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Abstract. In this paper, the reverse order law of Drazin inverse is investigated under some conditions
in a Banach space. Moreover, the Drazin invertibility of sum for two bounded linear operators are also
obtained.

1. Introduction

It is well known that, for the ordinary inverse, the equality (PQ)™! = Q7'P~! always holds if P and
Q are invertible, which is called the reverse order law. However, it is not necessarily true for most
generalized inverses such as K-inverse (Ke {{1},{1,2},{1,3},(1, 2,3}, (1, 3,4}}), Moore-Penrose inverse and

Drazin inverse. For example, let P = ((1) 8) and Q = (% 8), then PP = ( ) QP = ( ) and (PQ)P = (% g)
Obviously, (PQ)P # QPPP. Thus, many authors were attracted to investigate the cond1t1on under which
reverse order laws hold for various generalized inverses and some interesting results were obtained [1-15].

For bounded linear operators, Deng [4, 14] presented necessary and sufficient conditions for the reverse
order law of group inverse and Drazin inverse, respectively. Mosi¢ [8, 10] investigated the reverse order
law for the generalized Drazin inverse in Banach algebras.

In this paper, we consider the reverse order law of the Drazin inverse for bounded linear operators.
Precisely, we give some reverse order laws and commutation relations for Drazin invertible bounded linear
operators P and Q under the condition (1)P*Q = QP, (2)PQ* = QP and (3)P2Q QP = PQ?, respectively. In

particular, we obtain that (PQ)P = OPPP and (P + Q)P = PP + QP — 3PPPQP when P2Q = QP = PQ*.
Throughout this paper, X and Y/ denote Banach spaces, and the Set B(X) consists of all bounded linear

operators on X.
Recall that an operator T € B(X) is said to be Drazin invertible, if there exists an operator TP € B(X)
satisfying

TTP = TPT, TP = T(TP)?, and T*"'TP = T* for some integer k > 0.

Here TP is called the Drazin inverse of T and the smallest integer k, denoted by ind(T), is called the index
of T.

In the following, we list some basic facts about the Drazin inverse, which will be used in later proofs.
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Lemma 1.1. Let T, S € B(X).
(1) If T is Drazin invertible, then T has the operator matrix form

(T 0
(7 )
with respect to the space decomposition H = N(T™)®@R(T™), where Ty is invertible, Ny is nilpotent and T™ = [-TTP.
(2) If S is invertible, then T is Drazin invertible if and only if ST TS is Drazin invertible, and (S TS)P = S-1TPS.

2. Main results

In this section, we investigate various types of reverse order laws and commutation relations. The
following lemma is necessary.

Lemma 2.1. Let N,Q € B(X). If N>Q = QN and N is nilpotent, then N*Q, QN¥, NQ*(k = 1,2, ---) and NQN are
all nilpotent, and we further have

(1) if Q is Drazin invertible, then QPN = 0.

(2) if Q is invertible, then N = 0.

Proof. We only prove the case k = 1, and the other cases are similar. By N°Q = QN, we have
QN' = QNN"' = N’QN"' = N’QNN"? = N*QN"? =... = N¥Q,i=1,2,--- .
Then, forn=2,3,---,

(NQ)" (NQ)"*NQNQ
(NQ)n—2N3 QZ
(NQ"°NON°Q?
= (NQ'N'Q°

N2
which implies NQ is nilpotent, since N is nilpotent. In view of (QN)" = Q(NQ)""!N, QN is also nilpotent.
On the other hand, if Q is Drazin invertible, then, by QP = (QP)?Q, it follows that

QPN = (Q")*QN = (Q")’N*Q = Q°(Q°N)NQ,
and we further have
QDN = (QD)n(QDN)(NQ)nI n= 1/ 2/ e
Since NQ is nilpotent, QPN = 0.

If Q is invertible, then N = Q7!N2Q. Thus, N = (Q")*N?'Q*, k = 1,2, ---, which demonstrates N = 0
since N is nilpotent. [

Theorem 2.2. Let P,Q € B(X), P be Drazin invertible with ind(P) = n, and P>°Q = QP. Denote by
M = {PkQ/QPkIPQP/PDQ/QPD/PPDQ/QPPD/PQPD/PDQP/PPDPQ}/k = 1/2/3/' .

(1) If one of the elements in the set M is Drazin invertible, then all the elements are Drazin invertible.
(2) If PQ is Drazin invertible, then the following statements are true.
(i) (PQ)P = PPP(PQ)” = (PQ)"PP” = (PPQP)P = P(QP)"P"
= (PP(PPQ)PP? = (PPP(QPP)PP® = PP(PPPQ)°P;
(i) (PQ)° = PP(P1Q)PP = (PP (PQIPPHY,



H. Wang, . Huang / Filomat 32:14 (2018), 48574864

(iii) (P*Q)P(PPY*QP* is idempotent;

(iv) (PPPPQ)P = (PQ)"PPP = PPP(PQ)®;
(v) (PQPPPQP = PPQP(PQ)";

(v) (PQ)PPP = 0.

4859

Proof. Since P is Drazin invertible with ind(P) = n, by Lemma 1.1 (i), P has the following operator matrix

form
(P10
-(0 %)
with respect to the space decomposition H = N(P") & R(P™), where P; is invertible, N} = 0, and
p_ (Pt 0
)

Let the operator matrix form of Q with respect to the above space decomposition be given by

(G Q2
Q_(Q3 Q4)'

From P?Q = QP, it follows that P>"Q = QP", then

P"Qy Pi"Q, _ QP 0
0 0 QP! 0)
Note that, since P; is invertible, we have Q, = 0 and Q3 = 0 from P%” Q2 =0and Q3P = 0. Thus,

(5 3)
Moreover, by P>Q = QP, we also have that

PiQi1 = QiP1, N3Qs=QuNy,
which shows that

P1Q: = P{'Qi Py

and N;Qy is nilpotent by Lemma 2.1.
(1) Through computations, we get that

P‘Qr 0 QP 0
PrQ=|"1 , QPk = 1 L k=1,2,---.
[ aa) = (%" o

1)

)

©)

(4)

According to Lemma 2.1, N’{Q4 and Q4N’1‘ are all nilpotent by (3), and hence (N’{Q4)D =0and (Q4N’1‘)D =0.
Thus, PYQ and QP* are Drazin invertible if and only if P’{ Q7 and QlPll‘ are Drazin invertible, respectively.

On the other hand, we obtain, from (4), that
P{Qi = (PTY'QuPy, QiPy = (PTHA(PIQ0)P] = (PT)* Q1 PT,

(5)

which implies that P’{ Qpand Oy P’{ are Drazin invertible if and only if Q; is Drazin invertible by Lemma 1.1
(2). Therefore, P*Q and QP* are Drazin invertible if and only if Q; is Drazin invertible. Also, PQP = P3Q

by the assumption P>?Q = QP, and so, PQP is Drazin invertible if and only if Q; is Drazin invertible.

For PPQ and QPP, we observe that

_(P71Qy 0O _{QiP7t 0
PDQ‘(lo 0)'QPD‘( 0 0)'
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Applying (4), it follows that
Pr'Q1 = PiQiPy!, QiPyt = PRQu(Py ) (6)

Hence, PPQ and QPP are Drazin invertible if and only if Q; is Drazin invertible.
Obviously, PPPQ, QPPD ,PQPD ,pP QP, ppp PQ are all Drazin invertible if and only if Q; is Drazin in-

-1 -1
vertible since PPPQ = QPPP = (%1 8), PQPP = (P 1Q5P 1 8), PPQP = (P 1 glp ! 8) and PPPPQ =
P 0
0 o)
Therefore, the conclusion (1) is proven.
(2) If PQ is Drazin invertible, then, using (4), (5) and (6), we obtain that

o = (P97 -5 1)
QP - (<Q1P1>D 0) ((Pll)ZQ?P% 8)
QPP = ((QlP P o) (PfQ?éPl‘l)z 8)
PP = (( TP 0) (PlQéJP;l 8)
P0)P ((PanD 0) ((P 1)’;)QDP" 8)

wo _ ((@QPHP 0} _ ((PTH*QPPY 0
QP = ( 0 0 0 0)°
Thus, we can easily verify items (i)—(v). O

Similarly, we state the symmetrical formulation of Theorem 2.2.

Theorem 2.3. Let P,Q € B(X), Q be Drazin invertible with ind(Q) = t, and PQ? = QP. Denote by

N = {PQk/ Qkpr QPQ/ PQD/ QDPr QQDP/ QPQD/ PQQDr QQDPQ}/ k= 1r 2! 3/ Tt

(1) If one of the elements in the set N is Drazin invertible, then all the elements are Drazin invertible.
(2) If PQ is Drazin invertible, then the following statements are true.

(i) (PQ)P = QQ"(PQ)P = (PQ)PQQ" = (QPQ")P = Q°(QP)°Q

= (Q*(PQ")P(QP)* = Q*(QPP)P(QP)’ = Q(QQP)"Q”;

(i) (PQ"P = QPQMPQP = QF1(PQ)P(QP)*

(iii) (PQX)PQFP(QP)* is idempotent;

(iv) (QQ°PQ)P = (PQ)PQQ" = QQ"(PQ)”;

(v) (PQPQPQP = QPQD (PQ)";

(v) (PQ)PQQ™ =

Next, we will give two sufficient conditions for the reverse order law.
Theorem 2.4. Let P,Q € B(X) be Drazin invertible, then

(1) if P2Q = QP and PQP = QP P2, then (PQ)” = QPPP.
) szQ2 QP and PPQ = Q?PP, then (PQ)° = QPPP.
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Proof. We only prove (1), and (2) is similar. If P2Q = QP, then, from the proof of Theorem 2.2, the
QP

expressions (1) and (2) are valid, and QP = ( 0

QOD) . Together with PQP = QPP?, we have P1QP = QPP?,
4

which concludes P;'QPPy = QPP Also,

(PQ)D — (P11%1DP1 8)/ QDPD — (Qng)ll 8) .

Evidently, (PQ)P = QPPP. O

Theorem 2.5. Let P, Q € B(X) be Drazin invertible. If P>Q = QP = PQ?, then the following various types of
reverse order laws and commutation relations hold.

(1) (PQQP)P = Q(PQ)P = (PQ)"Q = (PPPQ)P = (Q°P)".

(2) (PQQ)P = Q°(PQ)” = (PQ)"Q" = (QPQ)".

(3) (QQP)P = (QP)”Q” = Q°(QP)".

(4) PQP is idempotent, and (PQP)P = (PQ(QP)*)P = Q*(PQ)” = (PQ)"Q*.

(5) (QP)?P is idempotent, and (Q°QPP)P = (QPP)PQ = Q(QPP)P.

Proof. 1f P>Q = QP = PQ?, then, from (1) and (2), we have P2Q; = Q;P; = P1Q3, which gives P1Q; = 2,
and so

(PQP = (
Also, N2Q, = QsN; = N1Qj follows. Then,

NiQY = NiQi(Qy) = N7Qu(Q))® = NT(QY).

Further, we have NyQP = N"(QP)",n=1,2,---, and so N1Q} = 0. Again, by P1Q1 = Q}, Q1P1 = P1Q3 = O}
and QP = Q1(QP)?, we get that

QPpy = (QP)*Q:P1 = (QD)*°Q = QP 3, (8)

Q) 0)
0

0) 7)

P1Q7 = P1Qi(Q7)* = QH(QY)* = Qi Qr -

Moreover, QENl = 0 according to (3) and Lemma 2.1. Hence,

PQQ” = (PlQolQ? Nlcg()@f):(ﬁég : 8)

v = (9 of)=(5F 3
QP = (Qlopl QSN1)=(%? Q40N1)’

QPQ = (Q”Zle Q4N0194):(Q§ NloQi)’

= (0 oh)=(5 o)

pPQP = (P 13311) Nl%E)Z(Qlég ' 8)’ "
@ = (97 o) =[5 O)
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Note that (Q2QP)P = QP, and Q4N1, N1Q3, Q3N are all nilpotent. Thus, items (1)—(5) can be proven. [

Finally, we show that the reverse order law (PQ)” = QPPP holds under the condition P2Q = QP = Q?P.

Theorem 2.6. Let P,Q € B(X) be Drazin invertible with ind(P) = n and ind(Q) = t. If P2Q = QP = PQ?, then
the following reverse order law and commutation relations hold.
(1) (PQP = QPP = PPQP.

(2) PQP =QPP.
(3) PPQ = QP”.
Proof. By Lemma 1.1, Q1, Q4 in (2) have the following operator matrix forms
Qu O Qu O
= = 11
! (0 Q14)' Q (0 Q44) )

with respect to the space decompositions N(P™) = N(Q7) & R(Qf) and R(P™) = N(Q]) ® R(Q)), where
Q11, Qu are invertible, and Q14, Qa4 are nilpotent. Let

P11 P12 Nll N12
Py = , Ny =
! (P13 P14) ! (N13 N14)
in (1) be operator matrix forms of P1, N1 with respect to the above two space decompositions.

5. P B O
From (3), it follows that P2 Q! = Q!P; and N?* Q! = Q'Nj. Let P? = (BH 512), then (EHQ“ 0) =

P13 Pis P13Qj; 0
¢ t —
( uPn leplz) . This deduces that P1, = 0 and P13 =0, i.e,

0
Pu 0 o _ (P Pp
P = d P = —_ ,
! (P13 P14) ne 0 Py
= t Pzt
and it can be seen that P, = 0. Thus, P% = ( n P2 ), which indicates that P11, P14 are invertible since P; is
14

2[
invertible. Similarly, from th Q) = Q,N1, we can conclude that Ny, = 0, and N? = (N“ N2 ) So N1, Ny
14
are nilpotent since N is nilpotent. Also, by N%Q4 = Q4N;, we get N%1Q41 = Q4 Ni11. Then N7; = 0 follows

from Lemma 2.1. Thus,
0 0
Np = .
! (N13 N14)

Through computations, we get that

P2, Qu 0 0 0
2 _ |P13P11Qu1 + PiaP13Qu P5,Qu4 0 0
P Q_ 7
0 0 0 0
0 0 NusN13Qu  N3,Qu
QuPu 0 0 0
_|QuaP13 Qu4P1y 0 0
QP=1""% 0 0 0o |
0 0 QuN1z  QuNyy
PnQ3, 0 0 0
P2 PuQ?, 0 0
PQ" = 0 0 0 0

0 0 Ni3Qi, NuQj,



H. Wang, J. Huang / Filomat 32:14 (2018), 48574864 4863

Hence, according to P2Q = QP = PQ?, the following equalities are obtained,

P},Qn = QuPn = P1iQj,, (12)
P3,Qus = QuaPrs = PuuQj,, (13)
N%,Qu = QuNis = N1uQj,, (14)
N1aN13Qs = QuNis = Ni3Q3;, (15)
QuaP13 = P13Q3,. (16)

From (12), we obtain Py; = Q1. Notice that Ni3 = N13Q3,(Q%)™ = QuN13(Q3)™" by (15). Then Ni3 =

Q!,N13(Q3))™! = 0 since Quq is nilpotent. Also, Qus = P14Q2,Py} from (13), then we get

Qua = P14(P1aQ3, P3Py} = P1,QL, (P,

t

and we further have Q4 = P{,Q3,

(Pi 4)‘1, which concludes Q4 = 0. Hence, P13 = 0 by (16). Thus, we have

that
Py 0 0 O Qn 0 0 0
lo Pu o o0 o o o o
P=to 0 0 ol 2|0 0 0a o (17)
0 0 0 Ny 0 0 0 Qu

Moreover, (14) shows that N14Qu4 is nilpotent. Therefore,

QP! 0 0 0 P 000 Q; 0 0 o0

b | o o000 pH_ [0 PlOO o |0 0 0 0
PO™=1 0 oo o P lo 0 oo <% =lo 0 gl o
0 00 0 0 0 00 0 0 0 0

Obviously, items (1)—(3) hold. O

From the proof of Theorem 2.6, we can obtain the Drazin invertibility of P + Q.
Theorem 2.7. Let P, Q € B(X) be Drazin invertible. If P2Q = QP = PQ?, then P + Q is Drazin invertible, and
(P+Q)P = PP + QP - 2pPpQP.

Proof. Since Ni4 and Qg are nilpotent, it is easy to check that N14 + Qu is also nilpotent by (14). Then, the
conclusion can be obtained according to the proof of Theorem 2.6. [J

The following results are obtained immediately from Theorem 2.7.

Corollary 2.8. Let P,Q € B(X) be Drazin invertible. If PQ = QP = 0, then P + Q is Drazin invertible, and
(P+ Q)P =PP +QP.

Corollary 2.9. Let P,Q € B(X) be idempotent. If PQ = QP, then P + Q is Drazin invertible, and (P + Q)P =
P+Q-3PQ.
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