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Abstract. A Hilbert space operator T is said to be a 2-isometric operator if T∗2T2
− 2T∗T + I = 0. Let dAB ∈

B(B(H)) denote either the generalized derivation δAB = LA − RB or the elementary operator ∆AB = LARB − I,
we show that if A and B∗ are 2-isometric operators, then, for all complex λ, (dAB − λ)−1(0) ⊆ (d∗AB − λ)−1(0),
the ascent of (dAB − λ) ≤ 1, and dAB is polaroid. Let H(σ(dAB)) denote the space of functions which are
analytic on σ(dAB), and let Hc(σ(dAB)) denote the space of f ∈ H(σ(dAB)) which are non-constant on every
connected component of σ(dAB), it is proved that if A and B∗ are 2-isometric operators, then f (dAB) satisfies
the generalized Weyl’s theorem and f (d∗AB) satisfies the generalized a-Weyl’s theorem.

1. Introduction

Let B(H) denote the algebra of all bounded linear operators on an infinite dimensional separable Hilbert
space H. In [3] Agler obtained certain disconjugacy and Sturm-Lioville results for a subclass of the Toeplitz
operators. These results were suggested by the study of operators T ∈ B(H) which satisfy the equation,

T∗2T2
− 2T∗T + I = 0.

Such T are natural generalizations of isometric operators (T∗T = I) and are called 2-isometric operators. It
is known that an isometric operator is a 2-isometric operator. 2-isometric operators have been studied by
many authors and they have many interesting properties (see [4, 5, 9, 11, 18]), for example, if T ∈ B(H) is a
2-isometric operator, then σp(T) for the point spectrum of T is a subset of the boundary ∂D of the unit disc
D (in the complex plane C), σ(T) is the closureD ofDwhenever T is not invertible, σ(T) ⊆ ∂Dwhenever T
is invertible, and T is injective and has closed range.

For operators A,B ∈ B(H), let dAB ∈ B(B(H)) denote either the generalized derivation δAB = LA − RB or
the elementary operator ∆AB = LARB − I, where LA and RB are the left and right multiplication operators
defined on B(B(H)) by LA(X) = AX and RB(X) = XB respectively. The following implications hold for a
general bounded linear operator T on a Banach space X, in particular for T = dAB:

d−1
AB(0)⊥R(dAB) =⇒ d−1

AB(0) ∩ R(dAB) = 0⇔ asc(dAB) ≤ 1,
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where asc(dAB) denotes the ascent of dAB, R(dAB) denotes the range of dAB and d−1
AB(0)⊥R(dAB) denotes that the

kernel of dAB is orthogonal to the range of dAB in the sense of G. Birkhoff. The range-kernel orthogonality of
dAB has been considered by a number of authors. A sufficient condition guaranteeing d−1

AB(0)⊥R(dAB) is that
d−1

AB(0) ⊆ d∗−1
AB (0) [12]. The class of operators A, B∗ ∈ B(H) such that d−1

AB(0) ⊆ d∗−1
AB (0) is large, and includes in

particular the class of hyponormal A and B∗ [13]. If A, B∗ ∈ B(H) are hyponormal, then, for all complex λ,
(dAB − λ)−1(0) ⊆ (d∗AB − λ)−1(0) and the ascent of (dAB − λ) ≤ 1 [11].

In this paper it is shown that if A and B∗ are 2-isometric operators, then, for all complex λ, (dAB−λ)−1(0) ⊆
(d∗AB−λ)−1(0) and (dAB−λ)−1(0) ⊥ R(dAB). Furthermore, if λ is isolated in the spectrum of dAB, λ ∈ isoσ(dAB),
then the quasi-nilpotent part H0(dAB − λ) of dAB − λ coincides with (dAB − λ)−1(0); consequently, λ is a
simple pole of the resolvent of dAB. As the application of these properties, it is proved that if A and B∗ are
2-isometric operators, then f (d∗AB) satisfies the generalized a-Weyl’s theorem.

2. Some Results

Before stating main theorems, we need several preliminary results. Now we recall some definitions

Definition 2.1. An operator T ∈ B(H) is said to have Bishop’s property (β) if for every open subset G of C and every
sequence fn : G → H of H-valued analytic functions such that (T − z) fn(z) converges uniformly to 0 in norm on
compact subsets of G, fn(z) converges uniformly to 0 in norm on compact subsets of G.

Definition 2.2. An operator T ∈ B(H) is said to be polaroid if every isolated point of σ(T) is a pole of the resolvent of
T.

Lemma 2.3. [10] Let T be a 2-isometric operator. Then T is polaroid.

Lemma 2.4. Let T be a 2-isometric operator, λ ∈ σp(T) and

T =

(
λ T12
0 T22

)
on H = (T − λ)−1(0) ⊕ (T − λ)−1(0)⊥.

Then T12 = 0 and T22 is also a 2-isometric operator.

Proof. Let

T =

(
λ T12
0 T22

)
on H = (T − λ)−1(0) ⊕ (T − λ)−1(0)⊥.

Since T is a 2-isometric operator, by [9, Theorem 5] T∗T − I ≥ 0. Then

T∗T − I =

(
0 λT12
λT∗12 T∗12T12 + T∗22T22 − I

)
≥ 0.

Recall that
(

X Y
Y∗ Z

)
≥ 0 if and only if X ≥ 0,Z ≥ 0 and Y = X

1
2 WZ

1
2 for some contration W. So we have

T12 = 0, and T22 is a 2-isometric operator.

Corollary 2.5. Let T be a 2-isometric operator. Then Tx = λx implies T∗x = λ̄x, where λ denotes the complex
conjugate of λ.

Proof. It is obvious from Lemma 2.4.

Lemma 2.6. If T is a 2-isometric operator, then it has Bishop’s property (β).



J.L. Shen, G.X. Ji / Filomat 32:14 (2018), 5083–5088 5085

Proof. Let T be a 2-isometric operator and choose a positive number σwith ||T∗T− I|| ≤ σ. By [5, Proposition
5.12 and Theorem 5.80], T has a Brownian unitary extension B of the form

B =

(
V σE
0 U

)
,

where V is an isometry operator, U is unitary, and E is a Hilbert space isomorphism onto N(V∗). Let f (z) be
analytic on D. Let (B − z) f (z)→ 0 uniformly on each compact subsets of D. Then we can write(

V − z σE
0 U − z

) (
f1(z)
f2(z)

)
=

(
(V − z) f1(z) + σE f2(z)

(U − z) f2(z)

)
→ 0.

Since V and U have Bishop’s property (β), B has Bishop’s property (β). T is the restriction of B to an invariant
subspace, hence T has Bishop’s property (β).

Lemma 2.7. [17] If A, B∗ are reduced by each of its eigenspaces, polaroid and have Bishop’s property (β), then
(dAB − λ)−1(0) ⊆ (d∗AB − λ)−1(0) for all λ ∈ C.

Theorem 2.8. If A,B∗ are 2-isometric operators, then (dAB − λ)−1(0) ⊆ (d∗AB − λ)−1(0) for all λ ∈ C.

Proof. We can derive the result from Lemma 2.3, Corollary 2.5, Lemma 2.6 and Lemma 2.7.

Lemma 2.9. If A,B∗ are 2-isometric operators, then asc(dAB − λ) ≤ 1 for all λ ∈ C.

Proof. It is obvious from Theorem 2.8.

Theorem 2.10. If A,B∗ are 2-isometric operators, then H0(dAB − λ) = (dAB − λ)−1(0) for all λ ∈ isoσ(dAB).

Proof. Evidently, A and B∗ are reduced by each of its eigenspaces; σp(A) ⊆ ∂D, σp(B∗) ⊆ ∂D; eigenvectors
of 2-isometric operators corresponding to distinct eigenvalues are orthogonal. Recall [1] that σ(δAB) = {λ ∈
σ(A) − σ(B)} and σ(∆AB) = {λ ∈ σ(A)σ(B) − 1}. If λ ∈ isoσ(dAB), then there exist finite sequences {αi}

m
1 and

{βi}
m
1 of isolated points in σ(A) and σ(B), respectively, such that λ = αi − βi if λ ∈ isoσ(δAB) and λ = αiβi − 1 if

λ ∈ isoσ(∆AB), for all 1 ≤ i ≤ m. Let

M1 = ⊕m
i=1M1i, M1i = (A − αi)−1(0) and M2 = H 	M1

and
N1 = ⊕m

i=1N1i, N1i = (B − βi)∗−1(0) and N2 = H 	N1.

Then A and B have the representations

A =

(
A1 0
0 A2

)
on H = M1 ⊕M2,

and

B =

(
B1 0
0 B2

)
on H = N1 ⊕N2.

Since the spectrum of A2 and B2 don’t contain isolated points, then λ < σ(dAkBt ) for all 1 ≤ k, t ≤ 2 other than
k = t = 1.

Let X ∈ H0(dAB − λ), and let X ∈ B(N1 ⊕N2,M1 ⊕M2) have the representation X = [Xkl]2
k,l=1. Then

(dAB − λ)nX =

(
∗ ∗

∗ (dA2B2 − λ)nX22

)
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(for some, as yet, non specified entries ∗). Since lim
n→∞
||(dAB − λ)nX||

1
n = 0 implies lim

n→∞
||(dA2B2 − λ)nX22||

1
n = 0,

and since dA2B2 − λ is invertible, we have X22 = 0, and then

(dAB − λ)nX =

(
∗ (dA1B2 − λ)nX12

(dA2B1 − λ)nX21 0

)
(for some, as yet, non specified entries ∗). Again, since lim

n→∞
||(dAB−λ)nX||

1
n = 0 implies lim

n→∞
||(dA1B2−λ)nX12||

1
n =

lim
n→∞
||(dA2B1 − λ)nX21||

1
n = 0, and since dA1B2 − λ and dA2B1 − λ are invertible, we have X12 = 0 = X21. Hence,

(dAB − λ)nX = (dA1B1 − λ)nX11. Let X11 = [Yi j]1≤i, j≤m ∈ B(⊕m
i=1N1i,⊕m

i=1M1i). Then, for 1 ≤ i, j ≤ m,

(δA1B1 − λ)n(X11) =((LA1−αi − RB1−β j ) + (αi − β j − λ))n[Yi j]1≤i, j≤m

=(
n∑

k=0

(n
k )(LA1−αi − RB1−β j )

k(αi − β j − λ)n−k)[Yi j]1≤i, j≤m

and

(∆A1B1 − λ)n(X11) =(LA1−αi RB1 + αiRB1−β j + αiβ j − 1 − λ)n[Yi j]1≤i, j≤m

=(
n∑

k=0

(n
k )(LA1−αi RB1 + αiRB1−β j )

k(αiβ j − 1 − λ)n−k)[Yi j]1≤i, j≤m.

Since (A1 − αi)|M1i = 0 = (B1 − βi)|N1i, it follows that

(δA1B1 − λ)n(X11) = (αi − β j − λ)n[Yi j]1≤i, j≤m

and
(∆A1B1 − λ)n(X11) = (αiβ j − 1 − λ)n[Yi j]1≤i, j≤m.

Recall, lim
n→∞
||(dA1B1 − λ)nX11||

1
n = 0; hence lim

n→∞
|αi − β j − λ|||Yi j||

1
n = 0 in the case in which d = δ and

lim
n→∞
|αiβ j − 1 − λ|||Yi j||

1
n = 0 in the case in which d = ∆. Thus Yi j = 0 for all i, j such that i , j. This implies

that X = X11 = ⊕m
i=1Yii ∈ (dAB −λ)−1(0).Hence H0(dAB −λ) ⊂ (dAB −λ)−1(0). Since the reverse inclusion holds

for every operator, we must have H0(dAB − λ) = (dAB − λ)−1(0).

3. Weyl’s Theorem

An operator T is called Fredholm if R(T) is closed, α(T) = dim T−1(0) < ∞ and β(T) = dim H/R(T) < ∞.
Moreover if i(T) = α(T) − β(T) = 0, then T is called Weyl. The Weyl spectrum of T [15] is defined by
w(T) := {λ ∈ C : T − λ is not Weyl}.

We consider the sets

Φ+(H) := {T ∈ B(H) : R(T) is closed and α(T) < ∞};
Φ−+(H) := {T ∈ B(H) : T ∈ Φ+(H) and i(T) ≤ 0}.

And define
σea(T) := {λ ∈ C : T − λ < Φ−+(H)};

π00(T) := {λ ∈ isoσ(T) : 0 < α(T − λ) < ∞};

πa
00(T) := {λ ∈ isoσa(T) : 0 < α(T − λ) < ∞}.

Following [16], we say that Weyl’s theorem holds for T if σ(T)\w(T) = π00(T), and that a-Weyl’s theorem
holds for T if σa(T)\σea(T) = πa

00(T), where σa(T) is the approximate point spectrum of T.
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More generally, Berkani investigated B-Fredholm theory and generalized Weyl’s theorem as follows (see
[6–8]). An operator T is called B-Fredholm if there exists n ∈ N such that R(Tn) is closed and the induced
operator T[n] : R(Tn) 3 x→ Tx ∈ R(Tn) is Fredholm, i.e., R(T[n]) = R(Tn+1) is closed, α(T[n]) = dim T−1

[n](0) < ∞
and β(T[n]) = dim R(Tn)/R(T[n]) < ∞. Similarly, a B-Fredholm operator T is called B-Weyl if i(T[n]) = 0. The
B-Weyl spectrum σBW(T) is defined by σBW(T) = {λ ∈ C : T − λ is not B−Weyl}. We say that generalized
Weyl’s theorem holds for T if σ(T) \ σBW(T) = E(T) where E(T) := {λ ∈ isoσ(T) : 0 < α(T − λ)}. Note that, if
generalized Weyl’s theorem holds for T, then so does Weyl’s theorem [7].

We define T ∈ SBF−+(H) if there exists a positive integer n such that R(Tn) is closed, T[n] : R(Tn) 3 x →
Tx ∈ R(Tn) is upper semi-Fredholm (i.e., R(T[n]) = R(Tn+1) is closed, dim T−1

[n](0) = dim T−1(0) ∩ R(Tn) < ∞)
and i(T[n]) ≤ 0 [8]. We define σSBF−+ (T) = {λ ∈ C : T − λ < SBF−+(H)}. We say that generalized a-Weyl’s
theorem holds for T if σa(T) \ σSBF−+ (T) = Ea(T), where Ea(T) := {λ ∈ isoσa(T) : 0 < α(T − λ)}. It’s known from
[7, 19] that if T ∈ B(H) then we have
generalized a-Weyl’s theorem⇒ a-Weyl’s theorem⇒Weyl’s theorem;
generalized a-Weyl’s theorem⇒ generalized Weyl’s theorem⇒Weyl’s theorem.

We know that Weyl’s theorem holds for 2-isometric operators [18]. In this paper, we prove generalized
Weyl’s theorem for the elementary and the generalized derivation with 2-isometric operators as entries.

Recall that T ∈ B(H) has the single valued extension property at λ0 ∈ C (SVEP at λ0 for short), if for
every open neighborhood G of λ0, the only analytic function f : G → H which satisfies the equation
(λI − T) f (λ) = 0 for all λ ∈ G is the function f ≡ 0. An operator T is said to have SVEP if T has SVEP at
every point λ ∈ C.

Lemma 3.1. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then dAB has SVEP.

Proof. We can derive the result from Lemma 2.9.

For an operator T ∈ B(H), the analytic core K(T − λ) of T − λ is defined by K(T − λ) = {x ∈ H : there
exists a sequence {xn} ⊆ H and c > 0 for which x = x0, (T − λ)xn+1 = xn and ‖xn‖ ≤ cn

‖x‖ for all n ∈ N}.
We note that H0(T − λ) and K(T − λ) are generally non-closed hyperinvariant subspaces of T − λ such
that N(T − λ)n

⊆ H0(T − λ) for all n ∈ N and (T − λ)K(T − λ) = K(T − λ); also, if λ ∈ isoσ(T), then
H = H0(T − λ)+̇K(T − λ), where H0(T − λ) and K(T − λ) are closed.

Lemma 3.2. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then dAB is polaroid.

Proof. Let λ ∈ isoσ(dAB). If A,B∗ are 2-isometric operators, then H0(dAB −λ) = (dAB −λ)−1(0). By [2, Theorem
3.76] we have H = H0(dAB − λ)+̇K(dAB − λ). Thus dAB is simply polaroid follows from the implications

H = (dAB − λ)−1(0)+̇K(dAB − λ)
⇒ (dAB − λ)H = 0+̇(dAB − λ)K(dAB − λ) = K(dAB − λ)
⇒ H = (dAB − λ)−1(0)+̇R(dAB − λ).

Corollary 3.3. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then dAB is isoloid and R(dAB − λ) is closed for
all λ ∈ isoσ(dAB),

Theorem 3.4. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then generalized Weyl’s theorem holds for dAB.

Proof. Since dAB has SVEP, dAB satisfies generalized Browder’s theorem and generalized a-Browder’s the-
orem. A sufficient condition for an operator dAB satisfying generalized Browder’s theorem to satisfy
generalized Weyl’s theorem is that dAB is polaroid. By Lemma 3.2 generalized Weyl’s theorem holds for
dAB.

Theorem 3.5. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then generalized a-Weyl’s theorem holds for d∗AB.
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Proof. Since dAB has SVEP and dAB is polaroid, by [1, Theorem 3.10] generalized a-Weyl’s theorem holds for
d∗AB.

In the following, let H(σ(dAB)) denote the space of functions which are analytic on σ(dAB), and let
Hc(σ(dAB)) denote the space of f ∈ H(σ(dAB)) which are non-constant on every connected component of
σ(dAB).

Theorem 3.6. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then generalized Weyl’s theorem holds for f (dAB).

Proof. Since dAB has SVEP and dAB is isoloid, we have that generalized Weyl’s theorem holds for f (dAB) by
[20, Theorem 2.2] and Theorem 3.4.

Corollary 3.7. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then Weyl’s theorem holds for f (dAB).

A bounded linear operator T ∈ B(H) is called a-isoloid if every isolated point of σa(T) is an eigenvalue
of T. Note that every a-isoloid operator is isoloid and the converse is not true in general.

Lemma 3.8. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then d∗AB is a-isoloid.

Proof. Let λ be an isolated point of σa(d∗AB). Suppose that A,B∗ are 2-isometric operators. By Lemma 3.1
and Lemma 3.2, we have that dAB has SVEP and d∗AB is isoloid. Hence, σa(d∗AB) = σ(d∗AB) by [14, Corollary 7].
We have that λ is an isolated point of σ(d∗AB). Since d∗AB is isoloid, we have that λ is an eigenvalue of d∗AB.
Hence, d∗AB is a-isoloid.

Theorem 3.9. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then generalized a-Weyl’s theorem holds for
f (d∗AB).

Proof. Suppose that A,B∗ are 2-isometric operators. Then dAB has SVEP and d∗AB is a-isoloid by Lemma 3.8,
we have that generalized a-Weyl’s theorem holds for f (d∗AB) by [20, Theorem 2.4] and Theorem 3.5.

Corollary 3.10. Let A,B ∈ B(H). If A,B∗ are 2-isometric operators, then a-Weyl’s theorem holds for f (d∗AB).
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