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Abstract.
In this paper, we introduce the notion of I2-convergence in T0 spaces, and study the fundamental

properties of I2-topology which is determined by I2-convergence according to the standard topological
approach. Then, we give a sufficient condition for I2-convergence to be topological. Finally, we introduce
a special class of T0 spaces, called IDC-spaces, and then present a sufficient and necessary condition for
I2-convergence to be topological in IDC-spaces.

1. Introduction

Convergence plays an important role in the research of general topology and order theory. Just because
of this, the convergence problems have been considered by many researchers (see [1, 5, 6, 9–13, 15, 17–19]).
In particular, an important convergence is the lim-inf convergence in complete lattices (see [6]), which is
introduced by Scott to characterize continuous lattices. A net (xi)i∈I in a complete lattice L is said to lim-inf
converge to an element x if x = sup{in f {xi | i ≥ k} | k ∈ I}. A basic question arises naturally: is the lim-inf
convergence in a complete lattice L topological? That is, there exists a topology T on a complete lattice L
such that a net (xi)i∈I in L lim-inf converges to x if and only if it converges to x with respect to the topologyT .
It has been shown by Scott that the lim-inf convergence in a complete lattice L is topological if and only if L
is a continuous lattice (see [6]). Later on, a general result showed that the lim-inf convergence (also be called
S-limit in [5]) in a dcpo L is topological if and only if L is a domain (see [5]). As a generalization of lim-inf
convergence in dcpos, Zhao and Zhao (see [15]) introduced the lim-inf convergence in a partially ordered
set, and proved that for a poset P the lim-inf convergence is topological if and only if P is a continuous
poset.

In a recent invited talk at the Sixth International Symposium on Domain Theory, Lawson emphasized
the need to develop the core of domain theory directed in T0 spaces instead of posets. Towards this new
direction, motivated by the definition of the Scott topology, Zhao and Ho [16] introduced a method of
deriving a new topology out of a given one. They called this topology the irreducibly-derived topology (or
simply, SI-topology). Furthermore, they introduced SI-continuous spaces, which lead to a generalization
of the concept of continuous posets. In [7], Heckmann and Keimel presented a topological variant of
Rudin’s Lemma where irreducible sets replace directed sets. Moreover, in [14], as a generalization of lim-inf
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Corresponding author: Bin Zhao
Research supported by the National Natural Science Foundation of China (Grant no. 11531009)
Email addresses: lujing0926@126.com (Jing Lu), zhaobinmath@xjtu.edu.cn (Bin Zhao)



J. Lu, B. Zhao / Filomat 32:14 (2018), 5115–5122 5116

convergence in posets, the authors introduced the concept of Irr-convergence in a wider context of T0
topological spaces, and present a sufficient and necessary condition for Irr-convergence to be topological
in T0 spaces.

Erné (see [4]) introduced the concepts of S2-convergence in posets through filter and S2-continuous
posets by making use of the cut operator instead of join. The above notions have the advantage that not
even the existence of directed joins has to be required. Moreover, Erné proved that the S2-convergence in
a poset P is topological if and only if P is an S2-continuous poset. In this paper, we continue to respond to
Lawson’s call to develop the core of domain theory directly in topological spaces by establishing a topology
parallel of the aforementioned result. More precisely, as a common generalization of both S2-convergence
and Irr-convergence, we introduce a new convergence in T0 spaces, called I2-convergence, and hope to
find a satisfactory sufficient and necessary condition for I2-convergence to be topological. We introduce the
notion of I2-continuous spaces, and prove that the I2-convergence is topological in I2-continuous spaces.
Furthermore, we introduce a special class of T0 spaces, called IDC-spaces, and then obtain the main result
of this paper, that is, we give a sufficient and necessary condition for I2-convergence to be topological in
IDC-spaces, generalizing the known result of S2-convergence to be topological in posets.

2. Preliminaries

Throughout the paper, we refer to [5] for domain theory, and to [2] for general topology.
Let P be a poset. A non-empty subset D of P is directed if every finite subset of D has an upper bound

in D. A subset A of P is upper if A = ↑A = {x ∈ P : x ≥ y for some y ∈ A}. The Alexandroff topology Υ(P) on
P is the topology consisting of all its upper subsets. A subset U of P is called Scott open if (i) U = ↑U and
(ii) for any directed subset D,

∨
D ∈ U implies D ∩ U , ∅ whenever

∨
D exists. The Scott open sets on P

form the Scott topology σ(P). Obviously, a subset U of P is a Scott open set if and only if U is a Alexandroff
open set and for any directed subset D,

∨
D ∈ U implies D ∩U , ∅whenever

∨
D exists.

Let P be a poset. An upper (resp., a lower) bound of a subset A of P is an element x such that y ≤ x
(resp., x ≤ y) for all y ∈ A. The set of all upper (resp., lower) bounds of A will be denoted by Au (resp., Al).
Given any two elements x and y in P, we say that x �2 y if for any directed set D ⊆ P with y ∈ Dul, there
exists d ∈ D such that x ≤ d. The set {y ∈ P | y�2 x} will be denoted by ⇓2 x. P is called S2-continuous (see
[4]) if for any x ∈ P, ⇓2 x is directed and x =

∨
⇓2 x. In fact, we have that x =

∨
⇓2 x iff x ∈ (⇓2 x)ul.

Proposition 2.1. ([3]) Let P be a poset. Then the following statements hold:
(1) Let A, B be subsets of P. If A ⊆ B, then Bu

⊆ Au and Bl
⊆ Al;

(2) For all a ∈ P, (↓a)ul = ↓a.

Definition 2.2. ([16]) Let P be a poset. A subset U of P is called σ2-open if the following conditions are
satisfied:

(1) U = ↑U;
(2) For any directed set D ⊆ P, Dul

∩U , ∅ implies D ∩U , ∅.

The collection of all σ2-open subsets of P forms a topology, it will be called σ2-topology of P and will be
denoted by σ2(P).

Given a topological space (X, τ), a non-empty subset F of X is called a τ-irreducible set (or simply,
irreducible set) if whenever F ⊆ A ∪ B for closed sets A, B ⊆ X, one has either F ⊆ A or F ⊆ B. The set of
all τ-irreducible sets of X will be denoted by Irrτ(X). X is called sober if for every irreducible closed set F,
there is a unique point x ∈ X such that F = cl({x}). Notice that every sober space is necessarily T0.

For any T0 space (X, τ), the specialization order ≤ on X is defined by x ≤ y if and only if x ∈ cl({y}).
Unless otherwise stated, throughout the paper, whenever an order concept is mentioned in the context of
a T0 space X, it is to be interpreted with respect to the specialization order on X.

Proposition 2.3. ([5]) Let (X, τ) be a T0 space. Then the following statements hold:
(1) For all a ∈ X, ↓a = {x ∈ X | x ≤ a} = clX({a}).
(2) If U ⊆ X is an open subset. Then we have ↑U = U.
(3) If D ⊆ X is a directed set with respect to the specialization order, then D is irreducible.
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Definition 2.4. ([16]) Let (X, τ) be a T0 space. A subset U of X is called SI-open if the following conditions
are satisfied:

(1) U ∈ τ;
(2) For any F ∈ Irrτ(X),

∨
F ∈ U implies F ∩U , ∅whenever

∨
F exists.

The set of all SI-open sets of (X, τ) is denoted by τSI. We can see that τSI is a topology on X. We call
τSI the irreducibly-derived topology of τ. The space (X, τSI) will also be simply written as SI(X). Moreover,
complements of SI-open sets are called SI-closed sets.

Proposition 2.5. ([16]) Let (X, τ) be a T0 space. Then the specialization orders of spaces X and SI(X) coincide, and
Irrτ(X) ⊆ IrrτSI (X).

3. I2-Topology

Based on the S2-convergence in posets, we introduce the notion of I2-convergence in T0 spaces by
replacing the directed subsets with irreducible subsets. In this section, we study the properties of I2-
convergence and the I2-topology, which is obtained by I2-convergence.

Let X be a set andP(X) the family of all subsets of X. By a filter F in X we mean a non-empty subfamily
F ⊆ P(X) satisfying the following conditions:

(1) ∅ < F ;
(2) If A, B ∈ F , then A ∩ B ∈ F ;
(3) If A ∈ F and A ⊆ B ∈ P(X), then B ∈ F .
Given a topological space (X, τ), a filter F in X is said to converge to x ∈ X with respect to the topology

τ if for any U ∈ τ with x ∈ U, U ∈ F .

Definition 3.1. ([4]) Let P be a poset. A filter F in P S2-converges to a point x ∈ P if there exists an ideal D
such that x ∈ Dul and for each d ∈ D, ↑d ∈ F .

Definition 3.2. Let (X, τ) be a T0 space. A filter F in X I2-converges to x ∈ X if there exists an irreducible
subset F of X such that

(1) x ∈ Ful;
(2) For each e ∈ F, ↑e ∈ F .

In this case, we write F
I2
−→ x.

Remark 3.3. (1) Let P be a poset. Then I2-convergence in the Alexandroff topological space (P,Υ(P))
coincides with S2-convergence in P. In particular, when P is a dcpo, I2-convergence in a T0 space (P,Υ(P))
coincides with S3-convergence in P (see [4]).

(2) Let F{x} = ↑{{x}} denote the filter generated by the filter-base {{x}}, then F{x}
I2
−→ x.

(3) Let X be a T0 space and D be a directed subset of X. Then ↑{↑d | d ∈ D} is a filter in X and

↑{↑d | d ∈ D}
I2
−→ x for any x ∈ Dul.

(4) Let F
I2
−→ x, and y ≤ x. Then F

I2
−→ y.

Definition 3.4. Let (X, τ) be a T0 space. Then

τI2 = {U ⊆ X | whenever F
I2
−→ x and x ∈ U,U ∈ F }

is a topology, called the I2-topology on X. U ∈ τI2 is called I2-open. Complements of I2-open sets are called
I2-closed sets.

Remark 3.5. (1) Let (X, τ) be a T0 space. If F
I2
−→ x, then F converges to x with respect to the topology τI2 .

(2) Let P be a poset. Then σ2(P) = τI2 , where T0 space is the Alexandroff space.
(3) Let (X, τ) be a T0 space. Then τ and τI2 are independent. Please see Example 3.7.



J. Lu, B. Zhao / Filomat 32:14 (2018), 5115–5122 5118

Proposition 3.6. Let (X, τ) be a T0 space and U ⊆ X. If for any irreducible set F, Ful
∩ U , ∅ implies ↑e ⊆ U for

some e ∈ F, then U is an I2-open set.

Proof. We first show that U is an upper set. Given x ≤ y with x ∈ U, consider F = {x}, which gives ↑x ⊆ U

and so y ∈ U. Let F
I2
−→ x and x ∈ U. Then there exists an irreducible set F such that x ∈ Ful, and for each

e ∈ F, ↑e ∈ F . Thus Ful
∩U , ∅, and so ↑e ⊆ U for some e ∈ F. Therefore U ∈ F .

Example 3.7. (1) Let ε be the usual topology on the set of real number R. Then (R, ε) is a T2 space. Let
U = {x} for some x ∈ R. Suppose that F is an irreducible set, and Ful

∩ U , ∅. Then F is a single point set.
Without loss of generality, suppose that F = {a}. Then Ful = {a}, and thus a = x. So we conclude that ↑x ⊆ U.
It follows from Proposition 3.6 that U ∈ τI2 . Obviously, U < ε.

(2) Let X =N ∪ {ω1, ω2}. Define the order on X as follows:

0 ≤ 1 ≤ · · · ≤ · · · ≤ ω1 and 0 ≤ 1 ≤ · · · ≤ · · · ≤ ω2.

Then (X,Υ(X)) is a T0 space. Obviously, {ω1} ∈ Υ(X). By Remark 3.3(3), we have that ↑{↑n | n ∈ N}
I2
−→ ω1,

but {ω1} < ↑{↑n | n ∈N}. Therefore, {ω} is not an I2-open set.

Proposition 3.8. Let (X, τ) be a T0 space. Then (X, τI2 ) is a T0 space.

Proof. Let x ∈ X. Suppose that F is an irreducible set with Ful
∩X \ ↓x , ∅. Then there exists y ∈ Ful

∩X \ ↓x.
Assume that F ∩ (X \ ↓x) = ∅. Then F ⊆ ↓x, and thus x ∈ Fu. It follows from y ∈ Ful that y ≤ x, which is a
contradiction. Therefore F ∩ (X \ ↓x) , ∅, that is, there exists e ∈ F ∩ (X \ ↓x). Therefore ↑e ⊆ X \ ↓x. By
Proposition 3.6, we have that X \ ↓x is an I2-open set. Then (X, τI2 ) is a T0 space.

4. I2-Continuous Spaces

Definition 4.1. Let X be a T0 space. For x, y ∈ X, define x�I2 y if for every filter F in X which I2-converges
to y, ↑x ∈ F .

We denote the set {x ∈ X | x�I2 a} by ⇓I2 a, and the set {x ∈ X | a�I2 x} by ⇑I2 a.

Remark 4.2. (1) Let P be a poset. Then x �2 y if and only if x �I2 y, where the topology on P is the
Alexandroff topology.

(2) Let X be a T0 space, x, y ∈ X. Then x�I2 y implies x�2 y.

Proposition 4.3. Let X be a T0 space. Then the following statements hold:
(1) x�I2 y implies x ≤ y for all x, y ∈ X.
(2) a ≤ b�I2 c ≤ d implies a�I2 d for all a, b, c, d ∈ X.

Proof. (1) By Remark 3.3(2), we have that the filter ↑{{y}} I2-converges to y. Since x �I2 y, we have that
↑x ∈ ↑{{y}}. Then {y} ⊆ ↑x, and thus x ≤ y.

(2) Let F
I2
−→ d. It follows from c ≤ d that F

I2
−→ c. Since b �I2 c, we have that ↑b ∈ F . Then ↑a ∈ F ,

and so we conclude that a�I2 d.

Proposition 4.4. Let X be a T0 space, x, y ∈ X. If for any irreducible set F, y ∈ Ful implies x ≤ e for some e ∈ F, then
x�I2 y.

Proof. Let x, y ∈ X. Suppose that F
I2
−→ y. Then there exists an irreducible set F such that y ∈ Ful, and for

each e ∈ F, ↑e ∈ F . By hypothesis, there exists e ∈ F such that x ≤ e. Then ↑x ∈ F , and thus x�I2 y.

Definition 4.5. A T0 space X is called an I2-continuous space, if for each a ∈ X, the following conditions are
satisfied:

(1) ⇓I2 a is an irreducible set and a ∈ (⇓I2 a)ul;
(2) ⇑I2 a is an I2-open set.
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In fact, it follows from Proposition 4.3(1) that a ∈ (⇓I2 a)ul if and only if a =
∨
⇓I2 a.

Remark 4.6. (1) Let P be a poset. Then P is an S2-continuous poset if and only if (P,Υ(P)) is an I2-continuous
space.

(2) Every T2 space is an I2-continuous space.

Theorem 4.7. Let X be an I2-continuous space. Then F
I2
−→ x if and only if the filter F converges to x with respect

to the topology τI2 .

Proof. By Remark 3.5(1), the necessity is clear. Conversely, suppose that the filter F converges to x with
respect to the topology τI2 . Since X is an I2-continuous space, ⇓I2 x is an irreducible set and x ∈ (⇓I2 x)ul. For
all y ∈⇓I2 x, we have that x ∈⇑I2 y. Since ⇑I2 y is I2-open, we have that ⇑I2 y ∈ F . It follows from ⇑I2 y ⊆ ↑y

that ↑y ∈ F . Therefore F
I2
−→ x.

5. I2-Convergence in IDC-Spaces

In this section, we introduce a special class of T0 spaces, called IDC-spaces. The relationships between
IDC-spaces and other spaces are investigated. I2-convergence in IDC-spaces is also studied.

Definition 5.1. A T0 space X is called an IDC-space if for each irreducible set F, there exists a directed set
D ⊆ ↓F such that Dul = Ful.

Example 5.2. (1) Let P be a poset. Then (P,Υ(P)) is an IDC-space.
(2) Let X = (N × (N ∪ {∞})) with the partial order defined by

(m1,n1) ≤ (m2,n2) iff m1 = m2,n1 ≤ n2 ≤ ∞ or n2 = ∞,n1 ≤ m2.

Now, we consider the Scott topology space (X, σ(X)). It is proved in [8] that X is an irreducible set. Obviously,
Xul = X. Assume that there exists a directed set D ⊆ X such that Dul = Xul = X. Since X is a dcpo, we have
that

∨
D exists. Then Dul = ↓(

∨
D), and thus X = ↓(

∨
D). But this is a contradiction. Thus (X, σ(X)) is not

an IDC-space.
(3) Let X be a C-space. Then X is an IDC-space. But the converse may not be true. For example, let

X = {ai | i ∈ N} ∪ {bi | i ∈ N} ∪ {>}, where N denotes the set of all positive integers. The order ≤ on X is
defined as follows:

(i) a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ≤ >;
(ii) b1 ≤ b2 ≤ · · · ≤ bn ≤ · · · ≤ >.

Then (X,≤) is a poset. Next, we shall prove that (X, σ(X)) is an IDC-space. If F is finite, then
⋃

x∈F ↓x is a
finite union of closed sets. Since F is irreducible and F ⊆

⋃
x∈F ↓x, there is x in F such that F ⊆ ↓x. This

x is the greatest element of F, and Ful = {x}ul. If F is infinite, then at least one of F ∩ {ai | i ∈ N} and
F ∩ {bi | i ∈ N} must be infinite. Whenever F ∩ {ai | i ∈ N} is an infinite set, F ∩ {ai | i ∈ N} is a directed set
and Ful = (F ∩ {ai | i ∈ N})ul = ↓>. Similarly, we can explain the case that F ∩ {bi | i ∈ N} is an infinite set.
Therefore, (X, σ(X)) is an IDC-space. Suppose that (X, σ(X)) is a C-space. Then X is a continuous poset. In
fact, ⇓ ai = ∅, then X is not a continuous poset. But this is a contradiction, so we conclude that (X, σ(X)) is
not a C-space.

(4) Every T2 space is an IDC-space. In fact, if F is an irreducible set, then F is a single point set. Thus F
is a directed set. Therefore, X is an IDC-space. But the converse may not be true. Please see the following
example.

Example 5.3. Let X = {ai | i ∈N}. The order ≤ on X is defined as follows:

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · .

Then (X,≤) is a poset. By Example 5.2(1), we have that (X,Υ(X)) is an IDC-space. Obviously, (X,Υ(X)) is
not a T1 space. Moreover, one can see that {ai | i ∈ N} is a directed set. But there does not exist x ∈ X such
that {ai | i ∈N} = ↓x. Thus (X,Υ(X)) is not a sober space.
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Remark 5.4. (1) A T1 space may not be an IDC-space (see Example 5.5(1)). Moreover, An IDC-space may
not be a T1 space (see Example 5.3).

(2) An IDC-space may not be a sober space (see Example 5.3). Moreover, a sober space need not be an
IDC-space (see Example 5.5(2)).

Example 5.5. (1) Let X be an infinite set, and

τ = {A ⊆ X | the complement of A is finite } ∪ {∅}.

Then (X, τ) is a T1 space. Let A and B be closed sets, and X ⊆ A ∪ B. Assume that X * A and X * B. Hence
A , X and B , X. Since A and B are closed sets, A and B are finite sets. But this contradicts with the fact
that X is an infinite set. Therefore, X is an irreducible set. Obviously, Xul = X. Assume that there exists a
directed set D such that Dul = Xul. Since D is a single point set, there exists x ∈ X such that D = {x}. Then
Dul = {x}ul = {x} , X. Therefore, X is not an IDC-space.

(2) Let X = (N × (N ∪ {∞})) ∪ {>}. The order ≤ on X is defined as follows:
(i) for any (m,n) ∈N × (N ∪ {∞}), (m,n) ≤ >;
(ii) for any (m1,n1), (m2,n2) ∈ N × (N ∪ {∞}), (m1,n1) ≤ (m2,n2) iff m1 = m2, n1 ≤ n2 ≤ ∞ or n2 = ∞,

n1 ≤ m2.
Then (X,≤) is a poset, and thus (X, σ(X)) is a T0 space. Let F = N × (N ∪ {∞}). One can conclude that F is
an irreducible Scott closed set. Then F is an irreducible set in SI(X). Since

∨
F = >, we have that Ful = ↓>.

But there does not exist directed set D ⊆ F such that Dul = ↓>. Thus, SI(X) is not an IDC-space. One can
conclude that every irreducible closed set in SI(X) is exactly a principle ideal. Therefore, SI(X) is a sober
space.

Proposition 5.6. Let X be an IDC-space. Then for any irreducible set F, there exists a filter F such that F
I2
−→ x

for all x ∈ Ful.

Proof. Let F be an irreducible set. Since X is an IDC-space, there exists a directed set D ⊆ ↓F such that

Dul = Ful. By Remark 3.3(3), we have that ↑{↑d | d ∈ D} is a filter and ↑{↑d | d ∈ D}
I2
−→ y for all y ∈ Dul.

Therefore, ↑{↑d | d ∈ D}
I2
−→ x for all x ∈ Ful.

The above proposition may fail for a T0 space. Please see Example 5.8.

Lemma 5.7. Let X be a T0 space. If a filterF such thatF
I2
−→ x, then there exists a net (xi)i∈I satisfying the following

conditions:
(1) There exists an irreducible set F such that x ∈ Ful;
(2) ∀ e ∈ F, there exists i0 ∈ I such that e ≤ xi for any i ≥ i0.

Proof. Let I = {(a,A) | a ∈ A ∈ F }. Then I , ∅. The pre-order ≤ on I is defined as follows:

(a,A) ≤ (b,B) if and only if B ⊆ A.

Then I is a directed set. Let xi = a for i = (a,A) ∈ I. Then (xi)i∈I is a net. Since F
I2
−→ x, there exists an

irreducible set F such that x ∈ Ful, and ↑e ∈ F for all e ∈ F. ∀ e ∈ F, let i0 = (e, ↑e) ∈ I. Then b ∈ B ⊆ ↑e for any
i = (b,B) ≥ i0, and thus e ≤ xi for all i ≥ i0.

Example 5.8. Let (X,T ) be a T1 space defined in Example 5.5(1). By Example 5.5(1), we have that (X,T ) is

not an IDC-space and X is an irreducible set. Assume that there exists a filter F such that F
I2
−→ x for all

x ∈ Xul = X. By Lemma 5.7, there exists a net (xi)i∈I and for any x ∈ Xul, the net (xi)i∈I satisfies the following
conditions:

(1) there exists an irreducible set F such that x ∈ Ful;
(2) ∀ e ∈ F, there exists i0 ∈ I such that e ≤ xi for any i ≥ i0.

Suppose that |F| ≥ 2. Then F is an infinite set. Take e1 ∈ F. By (2), there exists i1 ∈ I such that e1 ≤ xi for
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any i ≥ i1. Take e2 ∈ F such that e1 , e2. By (2), there exists i2 ∈ I such that e2 ≤ xi for any i ≥ i2. Since I is
a directed set, there exists i3 ∈ I such that i1, i2 ≤ i3. Then e1, e2 ≤ xi for any i ≥ i3. Since X is a T1 space, we
have that e1 = e2. But this is a contradiction. We conclude that |F| = 1. Since x ∈ Ful, we have that F = {x}.
Then there exists i0 ∈ I such that x ≤ xi for any i ≥ i0, and thus x = xi for any i ≥ i0. Since X is a infinite set,
there exists y ∈ X such that x , y. Repeat the above process, we also have that there exists i4 ∈ I such that
xi = y for any i ≥ i4. Then there exists i5 ∈ I such that xi = y = x for any i ≥ i5. But this is a contradiction.

Therefore, there does not exist filter F such that F
I2
−→ x for all x ∈ Xul = X.

Proposition 5.9. Let (X, τ) be an IDC-space and U ⊆ X. Then U ∈ τI2 if and only if the following two conditions
are satisfied:

(1) U is an upper set;
(2) For any irreducible set F, Ful

∩U , ∅ implies F ∩U , ∅.

Proof. By Proposition 3.6, sufficiency is clear. It suffices to prove the necessity. By Proposition 3.8, we have
that (X, τI2 ) is a T0 space. By Proposition 2.3(2) again, we have that U is an upper set. Let F be an irreducible

set. Then there exists a directed set D ⊆ ↓F such that Dul = Ful and ↑{↑d | d ∈ D}
I2
−→ a for all a ∈ Dul. Since

Ful
∩U , ∅, there exists a ∈ Ful

∩U. Then ↑{↑d | d ∈ D}
I2
−→ a ∈ U, and thus U ∈ ↑{↑d | d ∈ D}. Hence, ↑d ⊆ U

for some d ∈ D. Obviously, there exists m ∈ F such that d ≤ m. Therefore, m ∈ F ∩U, i.e., F ∩U , ∅.

Proposition 5.10. Let X be an IDC-space and x, y ∈ X. Then the following statements hold:
(1) For any irreducible set F, y ∈ Ful implies x ≤ e for some e ∈ F;
(2) x�I2 y.

Proof. By Proposition 4.4, (1)=⇒(2) is clear.
(2)=⇒(1) Let x�I2 y, and let F be an irreducible set with y ∈ Ful. Since X is an IDC-space, there exists a

directed set D ⊆ ↓F such that Dul = Ful. By Remark 3.3(3), we have that ↑{↑d | d ∈ D}
I2
−→ y. Since x �I2 y,

we have that ↑ x ∈ ↑{↑d | d ∈ D}. Then ↑d ⊆ ↑x for some d ∈ D, and thus x ≤ d ≤ m for some m ∈ F.

Proposition 5.11. Let X be an IDC-space. Then the filter F in X I2-converges to x ∈ X if and only if the filter F in
X S2-converges to x under the specialization order.

Proof. Sufficiency is clear. Next, we shall prove the necessity. Let the filter F in X I2-converges to x ∈ X.
Then there exists a filter F such that x ∈ Ful, and for any e ∈ F, ↑e ∈ F . Since X is an IDC-space, there exists
a directed set D ⊆ ↓F such that Dul = Ful. Then for any d ∈ D, there exists e ∈ F such that d ≤ e, and thus
↑e ⊆ ↑d. So we conclude that ↑d ∈ F . Therefore, F S2-converges to x under the specialization order.

Proposition 5.12. Let X be an IDC-space. Then X is an I2-continuous space if and only if X is an S2-continuous
poset under the specialization order.

Proof. Necessity. Let x ∈ X. By Remark 4.2(2), we have that ⇓I2 x ⊆⇓2 x. Since X is an I2-continuous space,
we have that ⇓I2 x is an irreducible set and x ∈ (⇓I2 x)ul. Then there exists a directed set D ⊆⇓I2 x such that
Dul = (⇓I2 x)ul, and thus ⇓2 x is an irreducible set and x ∈ (⇓2 x)ul. Therefore, X is an S2-continuous poset
under the specialization order.

Sufficiency. Let x, y ∈ X satisfying x �2 y. Let F be an irreducible set with y ∈ Ful. Then there exists a
directed set D ⊆ ↓F such that y ∈ Dul = Ful, and thus x ≤ d for some d ∈ D. So we conclude that x ≤ m for
some m ∈ F. By Proposition 5.10, we have that x �I2 y. It follows from that ⇓I2 x =⇓2 x is an irreducible
set and x ∈ (⇓I2 x)ul. It suffices to prove that ⇑I2 x is an I2-open set. Let G be an irreducible set satisfying
Gul
∩ ⇑I2 x , ∅. Then there exists y ∈ Gul

∩ ⇑I2 x, that is, x �I2 y ∈ Gul. Since X is an IDC-space, there exists
a directed set D1 ⊆ ↓G such that Dul

1 = Gul, so we conclude that x �2 y ∈ Dul
1 . Then x �2 d1 for some

d1 ∈ D1, and thus x�I2 z for some z ∈ G. Hence ⇑I2 x∩G , ∅, and so we conclude that X is an I2-continuous
space.
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In the following, we consider I2-convergence in IDC-spaces, and prove that when X is an IDC-space,
the I2-convergence is topological in X if and only if X is an I2-continuous space.

Proposition 5.13. Let X be an IDC-space. If the I2-convergence in X is topological, then X is an I2-continuous space.

Proof. Suppose that I2-convergence in X is topological. Then there exists a topology T on X such that

F
I2
−→ x if and only if F converges to x with respect to the topology T . By Proposition 5.11, we have that

the filter F S2-converges to x under the specialization order if and only if F converges to x with respect to
the topology T . Then X is an S2-continuous poset under the specialization order. By Proposition 5.12, we
have that X is an I2-continuous space.

By Theorem 4.7 and Proposition 5.13, we have the following theorem immediately.

Theorem 5.14. Let X be an IDC-space. Then the I2-convergence is topological if and only if X is an I2-continuous
space.

Example 5.15. (1) Let P be a poset. Then the S2-convergence is topological if and only if P is an S2-continuous
poset.

(2) Let X be a T2 space. Then the I2-convergence in X is topological.
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