjugate transpose of matrix A.
The following inequalities hold [21],

1

—IAllr < I1Allz £ I1AllE, 21

\/ﬁll lle < [lAll2 < M|AllF (21)
and

Al < I1AllF < VallAll. (22)

LetA = [ail-] and B = [bi j] be m X n-matrices. The Hadamard product of A and B is
AoB= (ai]'bi]') .
Lemma 4.1. [14] Let A = [aij] and B = [bij] be m X n-matrices. Then

A 0 Bll, <71 (A)c1 (B),

where r1 (+) and c1 (-) are maximum row length norm and maximum column length norm, respectively

;‘ |Lll.],‘2 and ¢ (B) = {Iglfas); 1 ; |b,-]-|2'

Lemma 4.2. [9] Let A = [aij] and B = [bij] be m X n-matrices. Then

r1 (A) = max
1<i<n

lA o Bll, < [|All2|IBIl2
Lemma4.3. [9]et A = [aij] and B = [b,-]-] be m X n-matrices. Then
A ® Bll, = l|All, lIBIl; -

For any positive integers k and h (h > 2k + 2), let

A= cire, (W), Wis1 (K, -« ., Wieno1 () ;
HY = cire, (Wék), wh, ..., W,(qk_)l);
FY = circ, (W, Wakst, -, Waknon)

be a circulant matrices with incomplete Horadam, hyper-Horadam and Horadam’s numbers, respectively.
. Lk A = (K
We define the matrices Ai 1), Hik) and Fi ) by

Aik’h) = Aﬁk’h) o G;
Ijlik) = Hgk) oG;
Ff.k) = Fﬁk) oG;

. . ~ (kh) =(k .
respectively. The matrices Aik ) Hik) and Fi ) correspond to Hadamard product of matrices AY HY and

F and circulant matrix with geometric progression G. The first theorem concerns the evaluation of the
spectral norm of the circulant matrix with the incomplete Horadam numbers.
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Theorem 4.4. For any h > 2k + 2, let Aﬁ""” be a circulant matrix. Then we have
~(k _
ATl = Wina (k + 1) = p" Wi (k + 1), (23)

. . k) o kh) . .
Proof. Since the circulant matrix A(1 Vis normal, the spectral norm of the matrix A(1 ) is equal to its spectral

. K kh) . . . . L o
radius. Furthermore, Ag ) is irreducible and its entries are nonnegative, its spectral radius is the same as
its Perron root. Let u be a vector with all components 1. Then

n-=1
A, - {2 qpmfwmj(k)]u.
=0

As Z;’;& qp" Wi (k) is an eigenvalue of Aﬁk”“ associated with u, which is necessarily the Perron root

of A(lk'h). Hence from relation (16), we have
~ Gk -
185"l = Wi (6 + 1) = " Wik + 1),

O

From the relation (22) and Theorem 4.4 we deduce the upper and lower bounds for the sum of squares
of incomplete Horadam numbers.

Corollary 4.5. For any h > 2k + 2, we have

n—1
1 . 2
%(Whmn(k +1) =" Wik + 1)) < J (qp"—f—1Wh+]-(k))
0

=
< Winsa(k+1) = p" Wi (k + 1). (24)

Theorem 4.6. For any n > 1, the spectral norm of the circulant matrix H(lk) is

Ak
11l = Wi, (25)
Proof. The result is obtained in the same way to the Theorem 4.4. [

From Theorem 4.6, we deduce the upper and lower bourns of sum of squares of hyper-Horadam numbers

n—1
Z pqn—f—lw;"> < VWb, (26)
j=0

Corollary 4.7. Let 15(1k) be a circulant matrix, then we have the following equality
~(k -
1Yl = Watioa () = p"~ Wa + WE, (27)
Proof. The result is obtained from relations (20), (23) and (25). O

Next, we give upper and lower bounds for the spectral norm of r-circulant matrix with the incomplete
Horadam numbers.

Theorem 4.8. For h > 2k + 2, let Aik’h) be a r-circulant matrix.
(i) For|r| = 1, we have
1

7o Wi+ 1) =" Wiak + 1) < Al < Vo =D+ T (Wisnsa (k + 1) = p"  Wiaa (k + 1))
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(ii) For |r| < 1, we have

N

\/_

Proof. From the definition of the matrix Aik’h), we have

(Wienaa (k + 1) = p" Wi (e + 1) < 1Al < Vit (Wianaa (k + 1) = p" Wi (k +1)).

n—-1
Al = J}:(n + 2 = D) (g Wi ()

=0

(i) Since || > 1 and using the inequality (24), we have

Juy

~ (ko n- ) 2 —
IA; )quJ 1 (P T Wi () 2 Wiaea (k4 1) = p" Wi (k + 1).
j

I
o

From (21), we obtain

1 -
7 Wi+ 1) = P Wi (k + 1)) < A",

Now, we define the matrices C and D as follows

1 1 ‘.- 1 1
r 1 .- 1 1
C=|: : : : P
r r 1 1
r r r 1
ap" T Wik)  gp" Wi (k) - gpWiina () qWiinoa (k)
GWiina () gp" " Wik) - qpPWign—s(k)  gpWisna(k)
D= : : : :
ap"Wisa(k)  qp"*Wis(k) -+ gp" "Wi(k)  qp" Wi (k)
ap" Wi (k) qp" 3 Wiia(k) -+ qWiinaa(k)  gp" Wy (k)

such that Aik'h) = Co D, then we have

<<n

11(C) = max JDC”'Z = JZI%IZ = -1+ 1,
j=1 j=1

and

H

{E‘%JZMUP JZ'%P J (Wi )

j

I\
o

Using Lemma 4.1 and (24), we get

~ (k,h n—
A < V1= DI+ 1 (Wisnsa(k +1) = p" Wik + D).
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(ii) Since [r] <1, we have

n—1
1A = \ Y (4 2 = 1) (97 Wi (00)
=0
n—1
> \ 1’l|1’|2 Z (qp”_j_l Wh+j(k))2
j=0

> 1| (Whansr(k +1) = Wipa(k+ 1))
From Lemma 4.1 and (21), we obtain

NG || n-1
A1 2 (Whensr (e +1) = p" Wi (k + 1)) .
Now, we consider the matrices C and D,
1 1 1 1
r 1 1 1
C=|: : . : v
r r 1 1
r r r 1
" Wi (k) gp" Wi (k) - gpWihaeno (k) qWiino1 (k)
Wi () gp" " Wik) - qpPWignos(k)  gpWisn_a(k)
D= : : : :
ap"Wisa(k)  qp"*Wiis(k) - gp" 'Wi(k)  qp" Wi (k)
ap" Wi (k) qp"Wiia(k) -+ qWiinaa(k)  gp" Wy (k)
Then,

=

n
Ici'|2 = |Cn'|2 = \/7_1/
] ]
]

1

r1(C) = max J
1<i<n n
j

=1

and

n n n-1
c(D) = max le Idij|* = JZ_} ldujl? = Jzo(qpn_j_lwhﬂ)z'
= = =

From Lemma 4.1 and (24), we have

~ (kh e
1Al < Vi (Wit + 1) = " Wik + 1)),
which completes the proof. [

Theorem 4.9. For Hl(rk) be a r-circulant matrix. Then
(i) For |r| = 1, we have

1 ety _ mg® (k+1)
A AP, < Vo - D+ WD,

5048

(28)
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(ii) For |r| < 1, we have

([ (k) k
7 ED <P, < Vawk D, (29)

Proof. The Theorem is obtained by similar way. [

In the following result we give a upper and lower bounds for the spectral norm of a r-circulant matrix
with Horadam’s numbers in terms of incomplete Horadam and hyper-Horadam numbers.

Theorem 4.10. Fork > 1, let £\ = (qp" Wat, qp" *Wat1, ..., (Waken—1 ) be a r-circulant matrix.
(i) For|r| > 1, we have

1

Vn

(ii) For |r| < 1, we have

1n— ik -
(WD W1 () = " Wakir) < IE s < ir = DI+ T(WED + Waa (6) = p"~ W)

i - k -
u (W,(fll) + Wokyni1 (k) = p" 1W2k+1) <IIE”), < \/Z(W,(qkfl)+ Waksnsa (k) = p" 1Wzk+1)-

Vi 1

Proof. The matrix Fik) is of the form

gp" " War  qp"Warer o qpWaksn—a  qWakin—
rqWakenar qp"" W - qp*Wokenes  qpWaken—
Bl=| A z
rqp" " Woksa  1qp" Wapas -+ qp" Wa  qp" Wagsn
rqp" " Wasr  1qp" " Waso -+ 1qWaeno1  qp" Wiy

Then, we have

n-1
~ . i 2
IE1 = JZW + 1P = 1) (ap" T Wary)

j=0

(i) Since |r] = 1 and by (20), we have

®) 'S
I llr >
;

from the inequalities (26) and (24),

iy
iy

n—

n (‘W”‘l‘j W2k+j)2 - J " (WEk) + Waerj(k = 1))
j

2
7

1l
(e}
1l
o

=
_

=(k 2 -
IE e > J n (WP + Wajk = D) 2 WIED + Wk (k+ 1) = p" W,
j

1l
fe=}

using (21), we obtain
1
—=(
Vn

_ ~(k
WD & Wo i (k + 1) = p" Wagr) < B
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On the other hand, let the matrices C and D be defined by

1 1 e 1 1
r 1 . 1 1
c=|: : ' ’
r r 1 1
r r r 1
" Wa  gp" Warsr - GpWarin2  GWaksna
Wakent P Wae - qp*Wairnss qpWakenoa
D= : : : :
P War qp" Wars -+ qp" W gp" 2 Wai
" W gp" " Warz -+ qWakn qp"" W

such that Fik) = C o D. Thus, we obtain

n n
= 2 = 12 = _ 2
r1(C) {Q@J E 1 lcijl J E 1 lcujl> = V(= Dr* +1,
= j=

and

n n n-1
c1(D) = max JZ{ ldij|* = sz lewji> = Jz;‘(qpn_l_jwﬂﬂ)z'
= = =

using the inequalities (26) and (24), we have

j=0 j=0

and from Lemma 4.1, we get

IEPI < V=D + T(WED + Waia (6) = p* Waeaa ().

(ii) Since |[r| <1, we have

n-1
Il = (1-+ (1 = 1) (qp" 1 W)
,\ ]

=0
n—-1 2
> nlr? Z (qp”fl*jwzkﬂ)
A=
>

I (WD + Waknan (6) = p"~ W (6))
From (21), we obtain

~ (K 7| _
||F§ )||2 2 % (Wf,kff) + Wakgnia (k) = p" 1WZkH(k))'

On the other hand, we have

n—-1 n-1
. 2
JZ(QP”‘l‘JWzH )2 = JZ (ng) + Wk j(k - 1)) < WS+ Wornir (K) = p" " W1 (k).
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n n
() =max [ Y leif = ||}l = Vi
1<i<n = =

and

n n n-1
¢1(D) = max Zl‘|dl-]-|2= ;|cnf|2= Z:)‘(qpn_l_jWZkﬂ)z'
i= = =

Using the inequality [E”[l, < r1(C)c1 (D), we obtain

= (k e
IEP 1l < Vi (WED 4 Wataa (0) = " W ().

Thus, the proof is completed. [J

Corollary 4.11. For h > 2k + 2, the spectral norm of the Hadamard product of Aik’h) and Iflik) is given by
(i) For |r| = 1, we have

kh k) _
A 0 Ao < (1 = DI + DWED (Wiaa (ke +1) = p" Wi (k + 1))
(ii) For |r| <1, we have

A o Bl < NGr = DWED (Wt + 1) = p Wik + 1).

Corollary 4.12. For h > 2k + 2, the spectral norm of the Kronecker product of Aik’h) and ﬁ(rk) is given by

(i) For |r| = 1, we have
(k+1)

L Wik + 1) = p WG+ 1) < IA @ Pl < (01— DR + WY

(Whensa (e +1) = p" Wik + D).

(ii) For |r| < 1, we have
| |2w(k+1)

T (W ) = p Wik + 1) < AR @ B < G- DW)
(Wi (k +1) = p" Wi (k +1)).
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