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Shells, Sequences and Intersections

Pier Luigi Papinia

aVia Martucci, 19, 40136 Bologna, Italy

Abstract. In this paper we consider two facts concerning shells. First, we deal with ”nested” (decreasing
or increasing) sequences of shells. We prove that the intersection, as well as the closure of the union of these
sequences, is a shell. Secondly, we consider some questions raised in a paper by Stiles on shells, published
half century ago. He left open some questions, also connected with ”spheres” (boundaries of balls), and
with a finite intersection property. Here we give a new result on these problems.

1. Introduction

Let X be a Banach space over the real field R.

Given a nonempty set A, we denote by cl(A) its closure and (if A is bounded) by δ(A) its diameter.

We write: B(c, ρ) = {x ∈ X : ‖x − c‖ ≤ ρ} (closed ball with center c and radius ρ).

A sphere (of radius r ≥ 0 and center c ∈ X) is a set of this type:

S(c, r) = {x ∈ X : ‖x − c‖ = r} c ∈ X; r ≥ 0.

We call shell a set of the form

{x ∈ X : r−c ≤ ‖x − c‖ ≤ r+
c } for some c ∈ X and 0 ≤ r−c ≤ r+

c ;

c will be the center, which is clearly unique. Shells are closed, bounded but they are convex only if r−c = 0 (c
is the center); in this case the shell is a ball.
These sets were studied in [6]. Note that in two-dimensional spaces, a shell is usually called an annulus (or
a ring). The term shell, in the literature, is also used to denote other sets (for example, the spheres).

In Section 2 we consider ”nested” (increasing or decreasing) sequences of shells, and we show that the
”limit” preserves the property.

In Section 3 we extend a result proved in [6] concerning shells, and an intersection property considered
in that paper.

Finally, Section 4 contains some comments and remarks.
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2. Monotone sequences of shells

In this section we consider decreasing or increasing sequences of shells. Here increasing and decreasing
are understood in a ”weak” sense (not strictly). It is well known that decreasing sequences of balls have
a nonempty intersection which is a ball. Also, for an increasing, bounded sequence of balls the closure of
their union is a ball (see [5, Proposition 7]). Here we shall extend these results to the wider class of shells,
indicating in details how monotone sequences of shells behave.

We prove first an auxiliary result.

Lemma 2.1. Let S,S′ two shells, with centers c, c′, such that S ⊆ S′. Then we have:
(i) r+

c + ‖c − c′‖ ≤ r+
c′ ;

(ii) r+
c − r−c ≤ r+

c′ − r−c′ .

Proof. First assertion: note that S′ will contain all points at a distance r+
c from c: this proves (i).

Now we prove (ii). All points at distance r−c from c belong to S ⊆ S′. Thus ‖c − c′‖ + r−c ≥ r−c′ . By using
this inequality and (i) we obtain:

r−c′ − r−c ≤ ‖c − c′‖ ≤ r+
c′ − r+

c .
This implies (ii).

Remark 2.2. In general S ⊆ S′ (c, c′ being their centers) does not imply r−c ≥ r−c′ : S′ can be a shell containing
B(c, r+

c ); in that case:
(1) r+

c′ − r−c′ ≥ 2r+
c .

2.1. Increasing sequences of shells

We start with a lemma.

Lemma 2.3. Consider an increasing sequence of shells:
Sn = {x ∈ X : r−cn

≤ ‖x − cn‖ ≤ r+
cn
},

with
∞⋃

n=1
Sn bounded. Then the sequences (cn)n∈N, (r+

cn
)n∈N and (r−cn

)n∈N converge.

Proof. Let (Sn)n∈N as indicated; cn is the center of Sn, cn+k is the center of Sn+k (k ∈ N). By using (i) of the
previous lemma, we have:

(2) r+
cn+k
≥ r+

cn
+ ‖cn − cn+k‖.

Set S = cl(
∞⋃

n=1
Sn). Recall that for an increasing sequence (Sn)n∈n, we have (see [5, Proposition 4]):

(3) δ(S) = limn→∞ δ(Sn).

By using (3), we have limn→∞ r+
cn

= limn→∞
δ(Sn)

2 =
δ(S)

2 .
Since (r+

cn
)n∈N has the (finite) limit r+ =

δ(S)
2 , it is a Cauchy sequence. Thus, by (2) also (cn)n∈N is Cauchy; so

it has a limit, say c.
The sequence (r+

cn
− r−cn

)n∈N is increasing (see (ii) of Lemma 2.1), so it has a (finite) limit. Since (r+
cn

)n∈N has a
limit, this means that also (r−cn

)n∈N has a limit, say r−.

Remark 2.4. According to Remark 2.2, we cannot say that, under the assumption done in the previous lemma
(increasing sequence), the sequence (r−cn

)n∈N is decreasing. But r−cn
< r−cn+1

would then imply, by (1), r+
cn+1
≥

2r+
cn

+ r−cn+1
≥ 2r+

cn
; so the boundedness of S implies that this can happen only for at most finitely many n. Thus the

sequence (r−cn
)n∈N is definitively monotone, which again implies the existence of the limit for such sequence.
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Theorem 2.5. If (Sn)n∈N is an increasing sequence of shells and
∞⋃

n=1
Sn is bounded, then S = cl(

∞⋃
n=1

Sn) is a shell.

Proof. Suppose that, for each n ∈ N, Sn = {x ∈ X : r−cn
≤ ‖x − cn‖ ≤ r+

cn
}.

According to the previous lemma, there exist c, r−, r+ such that

limn→∞ cn = c; limn→∞ r+
n = r+; limn→∞ r−n = r−.

We prove that S is the shell:

S0 = {x ∈ X : r− ≤ ‖x − c‖ ≤ r+
}.

First we prove that S ⊆ S0.

Take s ∈ S; for i ∈ N there exists ni such that the following are true:
‖s − sni‖ < 1/i for some sni ∈ Sni ; ‖c − cni‖ < 1/i; |r− − r−cni

| < 1/i; |r+
− r+

cni
| < 1/i.

We have: r−cni
≤ ‖sni − cni‖ ≤ r+

cni
. Therefore ‖s − c‖ ≤ ‖s − sni‖ + ‖sni − cni‖ + ‖cni − c‖ < 1/i + r+

cni
+ 1/i < r+ + 3/i.

Since i ∈ N is arbitrary, this shows that ‖s − c‖ ≤ r+.

Similarly: let r− > 0: we assume that 3/i < r−. Then ‖s−c‖ ≥ ‖sni−cni‖−‖s−sni‖−‖cni−c‖ > r−cni
−2/i > r−−3/i.

Since i ∈ N is arbitrary, this shows that ‖s− c‖ ≥ r−. If instead r− = 0, then the last inequality is trivially true.
Thus S ⊆ S0.

Now we prove the converse.
Let r+ > r−. Take i ∈ N such that 2/i < r+

− r−. Consider a point x such that r− + 1/i ≤ ‖x − c‖ ≤ r+
− 1/i.

We can find ni such that ‖cni − c‖ < 1/2i; |r− − r−cni
| < 1/2i; |r+

− r+
cni
| < 1/2i.

We have ‖x − cni‖ ≥ ‖x − c‖ − ‖c − cni‖ > r− + 1/i − 1/2i > r−cni
.

Similarly ‖x − cni‖ ≤ ‖x − c‖ + ‖c − cni‖ < r+
− 1/i + 1/2i < r+

cni
.

The last two things together say that x ∈ Sni ⊆

∞⋃
n=1

Sn.

Since this is true for every i ∈ N, this proves that {x ∈ X : r− < ‖x − c‖ < r+
} ⊂

∞⋃
n=1

Sn.

By passing to the closures, we have: S0 ⊆ S.

If instead r+ = r−, then S0 reduces to a sphere; moreover, by (ii) of Lemma 2.1, r+
cn

= r−cn
for all n ∈ N:

therefore all Sn are spheres and Sn ⊆ Sn+1 for all n implies that these spheres coincide with S0.

This concludes the proof that S0 ⊆ S.

2.2. Decreasing sequences of shells

Theorem 2.6. If (Sn)n∈N is a decreasing sequence of shells, then S =
∞⋂

n=1
Sn is a (nonempty) shell.

Proof. Let (Sn)n∈N be as indicated, with Sn = {x ∈ X : r−cn
≤ ‖x − cn‖ ≤ r+

cn
}. According to (i) of Lemma 2.1 we

have:

(4) r+
cn+k
≤ r+

cn
− ‖cn − cn+k‖.

Since (r+
cn

)n∈N is decreasing, it has a limit, say r+, and so it is a Cauchy sequence. Thus, by (4) also (cn)n∈N is
Cauchy, so it has a limit, say c.
The sequence (r+

cn
− r−cn

)n∈N is decreasing (see Lemma 2.1 (ii)), and then it has a limit; since (r+
cn

)n∈N has a limit,
this means that also (r−cn

)n∈N has a limit, say r−.

Put S =
∞⋂

n=1
Sn and S0 = {x ∈ X : r− ≤ ‖x − c‖ ≤ r+

}. We will show that S = S0.

S ⊆ S0. Take i ∈ N; there exists ni such that ‖c − cni‖ < 1/i; |r− − r−cni
| < 1/i; |r+

− r+
cni
| < 1/i .
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Suppose that x ∈
∞⋂

n=1
Sn ⊂ Sni ; then r−cni

≤ ‖x − cni‖ ≤ r+
cni

; thus

‖x − c‖ ≤ ‖x − cni‖ + ‖cni − c‖ < r+
cni

+ 1/i < r+ + 2/i.

Also: ‖x − c‖ ≥ ‖x − cni‖ − ‖cni − c‖ > r−cni
− 1/i > r− − 2/i.

Since i ∈ N is arbitrary, the two inequalities show that x ∈ S0; thus
∞⋂

n=1
Sn ⊆ S0.

Now we prove the reverse inclusion (S0 ⊆ S).
Let r+ > r− ≥ 0.
Suppose that r− < ‖x − c‖ < r+. So also for some i ∈ N we have: r− + 1/i < ‖x − c‖ < r+

− 1/i.
There exists ni such that for all n > ni we have:
‖c − cn‖ < 1/2i; |r− − r−cn

| < 1/2i; |r+
− r+

cn
| < 1/2i.

Thus, for all n > ni we have:
‖x − cn‖ ≤ ‖x − c‖ + ‖c − cn‖ < r+

− 1/i + 1/2i < r+
cn

,
and
‖x − cn‖ ≥ ‖x − c‖ − ‖c − cn‖ > r− + 1/i − 1/2i > r−cn

.
This shows that all points interior to S0 are in Sn for all n > ni, so for all Sn (which are closed). Passing to

the closure, we obtain S0 ⊆
∞⋂

n=1
Sn = S.

Now let r+ = r−: call this number r. In this case S0 is the sphere {x ∈ X : ‖x − c‖ = r}. Assume, by

contradiction, that there exists x ∈ S0 \
∞⋂

n=1
Sn. Let n̄ ∈ N be such that x < Sn̄ and let ε ∈

(
0, 1

2 distance(x,Sn̄)
)
.

The same is true for all n > n̄. Therefore, for these n, either ‖x − cn‖ ≥ r+
cn

+ 2ε, or ‖x − cn‖ ≤ r−cn
− 2ε.

Note that if r = 0, then r−cn
= 0 for every n ∈ N and the last inequality is not possible.

Now choose n large enough so that ‖c − cn‖ < ε; |r+
− r+

cn
| < ε, and (if r− > 0) |r− − r−cn

| < ε. Then we obtain
‖x − cn‖ ≤ ‖x − c‖ + ‖c − cn‖ < r + ε < r+

cn
+ 2ε.

Also (if r− > 0) : ‖x − cn‖ ≥ ‖x − c‖ − ‖c − cn‖ > r − ε > r−cn
− 2ε.

In any case we get a contradiction. Thus S0 ⊆ S. This concludes the proof.

Remark 2.7. According to Remark 2.2, we cannot say that, for a decreasing sequence of shells, the sequence (r−cn
)n∈N

is increasing. But according to (1), r−cn
> r−cn+1

would then imply 2r+
cn+1
≤ r+

cn
− r−cn

≤ r+
cn

. If this happens for infinitely
many n, then limn→∞ r+

cn
= (1/2) limn→∞ δ(Sn) = 0. In this case, according to Cantor’s intersection theorem, the

intersection of the sequence is a singleton. Otherwise, if this happens for at most finitely many n, then the sequence
(r−cn

)n∈N is definitively monotone, so convergent. Our proof of Theorem 2.6 (which also describes the form that the
intersection shell has) does not use this fact.

3. Shells and the finite intersection property

The following definition was given in [6].

We say that a collection of sets has the f inite intersection property, ( f ip) for short, if the intersection of the
sets in any finite subcollection is not empty.

We say that a class of sets has (FIP) if any collection of sets in that class with ( f ip) has nonempty intersection.
In general a space is said to have FIP if the class of balls has (FIP); recall that this last property has largely
been studied (see for example [4]).

The following result was proved in [6]. It says that only in finite dimensional spaces shells have (FIP).
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THEOREM. Let X be a normed space; then X is infinite dimensional if and only if there exists a bounded
collection of shells with ( f ip), but whose intersection is empty.

In the same paper, the author wrote: we do not know if the THEOREM is true when ”shells” are replaced by
”spheres”, or by ”spheres of radius one”. Then he gave a partial positive solution, when X is an inner product
space.

As far as we know, no paper concerning this problem appeared later (and [6] received no citation).

We consider the following properties for a space X,A denoting a family of indexes:

(a) X is infinite dimensional;
(b) there exists a bounded collection (Sa)a∈A of shells with the ( f ip), such that

⋂
a∈A

Sa = ∅;

(c) there exists a bounded collection (Ca)a∈A of spheres with the ( f ip), such that
⋂

a∈A
Ca = ∅;

(d) there exists a bounded collection (Ca)a∈A of spheres of radius 1, with the ( f ip), such that
⋂

a∈A
Ca = ∅.

It is clear that (d)⇒ (c)⇒ (b), while the above THEOREM shows that (a)⇔ (b).

More precisely, in [6] it was only proved that (a)⇒ (b); the reverse implication is a direct consequence
of the fact that closed and bounded sets in a finite dimensional space are compact.

For simplicity, from now on, we only deal with Banach spaces.

Still in [6], as said, it was shown that in Hilbert spaces (a)⇒ (d), so all the four properties are equivalent in
these spaces. Here we shall extend this result to a large class of Banach spaces.

We shall say that a set E in a Banach space is equilateral if there exists some λ ∈ R such that ‖x − y‖ = λ
for all pairs of points x, y ∈ E.

In recent years there has been an increasing interest on the existence of these sets. The first example of
a space where no infinite equilateral set exists was given in [7]. In ”many” (infinite dimensional) Banach
spaces there exist infinite equilateral sets: for example, it is simple to see that this happens in several
classical Banach spaces; these sets exist whenever X is uniformly smooth (see [3]) as well as if X has a
”large” density character (see [7]).

Theorem 3.1. Let X be an infinite dimensional Banach space containing an infinite equilateral set. Then the four
conditions (a), (b), (c), and (d) are equivalent.

Proof. We want to prove that (a) ⇒ (d). Let A = {x1, x2, ..., xn, ...} be an equilateral set. Eventually after
a translation and a rescaling, we can suppose that x1 = θ (the origin of X) and that ‖xi − x j‖ = 1 for
i, j ∈ N; i , j.

According to Zorn’s Lemma, we can embed A in a maximal equilateral set Am. Then {S(x, 1) : x ∈ Am}

has ( f ip): in fact any finite subset A f of Am is equilateral; so all points in A \ A f belong to the intersection
of the spheres S(x, 1), centered at the points in x ∈ A f . But the intersection of all the spheres is empty: in
fact, the existence of a point c in the intersection, would imply that Am ∪ {c} is an equilateral set strictly
containing Am.

Remark 3.2. We are not saying that the validity of Theorem 3.1 relies on the existence of equilateral sets in X.
For example, we can see that the result is valid ((d) holds) in the space constructed in [7]. We conjecture that the
equivalence of the four conditions holds in any space.
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4. Concluding remarks

We have indicated some properties of shells, a class of sets studied in [6]. Since shells are not convex,
we cannot apply to them, for example, the many results dealing with intersections of (bounded, closed)
convex sets. Shells are ”centred” sets in the language of [2] (closed sets which are ”symmetric” with respect
to a ”center”). Thus [2, Corollary 1] implies the following result, contained in our Theorem 2.6: decreasing
sequences of shells have nonempty intersection if the space does not contain a subspace isomorphic to c0.

It can also been shown, easily, that the convergence of monotone sequences of shells is also a Hausdorff
convergence. This fact (known for balls) is not true in general; for example, for monotone sequences of
bounded closed convex sets: see [5, Examples 2 and 6].

We include a couple of simple examples, concerning the problems we have discussed. They are given
in c0, the space of real sequences converging to 0 with the max norm.

Example 4.1. Consider the following (not nested) sequence of balls, with the same radius 1: (B(xn, 1))n∈N, where
xn = (2, ..., 2, 0, 0, 0......) (the first n components are 2, the remaining are 0). This collection of balls has ( f ip), but
their intersection is empty.

Example 4.2. . Consider the following sets (they are centred, bounded, closed and convex): Cn = {x ∈ X : xi = 1 for
i = 1, ... , n; −1 ≤ xi ≤ 1 for i > n}; the center of Cn is e1 + ... + en. They form a decreasing sequence of sets with
( f ip), whose intersection is empty.

Dealing with sets lying on spheres is in general not easy. For example, in the paper [1], facts of the
following type are studied (and not completely described): look for spaces where given any finite set
{x1, ..., xn}, for some real number λ the spheres S(xi, λ) (i = 1, ...,n) intersect.
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