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Abstract. In this paper we present a modification of the Phillips operators which reproduces the functions
eat, ebt, a, b ∈ R. We study the moments and basic approximation properties for these new operators. For
this purpose we adapt several already known result to the particular features of the new sequence that we
propose here.

1. Introduction

The Phillips operators [14] are defined by

Sn
(

f , x
)

= n
∞∑

k=1

sn,k(x)

∞∫
0

sn,k−1(t) f (t) dt + e−nx f (0),

where

sn,k(x) = e−nx (nx)k

k!
.

These operators preserve constant as well as linear functions. Some approximation results for the
Phillips operators were discussed in [9, 10, 12, 17, 18]. Inspired by the work of Boyanov and Veselinov
[6], and Holhoş [13], recently Acar et al. [3] modified the well known Szász-Mirakyan operators so as
to preserve the function e2at (see also [5] for an analogous modification of Baskakov-Szász-Stancu type
operators) and Acar et al. [2] introduced the corresponding version of the Szász-Mirakyan operators with
eat and e2at as preserved functions. In the same way, Gupta and Tachev [11] considered also Phillips type
operators fixing e−t and eAt,A ∈ R, but not both together. Motivated by this last recent work but also by the
rest of the cited ones, we propose here a sequence that summarizes many of the cases that, as mentioned,
several authors studied in different papers. For this purpose, we define a modification of the Phillips
operators so as to fix both eat and ebt for any two real numbers, different or not, a, b ∈ R, and we analyze
several aspects of its approximation behavior.
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V. Gupta, A.-J. López-Moreno / Filomat 32:14 (2018), 5071–5082 5072

Let us first construct the new sequence. In order to preserve the functions eat and ebt, our starting point is
the general sequence

Pn
(

f , x
)

= n
∞∑

k=1

e−nαn(x)
(
nβn (x)

)k

k!

∞∫
0

e−nt (nt)k−1

(k − 1)!
f (t) dt + e−nαn(x) f (0), (1)

x ∈ [0,∞). And now we will try to find suitable values for αn(x) and βn(x) to reach the desired preservation
behavior. By simple computation, we get

eax = e−nαn(x)en2βn(x)/(n−a) = en
[ nβn(x)

n−a −αn(x)
]

and

ebx = e−nαn(x)en2βn(x)/(n−b) = en
[ nβn (x)

n−b −αn(x)
]
.

Solving these two equations,

αn (x) =
(n − (a + b))

n
x, βn (x) =

(n − a)(n − b)
n2 x.

Now, substituting these values in (1), our modified Phillips operators take the following form

Pn
(

f , x
)

= n
∞∑

k=1

e−(n−(a+b))x

(
(n−a)(n−b)x

n

)k

k!

∫
∞

0
e−nt (nt)k−1

(k − 1)!
f (t) dt + e−(n−(a+b))x f (0), x ∈ [0,∞). (2)

It is obvious that these new operators are linear and positive whenever n > a, b so that we will assume
this condition from now on. Moreover, they preserve the functions eat and ebt, but due to that fact the
preservation of constants will not be possible unless any of the parameters a or b vanishes.

We would like to stress the announced fact that this sequence include several interesting situations
as particular cases. The Korovkin theorem for linear positive operators establishes that the number of
independent preserved functions is two (the space of preserved functions has dimension two) but depending
on the parameters a, b these functions can vary. In this way:

1. for a = λ and b = 2λ the space of preserved functions is spanned by ϕ = eλt and ϕ2 = e2λt and,
therefore, it is 〈ϕ,ϕ2

〉 in the same line that we find in [2];
2. for a , 0 and b = 0 we have constants preservation and the preserved space is 〈1, eat

〉 (obviously for
a = −1, it is 〈1, e−t

〉) and it is straightforward that we obtain both of the sequences of operators defined
in [11] as a particular case;

3. for a = b the space is 〈eat, eatt〉 as we will see in Lemma 2.3;
4. and, finally, for a = b = 0 we have 〈1, t〉 and we recover the Phillips sequence inside our new family

of operators.

Therefore, the explicit expressions for moments and mixed exponential/polynomial moments, and the
convergence results in different spaces that we obtain in this work are valid for many examples that can
be found in the more recent literature and offer in this way a more deep and unified perspective of their
approximation properties.

Notice that throughout the paper, t denotes the identity map t : [0,∞) 3 x 7→ t(x) = x ∈ [0,∞) meanwhile
x is a general fixed point of [0,∞). Therefore we will use t to write functional expressions and x for pointwise
formulas. Moreover, for any operator L : E1 ⊆ R[0,∞)

→ E2 ⊆ R[0,∞) and f ∈ E1, L( f ) or L f stand for the
image function for f and L( f , x) is the evaluation of such a function at x.
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2. Moments and auxiliary results

From the definition of Pn and Sn it is immediate that both sequences of operators are connected by
means of the identity

Pn( f , x) = e
abx
n Sn( f , βx), (3)

where for short we denote β = βn =
(n−a)(n−b)

n2 . In [12] Heilmann and Tachev obtain several results for the
Phillips operators that can be transferred to Pn through identity (3). Thus, from [12, Lemma 2.1], the relation
yields the following lemma.

Lemma 2.1. For any r ∈N0 = {0, 1, 2, . . .},

Pn(tr) = e
abt
n

r∑
j=0

(
r − 1
j − 1

)
r!
j!

n j−r (βt
) j .

Here and from now on we adopt the usual convention that
(i

i
)

= 1 for i ∈ Z and
(i

j
)

= 0 for any i, j ∈ Z
with i < j. In particular, it is straightforward that

Pn(1) = e
abt
n , Pn(t) = e

abt
n βt, Pn(t2) = e

abt
n (

2βt
n

+ β2t2).

The same result of [12] also allows us to obtain the following expression for central moments.

Lemma 2.2. For m ∈N0,

µn,m(x) = e
abx
n

[ m
2 ]∑

j=0

n j−m(βx) j
m∑
ν=2 j

(
m
ν

)(
ν − j − 1

j − 1

)
ν!
j!

(
n(β − 1)x

)m−ν ,

where we denote µn,m(x) = Pn((t − x)m, x).

Proof. From (3) we have that

µn,m(x) = e
abx
n Sn((t − x)m, βx) = e

abx
n Sn((t − βx + (β − 1)x)m, βx)

and now binomial’s formula and [12, Lemma 2.1] give us the result after properly arranging the order of
the sums.

This lemma yields the formulae

µn,0(x) =e
abx
n , µn,1(x) = e

abx
n (β − 1)x, µn,2(x) = e

abx
n

(
(β − 1)2x2 +

2βx
n

)
,

µn,3(x) =e
abx
n

(
(β − 1)3x3 +

6β(β − 1)x2

n
+

6βx
n2

)
,

µn,4(x) =e
abx
n

(
(β − 1)4x4 +

12(β − 1)2βx3

n
+

24(β − 1)βx2 + 12β2x2

n2 +
24βx

n3

)
.

(4)

Since limn→∞ n(β − 1) = −(a + b), from the above lemma is is straightforward that µn,m(x) = O
(
n−[

m+1
2 ]

)
as it

is usual for all classical sequences of linear positive operators and, moreover,

lim
n→∞

n[ m+1
2 ]µn,m(x) =


m!

( m
2 )!

x
m
2 , if m is even,

m!
( m−1

2 )!
x

m−1
2

(
−(a + b)x + m−1

2

)
, if m is odd.

(5)
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In particular,

lim
n→∞

µn,0(x) = 1, lim
n→∞

nµn,1(x) = −(a + b)x, lim
n→∞

nµn,2(x) = 2x. (6)

In this manner we see that it is possible to find suitable formulas for polynomial monomials and moments
but let us go further and study closed expressions for non-polynomial functions and moments of the type
ecttr and ect(t − x)m.

Lemma 2.3. For any c ∈ R, r ∈N0 and n > c, we have

Pn

(
ecttr

)
= e

c(n−a−b)+ab
n−c t

r∑
j=0

r!
j!

(
r − 1
j − 1

)
(n − a) j(n − b) j

(n − c) j+r t j.

Proof. Since e(θ+c)t =
∑
∞

r=0 ecttr θr

r! we can use the idea of the moments generating functions to deduce that
Pn

(
ecttr) = dr

dθr |θ=0Pn(e(θ+c)t). It is a simple computation that

Pn(eθt) = e
θ(n−a−b)+ab

n−θ t (7)

and from here it is also immediate that

Pn(e(θ+c)t) = e
c(n−a−b)+ab

n−c te
(n−a)(n−b)

n−c
θ

n−c−θ t.

Now if we combine the expansion for the exponential function ez =
∑
∞

j=0 z j/ j! with
(

z
1−z

) j
=

∑
∞

r= j
(r−1

j−1
)
zr and

we rearrange the order of the sums we obtain

e
(n−a)(n−b)

n−c
θ

n−c−θ t =

∞∑
r=0

 r∑
j=0

1
j!

(
r − 1
j − 1

)
(n − a) j(n − b) j

(n − c) j+r t j

θr

from which we deduce the result by differentiating with respect to θ as we indicated before.

It is clear that Lemma 2.2 can be also deduced from Lemma 2.3.
In particular, for c = a we have

Pn

(
eattr

)
= eat

r∑
j=0

r!
j!

(
r − 1
j − 1

)
(n − b) j

(n − a)r t j,

which proves the fact announced by item (3) on page 5072, namely Pn(eatt) = eatt for a = b. The analogous
formula for c = b also holds.

From this last lemma it is immediate that

Pn

(
ect

)
= e

c(n−a−b)+ab
n−c t

Pn

(
ectt

)
= e

c(n−a−b)+ab
n−c t (n − a)(n − b)

(n − c)2 t,

Pn

(
t2ect

)
= e

c(n−a−b)+ab
n−c t

( (n − a)(n − b)
(n − c)2

)2

t2 +
2(n − a)(n − b)

(n − c)3 t

 ,
from which we also conclude that

Pn

(
ect(t − x)2, x

)
= e

c(n−a−b)+ab
n−c x

[
2(n − a)(n − b)

(n − c)3 x +

(
c2 + n(a + b − 2c) − ab

)2

(n − c)4 x2

]
. (8)

Furthermore, (8) means that Pn

(
ect(t − x)2, x

)
= O(n−1) for all x ∈ [0,∞). Actually we can extend this last

property to check that these kind of moments also perform the usual behavior for polynomial moments in
the sense that we show in the following result.
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Corollary 2.4. For m ∈N0,

Pn

(
ect(t − x)m, x

)
= ecx(1 + xm)Ox(n−[

m+1
2 ]).

Furthermore, for a ≤ c ≤ b the infinitesimal expression is uniform on x ∈ [0,∞).

Proof. From Lemma 2.3 it is clear that we can write

Pn(ect(t − x)m, x) = e
c(n−a−b)+ab

n−c x
m∑

i=0

qi(x)(n − c)−i (9)

for certain polynomials qi with degree m. Since Pn are linear positive operators, it a simple matter that a
Schwartz type identity is satisfied and for any f , 1 : [0,∞)→ R in the domain of Pn, we have that

∣∣∣Pn( f · 1)
∣∣∣ ≤ (

Pn( f 2)
) 1

2
(
Pn(12)

) 1
2 .

Therefore, if we take f = ect, 1 = (t − x)m, and we use Lemma 2.2 and (7), with θ = 2c, it follows that

∣∣∣Pn(ect(t − x)m, x)
∣∣∣ ≤ (

e
2c(n−a−b)+ab

n−2c x
) 1

2

Ox(n
m
2 ) = Ox(n

m
2 ).

But then, in (9), we have that q0(x) = · · · = q[ m−1
2 ](x) = 0 and we finally obtain the result if we take into

account that we can write

e
c(n−a−b)+ab

n−c x = ecxe
c(c−a−b)+ab

n−c x.

Moreover, for a ≤ c ≤ b, in the last expression, the coefficient in the exponent of the second exponential
satisfies c(c − a − b) + ab ≤ 0 and therefore such an exponential is bounded on [0,∞) so that in this case the
infinitesimal expression of the lemma is uniform on [0,∞).

We finish this section including a technical result that will be useful in the rest of the paper.

Lemma 2.5. Given λ ∈ R, c > 0 and a0 < c, for N > 0 big enough there exists a constant K ≥ 1 such that∥∥∥∥∥∥ ea0t
− e(a0+ λ

N )t

ect

∥∥∥∥∥∥
[0,∞)

≤
K
e

|λ|
(c − a0)N − λ

.

Moreover, for λ ≥ 0 we can take K = 1.

Proof. It is not difficult to check that f = ea0 t
−e(a0+ λ

N )t

ect fulfills f (0) = 0 and, for N big enough, limx→∞ f (x) = 0.
Therefore, since f is not constant (for λ , 0), the function has to have a relative extreme in (0,∞) which, as
a matter of fact, is unique and we can easily compute as x0 = N

λ log
(

(c−a0)N
(c−a0)N−λ

)
. Then

‖ f ‖[0,∞) =
∣∣∣ f (x0)

∣∣∣ =
|λ|

(c − a0)N − λ

(
1 −

λ
(c − a0)N

) N
λ (c−a0)

.

But the last factor is equal to 1( λ
(c−a0)N ) where 1 = (1 − t)

1
t which is a continuos decreasing function with

limx→0 1(x) = 1
e so that we can easily finish the proof.
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3. Convergence analysis

In this section we will briefly study the approximation properties of the operators Pn calling attention to
the fact that they present important differences depending on the values of the parameters a and b. First we
analyze the uniform convergence on [0,∞) that cannot be guaranteed for all values of a, b. In the general
situation, even in those cases when the uniform convergence fails, we can study weighted approximation
properties and therefore that is our second analysis.

Let us denote by C∗[0,∞) the subspace of real-valued continuous functions which possess finite limit at
infinity endowed with the uniform norm. The uniform convergence on noncompact domains for sequences
of linear positive operators has been studied in several papers [6, 13]. In particular in [13] Holhoş uses
the classical argument of Shisha and Mond [15] to obtain a quantitative estimation in terms of moduli
of continuity. A rapid analysis shows that we can adapt the idea of Holhoş to be valid not only for test
functions e−t, e−2t, as it appears in [13], but also, in general, for aAt, e2At, with any A < 0. For this purpose
we consider the modulus of continuity

ω∗( f , δ) = sup
x1,x2≥0

|eAx1−eAx2 |≤δ

∣∣∣ f (x1) − f (x2)
∣∣∣

and then Theorem 2.1 of [13] can be rewritten as we show below.

Theorem A ([13, Theorem 2.1]). Given A < 0, if Ln : C∗[0,∞)→ C∗[0,∞) is a sequence of linear positive operators
with

||Ln(1) − 1||[0,∞) = αn, ||Ln(eAt) − eAt
||[0,∞) = βn, ||Ln(e2At) − e2At

||[0,∞) = γn,

where αn, βn and γn tend to zero as n goes to infinity, then

||Ln f − f ||[0,∞) ≤ αn|| f ||[0,∞) + (2 + αn)ω∗( f ,
√
αn + 2βn + γn),

for every function f ∈ C∗[0,∞).

With the aid of the result by Holhoş, we study the uniform convergence of Pn on C∗[0,∞).

Theorem 3.1.

1. For ab , 0, Pn is not an approximation method in
(
C∗[0,∞), ‖·‖[0,∞)

)
.

2. For b = 0, we have that

||Pn f − f ||[0,∞) ≤ 2ω∗( f ,

√
ca

n − a
),

for certain constant ca that for a < 0 can be taken as ca = |a| and for a ≥ 0 as ca = 3a + 4.

Proof. 1. From Lemma 1 we know that Pn(1) = e
abt
n and therefore, for ab , 0,

‖Pn(1) − 1‖[0,∞) = ‖e
abt
n − 1‖[0,∞) =

{
+∞, if ab > 0,
1, if ab < 0,

and we do not have uniform convergence for the constant function 1 ∈ C∗[0,∞).

2. In this case, Pn(1) = 1 and then, in Theorem A, αn = 0. On the other hand, from (7) we also have that

Pn(eθt) = e
θ(n−a−b)+ab

n−θ t = e
(
θ+

θ2
−θ(a+b)+ab

n−θ

)
t
. (10)
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If a < 0, in Theorem A we can take A = a and then βn = ‖Pn(eat) − eat
‖[0,∞) = 0. To compute γn, from (10) we

have

Pn(e2at) = e
(
2a+ 2a2

−ab
n−2a

)
t

and now, in Lemma 2.5 we take c = 0, a0 = 2a, λ = 2a2
− ab and N = n − 2a to obtain

γn = ‖Pn(e2at) − e2at
‖[0,∞) ≤

1
e
|a|

n − a
.

If a ≥ 0, we choose A = −1 and, again, in a similar way, combining Lemma 2.5 with (10),

βn = ‖Pn(e−t) − e−t
‖[0,∞) ≤

1
e

a + 1
n − a

, γn = ‖Pn(e−2t) − e−2t
‖[0,∞) ≤

1
e

a + 2
n − a

.

This last result shows that not always the operators Pn present convergence for the uniform norm. How-
ever the situation is different if we consider weighted approximation. For an increasing weight function
ρ : [0,∞)→ R, such that limx→∞ ρ(x) = +∞ and ρ(0) > 0, we consider the spaces Bρ([0,∞)) = { f : [0,∞)→
R : | f (x)| ≤M fρ(x), x ≥ 0}, Cρ([0,∞)) = C([0,∞))

⋂
Bρ([0,∞)) and Ck

ρ([0,∞)) = { f ∈ Cρ([0,∞)) : limx→∞
f (x)
ρ(x) =

k f exists and it is finite} endowed with the norm ‖ f ‖ρ = supx∈[0,∞)
| f (x)|
ρ(x) (see [2]). The convergence of se-

quences of linear positive operators for this last norm in these spaces of functions has been analyzed in
several papers. In [7] Bustamante et al. offer us a nice survey on the topic that, moreover, includes new
results and many interesting comments. In particular in [7, §4.] the convergence for ‖·‖ρ in Ck

ρ([0,∞)) is
studied by means of several theorems that allow to determine whether a set of functions {γ0, γ1, γ2} is a
Korovkin system for (Ck

ρ([0,∞)), ‖·‖ρ); that is to say, the convergence for γ0, γ1, γ2 implies the convergence
for all function in Ck

ρ([0,∞)). Since, many of the classical linear positive operators preserve linear functions,
a typical choice for the first two functions of a Korovkin system is γ0 = 1 and γ1 = t; in [7, Theorem 4.5] the
functions γ2 that along with 1, t form a Korovkin system are characterized.

Theorem B ([7, Theorem 4.5]). Consider a weight function ρ such that
limx→∞ 1/ρ(x) = limx→∞ x/ρ(x) = 0. Given the function γ2 ∈ Ck

ρ([0,∞)), the following assertions are equiva-
lent:

(i) {1, t, γ2} is a Korovkin system for (Ck
ρ([0,∞)), ‖·‖ρ).

(ii) {1, t, γ2} is a Chebyshev systems on [0,∞) (that is to say, on every finite subinterval of [0,∞)) and

lim
x→∞

γ2(x)/ρ(x) , 0.

Notice that the notation for the weight function in [7] is slightly different from the one that we use here
since Bustamante considers the inverse weights but the translation is simple and direct. By means of this
last result we can prove the following theorem for our operators.

Theorem 3.2. If a ≤ b and b > 0, for any r ∈N0 and ρr = ebt(1 + tr) we have that

‖Pn f − f ‖ρr → 0

for all f ∈ Ck
ρr

([0,∞)).

Proof. From Lemma 2.1 we know the explicit expression for both Pn(1) and Pn(t). Then, on the one hand, in
Lemma 2.5 we take a0 = 0, c = b, λ = ab and N = n to obtain

‖Pn(1) − 1‖ρ0 =

∥∥∥∥∥∥1 − e
ab
n t

2ebt

∥∥∥∥∥∥
[0,∞)

≤
1
2

K
e
|a|

n − a
.
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On the other hand, as b > 0, we can take εwith 0 < ε < b and applying again Lemma 2.5, now with c = b−ε,
the definition of β of page 5073 and a simple bound for t

eεt , for n big enough we obtain

‖Pn(t) − t‖ρ0 =

∥∥∥∥∥∥∥ t − e
ab
n tβt

2ebt

∥∥∥∥∥∥∥
[0,∞)

≤
1
2

∥∥∥∥∥∥
(

1 − e
ab
n t

e(b−ε)t
β +

1 − β
e(b−ε)t

)
t

eεt

∥∥∥∥∥∥
[0,∞)

≤
1
2

(
K
e

|ab|
(b − ε)n − ab

(n − a)(n − b)
n2 +

(a + b)n − ab
n2

)
1
εe
.

Accordingly, in the conditions of the theorem we always have convergence for 1 and t in the weighted norm
‖·‖ρ0 . Of course, it is evident that we also have convergence for both functions for ‖·‖ρr for any r = 1, 2, . . .

Let us study now the convergence for ρr with ‖·‖ρr . From Lemma 2.3 it is not difficult to deduce that

Pn(ρr) − ρr

ρr
=

∑r−1
j=0

r!
j!
(r−1

j−1
) (n−a) j

(n−b)r t j +
((

n−a
n−b

)r
− 1

)
tr

1 + tr

and then we conclude that for certain K1 > 0

‖Pn(ρr) − ρr‖ρr ≤
K1

n

and again we have convergence (as Pn(ebt) = ebt, the case r = 0 was anyway obvious).
Finally since the wronskian

W(1, t, ρr) = ebt
(
r(r − 1)tr−2 + 2brtr−1 + b2(1 + tr)

)
is non vanishing for all cases, we have that, for r ∈ N0, {1, t, ρr} is an extended Chebyshev system. It is
evident that if we take ρ = ρr all the conditions of Theorem B are fulfilled and we thus finish the proof.

Remark 3.3. Since our operators preserve eat and ebt, it could have been more natural to take {1, aat, ebt
} as Korovkin

system because no additional computation is necessary to prove the convergence of these two functions. Actually,
essentially with the same proof, we can also propose the following modification of Theorem B.

Theorem B̃. Consider two functions γ0, γ1 ∈ Ck
ρ([0,∞)) such that limx→∞ γs(x)/ρ(x) = 0, s = 0, 1. Given a third

function γ2 ∈ Ck
ρ([0,∞)), the following assertions are equivalent:

˜(i) {γ0, γ1, γ2} is a Korovkin system for (Ck
ρ([0,∞)), ‖·‖ρ).

˜(ii) {γ0, γ1} and {γ0, γ1, γ2} are Chebyshev systems on [0,∞) and limx→∞ γ2(x)/ρ(x) , 0.

The only important difference with respect to the proof by Bustamante we need now is that instead of the determinant
that we find in the last line of the proof of [7, Theorem 4.5] we will have this other one∣∣∣∣∣ γ0(x1) γ0(x2)

γ0(x1) γ1(x2)

∣∣∣∣∣ ,
suitably multiplied by weight functions, which does not vanish due to the conditions included in ˜(ii) and then we
reach the conclusion as in [7].

Anyway, although this version allows to prove many of the cases of Theorem 3.2 with less computations, some
others (for instance, a = b) finally need the test system {1, t, ebt(1 + tr)} considered in the proof above and for this
reason the initial version of Theorem B allows to study all possible situations in a more unified way.
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In the case a ≤ b ≤ 0, for all weight function ρ = ect with c > 0, from (10), since c2
− (a + b)c + ab > 0, we

have that∥∥∥∥∥Pnρ − ρ

ρ

∥∥∥∥∥
[0,∞)

=

∥∥∥∥∥e
c2
−(a+b)c+ab

n−c t
− 1

∥∥∥∥∥
[0,∞)

= +∞

and then ‖Pn(ρ)−ρ‖ρ = +∞ for all n. Therefore Pn does not converge for any increasing exponential weight
function and the problem makes no sense in this case.

Of course, in theorems 3.1 and 3.2, the role of a and b can be easily permuted.

4. Asymptotic behavior

To finish with the description of the approximation properties of the operators Pn we analyze the asymptotic
behavior of the sequence. Although we showed several cases for which we do not have uniform or weighted
convergence, from the definition of the operators it is straightforward that for any locally integrable function
f of exponential growth (that is to say

∣∣∣ f ∣∣∣ ≤ Kect for certain K, c ≥ 0), Pn( f , x) is defined for all x ∈ [0,∞) and,
moreover, if f is continuous at x then Pn( f , x) → f (x) (actually, Lemma 4.1, for q = 0, could be considered
a proof of this fact). As a consequence, for any continuous function of exponential growth we will always
have pointwise convergence and now we prove that it is possible to obtain asymptotic expansions for
that class. In particular we show the explicit expression for the expansions of order 1 (that is to say, a
Voronovskaja formula) and order 2.

The classical result by Sikkema [16] allows to establish asymptotic expansions for functions of polynomial
growth for a wide class of linear positive operators. We will make use of this result but in order to obtain
expansions valid for functions of exponential growth we need to apply a localization argument so we first
prove the following localization result.

Lemma 4.1. Let q be an even number and let f : [0,∞) → R be a locally integrable function such that, for certain
K, c ≥ 0, | f | ≤ Kect on [0,∞) and consider x ∈ [0,∞) such that f is differentiable of order q at x with f (i)(x) = 0,
i = 0, . . . , q. Then

Pn( f , x) = o(n−
q
2 ).

Proof. In the conditions of the lemma, the q order Taylor series expansion of f at x is

f = h(t − x)(t − x)q,

where h : [−x,∞) → R is a function continuous at 0 with h(0) = 0. Therefore, for any ε > 0 we can find
δ > 0 such that for all x1 ∈ Iδ = (x − δ, x + δ) ∩ [0,∞) we have |h(x1 − x)| ≤ ε. It is also obvious that using the
bound that the statement of the lemma establishes for f we can find a constant Kε > 0 and r1 > q such that∣∣∣ f (x1)

∣∣∣ ≤ Kεecx1 (x1 − x)r1 for all x1 ∈ [0,∞) − Iδ. Therefore, since Pn is positive,∣∣∣ f ∣∣∣ ≤ ε(t − x)q + Kεect(t − x)r1 ⇒

∣∣∣Pn f
∣∣∣ ≤ εPn((t − x)q) + KεPn

(
ect(t − x)r1

)
.

But from Lemma 2.2, Corollary 2.4 and (5) it is immediate that

lim
n→∞

∣∣∣∣n q
2 Pn( f , x)

∣∣∣∣ ≤ ε q!( q
2

)
!
x

q
2

and since ε is an arbitrary positive number we finish the proof.

Theorem 4.2. Let q be an even number and let f : [0,∞)→ R be a locally integrable function such that, for certain
K, c ≥ 0, | f | ≤ Kect on [0,∞) and consider x ∈ [0,∞) such that f is differentiable of order q at x. Then

Pn( f , x) =

q∑
i=0

f (i)(x)
i!

Pn

(
(t − x)i, x

)
+ o(n−

q
2 ).
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Proof. [16, Theorem 3] proves that the theorem holds for any 1 : [0,∞) → R with polynomial growth. For
a suitable δ > 0, let us consider a neighborhood of x, I = (x − δ, x + δ) ∩ [0,∞) and take a locally integrable
function 1̃ : [0,∞) → R such that 1̃ is bounded on [0,∞) and 1̃|I = f |I. 1̃ is under the conditions of [16,
Theorem 3] so that we have an asymptotic expansion for it. Moreover, 1̃ − f is under the conditions of
Lemma 4.1 and accordingly Pn(1̃ − f , x) = o(n−

q
2 ). Now, since 1̃(i)(x) = f (i)(x), for i = 0, . . . , q, the asymptotic

expansion that [16, Theorem 3] yields for 1̃ at x is actually valid for f and this ends the proof.

As the expansion for e
abt
n is known, Lemma 2.2, expressions (4) along with the last theorem allow to

obtain explicit asymptotic expansions of any order. Thus, given f , locally integrable with | f | ≤ Kect, for
q = 2, if f is twice differentiable at x we have

Pn( f , x) = f (x) + x
(
ab f (x) − (a + b) f ′(x) + f ′′(x)

) 1
n︸                                               ︷︷                                               ︸

=E f ,1,n(x)

+o(n−1), (11)

or for q = 4 and f four times differentiable at x,

Pn( f , x) = E f ,1,n(x) +
x
2

(
a2b2x f (x) + 2ab(1 − (a + b)x) f ′(x)

+
(
(2ab + (a + b)2)x − 2(a + b)

)
f ′′(x) + 2(1 − (a + b)x) f ′′′(x) + x f (4)(x)

)
1
n2 + o(n−2).

With our last result we try to offer a quantitative estimate of the Voronovskaja formula (11) in the line of
many papers that deal with the problem of expressing the remainder term of the asymptotic formulae in
terms of moduli of continuity. Here we have to tackle the question of the non-compactness of the domain of
the operators Pn and therefore again we need to consider weighted norms and moduli with the purpose of
establishing results for the wide class of functions for which the sequence is an approximation method. This
kind of problem has been studied by several authors for concrete sequences of operators (see for instance
[1]) and also for general sequences in the case of polynomial weights [4]. In [19], Gupta et al. extend already
known results in the topic to the case of functions of exponential growth in the interval [0,∞) establishing
quantitative expressions in terms of the modulus of continuity with exponential weight defined as

ω1( f , δ, a) = sup
h≤δ,0≤x<∞

| f (x) − f (x + h)|e−ax.

They also consider the spaces Lip(α, a), 0 < α ≤ 1, that consist of all function such that ω1( f , δ, a) ≤ Mδα for
all δ < 1.

Theorem C ([19, Theorem 1.1]). Let E be a subspace of C[0,∞) which contains all continuous functions with
exponential growth and let Ln : E→ C[0,∞) be a sequence of linear positive operators preserving the linear functions.
We suppose that for each constant A > 0 and fixed x ∈ [0,∞) the operators Ln satisfy

Ln

(
(t − x)2eAt, x

)
≤ C(A, x) · µL

n,2(x) (∗)

where C(A, x) is some function depending on A and x, and we denote µL
n,2(x) = Ln

(
(t − x)2, x

)
.

If in addition f ∈ C2[0,∞) ∩ E and f ′′ ∈ Lip(α,A), 0 < α ≤ 1, then we have, for x ∈ [0,∞),

∣∣∣∣∣Ln( f , x) − f (x) −
1
2

f ′′(x)µL
n,2(x)

∣∣∣∣∣ ≤
e2Ax +

C(A, x)
2

+

√
C(2A, x)

2

 · µL
n,2(x) · ω1

 f ′′,

√√
µL

n,4(x)

µL
n,2(x)

,A

 .
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We would like to make a couple of remarks about this theorem. First, in the inequality that appears in
[19], we find eAx but from the proof contained in that paper it follows that it should be read e2Ax instead
and thus we correct here this missprint including the proper coefficient in the inequality of the theorem.
Second, although it is assumed that f ′′ ∈ Lip(α,A), the theorem also holds for any function for which
ω1( f ′′, h,A) −−−−→

h→ 0
0.

We can see that in Theorem C it is supposed that the operators of the sequence preserve linear functions.
However this restriction is not essential and the original proof [19] remains valid for a general sequence of
linear positive operators if we replace inside the absolute value in the left hand side of the final inequality
− f (x) with the terms−µL

n,0(x) f (x)−µL
n,1(x) f ′(x) that in the case of linear preservation simplify to the inequality

showed above.
We know that Pn fixes eat and ebt but on the contrary, from Lemma 2.2, it is immediate that no polynomial

is preserved. Therefore this last remark is important here. Anyway, once considered the slight modification
proposed in the preceding paragraph, the crucial step is to prove that condition (∗) holds.

From Lemma 2.2 and (8),

µPn
n,2(x) = Pn

(
(t − x)2, x

)
= e

abx
n

[
2

(n − a)(n − b)
n3︸            ︷︷            ︸

=An

x +

(
−(a + b)n + ab

n2

)2

︸                ︷︷                ︸
=Bn

x2

]
,

Pn

(
ect(t − x)2, x

)
= e

c(n−a−b)+ab
n−c x

[
2(n − a)(n − b)

(n − c)3︸            ︷︷            ︸
=Ãn

x +

(
c2 + n(a + b − 2c) − ab

)2

(n − c)4︸                          ︷︷                          ︸
=B̃n

x2

]
.

Let us see that we can prove (∗) for every c > 0.
For any d1, d2 ∈ R, if we consider the constant Kd1,d2 = max{1, |d2 − d1 + 1|}, it is immediate that

∣∣∣ n−d1
n−d2

∣∣∣ ≤
Kd1,d2 for n ≥ d2 + 1.

Using the notation that we have just introduced, for a + b , 0 it is easy that

Ãn ≤ K3
0,cAn and B̃n ≤

(
a + b − 2c

a + b

)2

K2
ab−c2

a+b−2c ,
ab

a+b

K4
0,cBn. (12)

Therefore we can take C(a, b, c, x) = max{K3
0,c,

(
a+b−2c

a+b

)2
K2

ab−c2
a+b−2c ,

ab
a+b

K4
0,c}e

cx for n ≥ N(a, b, c) = max{a, b, c, ab
a+b } + 1

(in the special case a + b − 2c = 0 it is simple to check that B̃n ≤
((a−b)K0,c)4

24(ab)2 Bn for n > 2ab
a+b and then we

accordingly modify the definition of C(a, b, c, x) and N(a, b, c) for this case).
For a + b = 0, the inequality in (12) for Ãn and An also holds and in a similar way

B̃n ≤ 2c2K3
0,cK

2
c2−ab

2c ,c
Kc,bAn

and therefore we can take C(a, b, c, x) = max{K3
0,c, 2c2K3

0,cK
2
c2−ab

2c ,c
Kc,b}(1+x)ecx for n ≥ N(a, b, c) = max{a, b, c}+1.

Thus, in all cases,

Pn

(
ect(t − x)2, x

)
≤ C(a, b, c, x)µPn

n,2(x), for n ≥ N(a, b, c).

This all, together with (4), makes possible to apply Theorem C to obtain a quantitative version of
Voronovskaja formula (11).
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Theorem 4.3. Let f ∈ C[0,∞) be such that | f | ≤ Kect for certain K, c ≥ 0. If f ∈ C2[0,∞)
⋂

E and f ′′ ∈ Lip(α, c), 0 <
α ≤ 1, then, with C(a, b, c, x) and N(a, b, c) as given before, we have for n > N(a, b, c) and x ∈ [0,∞) that∣∣∣∣∣∣Pn( f , x) − e

abx
n

[
f (x) + (β − 1)x f ′(x) +

(
(β − 1)2x2 +

2βx
n

)
f ′′(x)

2

]∣∣∣∣∣∣
≤

e2cx +
C(a, b, c, x)

2
+

√
C(a, b, 2c, x)

2

 · µn,2(x) · ω1

 f ′′,

√
µn,4(x)
µn,2(x)

, c

 .
Of course, in the same way that we did to obtain the explicit expression for E f ,1,n(x) in Voronovskaja

formula (11), we can use the expansion for e
abx
n to rewrite the last inequality in order to give rise to a more

precise description of the error for (11). If we call R f ,n(x) to the right hand side of the inequality of the last
theorem, it is easy that

∣∣∣Pn( f , x) − E f ,1,n(x)
∣∣∣ ≤R f ,n(x) +

(
e

abx
n − 1 −

abx
n

) ∣∣∣ f (x)
∣∣∣ +

(
e

abx
n − 1

) ∣∣∣∣∣µn,1(x) f ′(x) + µn,2(x)
f ′′(x)

2

∣∣∣∣∣
+

∣∣∣∣∣∣ ab
n2 x f ′(x) +

(
(β − 1)2x2 +

2(β − 1)
n

x
)

f ′′(x)
2

∣∣∣∣∣∣ .
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