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Brzdek’s fixed point method for the Generalised Hyperstability of
bi-Jensen functional equation in (2, f)-Banach spaces
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Abstract. Using the fixed point theorem [12, Theorem 1] in (2, f)-Banach spaces, we prove the generalized
hyperstability results of the bi-Jensen functional equation

xX+z y+w

4 (555 557 = ) + ) + e 9) + Fy, )

Our main results state that, under some weak natural assumptions, functions satisfying the equation
approximately (in some sense) must be actually solutions to it. The method we use here can be applied to
various similar equations in many variables.

1. Introduction and Preliminaries

In this paper, N, R, R, and C denote the sets of all positive integers, real numbers, non-negative real
numbers and complex numbers, respectively; and we put INy := IN U {0} and let K denote the fields of
real or complex numbers. The next definition describes the notion of hyperstability that we apply here (A®
denotes the family of all functions mapping a set B # 0 into a set A # 0).

Definition 1.1 ([13]). Let A be a nonempty set, (Z,d) be a metric space, y : A" — R,, B C A" be nonempty, and
F1, F2 map a nonempty D C Z4 into ZA". We say that the conditional equation

Fro(x1, ..., x0) = Fo@(x1,..., %), (x1,...,x,) €B (1)
is y-hyperstable provided every @o € D, satisfying
d(ﬂ(PO(xl/--«/xn)/%(PO(xlz-'-/xn)) S ‘)/(x1/°"/x1’l)/ (-xl/"'/xl’l) € B/ (2)

is a solution to (1).

That notion is one of the notions connected with the well-known issue of Ulam’s stability for various
(e.g., difference, differential, functional, integral, operator) equations. Let us recall that the study of such
problems was motivated by the following question of Ulam (cf. [32, 51]) asked in 1940.
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Ulam’s question. Let (G, ), (G2, ®) be two groups and p : G, X G, — [0, ) be a metric. Givene > 0,
does there exist 0 > 0 such that if a function g : Gy — G, satisfies the inequality

p(g(x o), g(x) ® g(y)) <6
for all x, y € Gy, then there is a homomorphisma : Gi — G, with
p(g(x),a(x)) <e forall x e G;?

In 1941, Hyers [32] published the first answer to it, in the case of Banach space. The following theorem
is the most classical result concerning the Hyers-Ulam stability of the Cauchy equation

fx+y) = fx) + fy). (3)
Theorem 1.2. Let E1 and E; be two normed spaces and let f : Ey — E, satisfy the inequality
£ G+ ) = £ = F| < O + llyIP) )

forall x,y € E1 \ {0}, where 6 and p are real constants with 6 > 0 and p # 1. Then the following two statements are
valid.

(a) If p > 0 and E, is complete, then there exists a unique solution T : Ey — E; of (3) such that

0

[fe) =T < T Il x € Ea\ (0} 5)

(b) If p <0, then f is additive, i.e., (3) holds.

Note that Theorem 1.2 reduces to the first result of stability due to Hyers [32] if p = 0, Aoki[1] for0 <p <1
(see also [46]). Afterward, Gajda [29] obtained this result for p > 1 and gave an example to show that
Theorem 1.2 fails to hold whenever p = 1 thus answering a question of Th.M. Rassias. In addition, Rassias
[47] proved Theorem 1.2 for p < 0 (see [48, page 326] and [5]). Now, it is well known that the statement
(b) is valid, i.e., f must be additive in that case, which has been proved for the first time in [41] and next
in [8] on the restricted domain. Since then, a further generalization of the Hyers-Ulam theorem has been
extensively investigated by a number of mathematicians [11, 15-18, 23, 31, 33, 34, 36, 45, 49]. The first result
on the stability of the classical Jensen equation 2 f(HTy) = f(x) + f(y) was given by Z. Kominek [40]. The
first author, who investigated the stability problem on a restricted domain was E. Skof [50]. The stability of
the Jensen equation and its generalizations were studied by numerous researchers, cf. [35, 42, 44].

The hyperstability term was used for the first time probably in [43]; however, it seems that the first
hyperstability result was published in [4] and concerned the ring homomorphisms. For further information
concerning the notion of hyperstability we refer to the survey paper [13] (for recent related results see, e.g.,
[3, 7-10, 14, 20-22, 24, 30, 37]).

The theory of 2-normed spaces was first developed by Géhler [27] in the mid 1960s, while that of 2-
Banach spaces was studied later by Gahler [28] and White [52]. For more details, the readers refer to the
papers [19, 25, 26].

Now, we give some basic concepts concerning (2, f)-normed spaces and some preliminary results.

Definition 1.3. Let E be a linear space over K with dim E > 1and 0 < < 1. A function ||-,|lg : EXE — Ry is
called a (2, p)-norm on E if and only if it satisfies:

(D1) |lx, yllg = 0 if and only if x and y are linearly dependent;
(D2) lx, yllg = Iy, xlls;
(D3) 1A, ylig = 1APlx, ylls;
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(D4) llx,y +zllg < lIx, yllg + lIx, zllp

forall x,y,z € Eand A € K. The pair (E, ||, -||p) is called a (2, B)-normed space.

If x € Eand |lx,ylls = O for all y € E, then x = 0. Moreover; the functions x — |lx, y||s are continuous
functions of E into R, for each fixed y € E.
The basic definitions of a (2, §)-Banach space are given as follows:

(a) A sequence {x,} in a (2, f)-normed space E is called a Cauchy sequence if there are y,z € E such that y
and z are linearly independent, lim,; ;e [[Xn — X, Yllg = 0 and limy, yu—c0 lIXn — X, zllg = 0

(b) A sequence {x,} in a linear (2, §)-normed space E is called a convergent sequence if there is an x € E such
that lim,, . [|x, — x, ylls = 0 for all y € E. In this case, we write lim,, . X, = x.

() A (2,p)-normed space in which every Cauchy sequence is a convergent sequence is called a (2, f)-
Banach space.

We remark that the concept of a linear (2, f)-normed space is a generalization of a linear 2-normed space
(B = 1). Now, we present an example about (2, f)-normed space.

Example 1.4. For x = (x1,%2),y = (y1, y2) € E = R?, the (2, f)-norm on E is defined by
llx, yllg = [x1y2 — x211 1P,
where B is a fixed real number with 0 < < 1.

Let X be a f-normed spaces and Y a (2, f)-normed spaces. A mapping f : X X X — Y is called a bi-Jensen
mapping if f satisfies the equation

x+z y+w

4f( ) fx, )+ fx,w)+ fiz,y)+ flzw), xyzweX (6)
When X = Y = R, the function f(x,y) := axy + bx + cy + d is a solution of the functional equation (6),
where a,b,c and d are arbitrary constants. Bae and Park [2] obtained the general solution of a bi-Jensen
functional equation and its stability. Moreover, the stability problem for the bi-Jensen functional equation
was discussed by a number of authors (see [38, 39]).

Let U be a nonempty subset of X. We say that a function f : U*> — Y fulfils equation (6) on U (or is a
solution to (6) on U) provided

x+z y+w

(x+z
27 2

4f ) f, )+ flx,w)+ fiz,y)+ fzw), xyzwel e U, (7)

if U = X, then we simply say that f fulfils (or is a solution to) equation (6) on X.
We consider functions f : U? — Y fulfilling (7) approximately, i.e., satisfying the inequality

x+z y+w

4 (57 55 ) - fe ) = flw) = fa) = el < o2 0,0, ®)
uey, x,yzwe€l, x;Z,y;weU,

with y is a given non negative mapping. In this paper, we show that, for some natural particular forms of
y (and under some additional assumptions on U), the conditional functional equation (7) is y-hyperstable
in the class of functions f : U? — Y, i.e., each f : U? — Y satisfying inequality (8) with such y must fulfil
equation (7).
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2. A fixed point theorem

In this section, we rewrite the fixed point theorem [12, Theorem 1] in (2, f)-Banach space. For it we need
to introduce the following hypotheses.

(H1) W is a nonempty set, Y is a (2, §)-Banach space.
H2) fi,..., ik :W—> Wand Ly,..., Ly : WXY — R, are given maps.

(H3) 7 : Y — YW is an operator satisfying the inequality

|17 6@) - Tu), y »

k

|5 < X, Lite GG = p(fi), v
=1

forall &, ue YWandall (x,y) € WX Y.

(H4) A : RV — R"XY is a linear operator defined by

k
ASx,y) = ) L, y)S(fix), )
i=1

forall o € RY and (x,y) e WX Y.

The basic tool in this paper is the following fixed point theorem.

Theorem 2.1. Let hypotheses (H1)-(H4) be valid and functions e : WXY — Ry and ¢ : W — Y fulfil the following
two conditions:

170 = 9@,y < etry), xeW, yey,

&xy) = ZA”e(x,y) <oo, xeW, yeY.

n=0

Then, there exists a unique fixed point  of T~ with

) = ¢(x),

(535*(x,y), xeW, yevY.

Moreover
P(x) = im T"¢p(x), x € W.
n—oo

Proof. We can prove Theorem 2.1 analogously as [14, Theorem 1]. [

3. Hyperstability Results for Eq. (7)

In the remaining part of the paper, X is a f-normed spaces, Y is a (2, §)-Banach space, Xj := X\ {0}, and
IN,;,, denotes the set of all integers greater than or equal to a given mg € IN.
The following theorems are the main results in this paper and concern the y-hyperstability of (7).
Namely, for
y(x,y,z,w,u) = hi(x, u)ha(y, u)hs(z, u)hy(w, u),

with i; : U XY — Yis a function for i € {1,2, 3,4}, and

y(x,y,z,w,u) = h(x,u) + h(y, u) + h(z, u) + h(w, u),
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with i : UXY — Y is a function, under some additional assumptions on the functions h, iy, hy, h3, h4 and
on nonempty U C X, we show that the conditional functional equation (7) is y-hyperstable in the class
of functions f mapping U? to a (2, f)-Banach space. The method based on a fixed point Theorem 2.1 and
patterned on the ideas provided in [6].

Theorem 3.1. Assume that U C X is nonempty and there is ny € IN, ng > 3, with
—x,nx € U, xelUnelN,n>ny—1. 9)

Let hy, hy, h3, hy : U XY — R, be four functions such that

Mo = {n € Ny, | ay := 47P[s1(n)s3(n) + 512 — n)s3(2 — )] X [s2(0)sa(£) + 52(2 — )s4(2 — €)] < 1} £0,
(10)

where € € Ny, is fixed, and s;(xn) = inf{t € Ry : hj(xnx, u) < thi(x,u) forall (x,u) € UXY]} for n € N, and
i=1,2,3,4, such that

lim s1(xn)s3(xn) = lim s1(n)s3(2 —n) = 0. (11)

Suppose that f : U? — Y satisfies the inequality

X+z y+tw

|45 757) - ) = flw )~ £, )~ fle |, (12
< In( w)ha(y, hs(z Wi, weY, vyzoel, S5y,
then (7) holds.
Proof. Assume that ! € N, is fixed. Replacing (x, z, y, w) by (mx, (2 — m)x,ly, (2 = I)y) in (12), we get
|47 Fmae, 1y) + 47! fma, 2 = Dy) + 47 £(@ = m)x, Iy) + 47 (@ = m)x, 2= Dy) = fx, ),
< 4Py (mx, uha(ly, u)hs((2 — m)x, wha((2 - Dy, v) (13)

forallm € N, x,y € U, u € Y. Fix m € IN,,, and we define
Tmé(xl ]/) = 4715(7713(, l]/) + 4715(7713(, (2 - l)]/) + 4715((2 - m)xl ly) + 4715((2 - m)x/ (2 - l)y)

And(x, y,u) := 47P5(mx, Ly, u) + 47Ps(mx, 2 = Iy, u) + 47P5(2 — m)x, ly, u) + 47P5((2 — m)x, 2 = Iy, u)

for every (x,y,u) e UX U X Y, & € Y¥U and § € RYXYY, Burther, observe that

em(x, y,u) 1 = 47Pny (mx, why(ly, whz((2 — m)x, u)ha((2 = Ny, u)
< 47Psy (m)sa(1)s3(2 = m)sa(2 = D (x, wha(y, w)ha(x, )ha(y, ) (14)

forall x,y € U and u € Y. Then inequality (13) takes the form

| TonfCey) = fOey)ul|, < emCryu), xyel uey,

:
and the operator A, has the form described in (H4) with k = 4,
AGy) = mxly),  Hloy)=mx,Q-Dy),  filxy) = (2-mxly)

falx,y) = (2 -m)x, (2 - 1)y), Li(x, y,u) = La(x, y,u) = La(x, y, u) = La(x, y, u) = 4P



Iz. EL-Fassi/Filomat 32:14 (2018), 4897—4910 4902

forall x,y € U and u € Y. Moreover, for every &, u € YUXU and x, y € U, u €Y, we obtain

[T, y) = Topsx, y),u

|5 <47 € = e ) ull, + 47 (€ - ), )
+47P]€ - W ), u

.
|5 + 47l = wa, ),

4
= Y Lix ) [ = (e ),
i=1

where (& — u)(x, y) = &(x, y) — u(x, y). So, (H3) is valid for 7,.
By using mathematical induction, we will show that for each x, y € U and u € Y we have

Anen(x, y, 1) < 47Ps1(m)sa(D)s3(2 — m)sa(2 = Dol (x, wha(y, whs (x, w)ha(y, u) (15)

for all n € Ny and m € M. From (14), we obtain that the inequality (15) holds for n = 0. Next, we will
assume that (15) holds for n = r, where r € Ny. Then we have

Atle,(x, y,u) = Ap(A)em(x, y, 1))
= 47PN ep(mx, Iy, u) + 4P AL e(mx, (2 = Dy, u) + 4 PAL e,((2 — m)x, Iy, u) + 4 PA e, (2 — m)x, 2 = 1)y, u)
< 4751 (m)sa(1)s3(2 — m)sa(2 = Dyl (max, wha(ly, u)hs(mx, wha(ly, u)

+ 4751 (m)s(1)s3(2 — m)sa(2 = Dy, b (mx, u)ha((2 = Dy, wha(max, wha((2 = Dy, u)

+ 47251 (m)sy(1)s3(2 = m)sa(2 = D, 1 (2 = m)x, u)ha(ly, wha((2 = m)x, uha(ly, u)

+ 47251 (m)sy(1)s3(2 = m)sa(2 = Dy, b (2 = m)x, w)ho((2 = D)y, wha((2 = m)x, wha((2 = Dy, u)
< 47Psy (m)sy(1)53(2 = m)sa(2 = Davyt i (x, w)ha(y, s (x, uha(y, u).

This shows that (15) holds for n = r + 1. Now we can conclude that the inequality (15) holds for all n € INj.
Therefore, we obtain that

47Psy(m)sy()s3(2 — m)sa(2 — D (x, wha(y, w)ha (x, u)ha(y, u)
1-a,

(X, y,u) = ZAZsm(x, y,u) <
n=0

forall u € ¥, x,y € Uand m € M. Thus, according to Theorem 2.1, for each m € M, the function
Jm : UXxU =Y, given by J,(x, y) = limy—« 7, f(x, y) for x, y € U, is a unique fixed point of 7, i.e.,

(%, y) = 47 (mx, 1y) + 47 u(mx, 2 = Dy) + 47 (2 = m)x, Iy) + 47 [ (2 — m)x, (2 = Dy)
for all x, y € U; moreover

| < 47Ps1(m)sz(1)s3(2 — m)sa(2 = D (x, wha(y, u)hs (x, u)ha(y, u)
B~ 1- am

“f(JC, Y) = Ju(x, y),u

forallu € Y, x,y € U and m € My. We show that

a7 (52 257 ) - Taf o) = T ) = Tafte, ) - Tif e, ),

< agn (x, w)ha(y, whs(z, 10)ha(w, 1)

| ﬁ (16)

forevery n € Ny, u € Y and x, y,z,w € U with x—y,@ e U.
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Clearly, if n = 0, then (16) is simply (12). So, fix n € INy and suppose that (16) holds for n and every u € Y
and x, y,z,w € U with &2, =% € U. Then, for every u € Y and x,y,z,w € U with ¥, % e U,
X+z y+w

a7 (552 55 ) = T e ) = Tt ) = T e ) = T ez,

=H77Zf( x+zl]/+w)+7.nf( %1(2_1)]/ )+T”f((2— x+zly-;w)

+Taf(@-m 52, @ =) IS2 ) 47T e by) = 47T flmx, 2 = Dy) — 47T (@ =y, )

— 47T (2~ m) x, (2= D)y) =471, f(mx, kw) = 47T, f(mx, (2 = w) = 47T (2 = m)x, w)

— 47T (2 = m)x, (2 = Dw) = 4715 f(mz, Iy) = 47T f(mz, (2 = Dy) = 47T (2 = m)z, 1y)
4YTA(2 - m)z, (2 = Dy) — 47T f(mz, lw) — 47T f(mz, (2 — Dw)

— 47T F((2 = m)z, lw) — 47 T (2 — m)z, (2 — Dw), u ‘/3

) T f(mx, ly) = T f(mx, lw) = T f(mz, ly) — T, f(mz, [w), u

x+zly+w ’
2 B

,(2— )y -*2' w) =T f(mx, (2= )y) — T f(mx, (2 = Dw) — T, f(mz, (2 = y)
- n X+z Yy+w

|ﬁ Tlf((z - m)T,l 7

— an;f((z - T}’l)Z, l]/) - T,f;f((Z - m)Z, lw)/ u |/3 + 4—[;“7'12f ((2 _

= Tnf(2=m)x, 2= Dy) = T f(2 = m)x, (2 = Dw) = T, f(2 = m)z, (2= Dy) = T f(2 - m)z, (2 = Dw), u

< 4#arig m

X+z

+at|7 f(

—Tmf(mz, 2 - w),u

)= Taf(@ = myx,ly) - Tf(@ = myx, )

x+z (2—Z)y+w)

< 4_50%}11(mx)hz(ly)hg(mz)h4(lw) +47Pa” hy (mx, u)hy((2 - Dy, whs(mz, u)hs((2 — Dw, u)
+47Fal hy (2 = m)x, u)ha(ly, u)hs((2 — m)z, u)hy(lw, u)
+47Pal iy (2 — myx, wha((2 = Dy, whs((2 — m)z, u)ha((2 — Dw, u)

< (am)"™ ' (x, why(y, whs(z, u)he(w, u).

Thus, by induction, we have shown that (16) holds for all u € Y and x, y,z, w € U such that =%, y Y eUand
for all n € INy. Letting n — oo in (16), we obtain that

X+z y+w
27 2

490 (55 557 ) = Tl ) + T ) + Tz ) + T f ) (17)
for every m € My and x,y,z,w € U with 5%, y;w e U.
In this way, for each m € M, we obtain a function J,, such that (17) holds for x,y,z,w € U with
x+z y+w
€ Uand

< 47Psy (m)sa(1)s3(2 — m)sa(2 = Dha (x, uha(y, uhs (x, wha(y, u)
- 1- Qm

£ G, y) = Jn(x,
forallu € Y, x,y € Uand m € M,. Since
lim s1(xm)s3(xm) = lim sq(m)s3(2 —m) =0,

it follows, with m — oo, that f fulfils (7). O
Remark 3.2. The Theorem 3.1 also provide y-hyperstability results in each of the following cases:
o v(x,y,z,w,u)=h(xu), xyzwel uey;

|ﬁ
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o v(x,y,z,w,u) =h(x, why(y,u), xyzwel ucy;
o v(x,y,z,w,u) = h(x, uhy(y, Whs(z,u), x,yzwel ucy.
In a similar way we can prove the following theorem.

Theorem 3.3. Let U be a nonempty subset of X \ {0} fulfilling condition (9) with some ng € N. Leth: UXY — R,
be a function such that

Mo = {11 € Ny, | by = 212[s(n) + 52 - m)] < 1} # 0, (18)
where s(x+n) := inf{t € Ry : h(xnx, u) < th(x,u) forall (x,u) € U XYY} for n € Ny, such that

lim s(n) = lim s(—n) = 0. (19)

n—00 n—00

Suppose that f : U? — Y satisfies the inequality

x+z y+w

[ar(5= 257 - £ = e w) = fa ) - flzw)u

(20)

,
<h(x,u)+h(y, u) + h(z,u) + h(w,u), ueY, x,yzwel XTJFZ,y;w

ey,
then (7) holds.
Proof. Replacing (x,z, y, w) by (mx, (2 — m)x, my, (2 — m)y) in (20), we get

||4‘1f(mx,my) + 4_1f(mx, (2-m)y) + 4_1f((2 —-m)x, (2 —m)y) + 4_1f((2 —m)x, my) — f(x,y),u |ﬁ
< 47 P[h(mx, u) + h(my, u) + h((2 — m)x, u) + h((2 — m)y, u)] (21)

forallm € N, u € Yand x,y € U Let
Em(x, y,u) 1 = 47 PFlh(mx, u) + h(my, u) + h((2 — m)x, u) + h((2 — m)y, u)]
< 47 (s(m) + (2 — m)) [h(x, u) + h(y, u)] (22)
Tmé(x/ y) = 4_15(711.7(', m]/) + 4_15(77’1.7(', (2 - m)y) + 4_15((2 - m)xr m]/) + 4_15((2 - m)x/ (2 - m)y)
for (x,y,u) e UX U XY, m € Ny, and & € YY*U. Then inequality (21) takes the form

| T f e y) = fx,y),u

|ﬁ <em(x,y,u), ucy, x,yel, meNy,.
Write
Apo(x, y,u) = 4_ﬁ6(mx, my, u) + 4_'36(mx, 2-m)y,u) + 4‘56((2 — m)x, my, u) + 4_56((2 —m)x, (2 —m)y, u)

for (x,y,u) € UXx U XY, m € N,, and 6 € R\, Then, the operator A, has the form described in (H4)
with k =4 and

Al y) = (mx,my),  folxy) = mx,2-m)y),  falx,y) = (2 - m)x,my)
fa(x, y) = (2 —m)x, (2 —m)y), Li(x,y,u) = Lo(x, y,u) = La(x, y, u) = Ly(x, y,u) = 47k
forall x,y € U and u € Y. Moreover, for every &, u € YUXU 4y e N, andu € Y, x,y € U, we have
17580 1) = Tonps, ), ull < 47 1€ = (A ), | + 47P[l(E = (ol ),
+ 47| - (he ), u

.
[+ 47 € = ),

4
= Y Loy € = it ), u -
i=1
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So, (H3) is valid for 7,.
Next, it easily seen that, by induction on #, from (22) we obtain
Ay em(x, y,u) < 47F (s(m) + s(2 — m)) by [h(x, u) + h(y, u)] (23)
for all n € Ny and m € My. Therefore, we obtain that

= 47 2— h(x, h(y,
&(x, y,u) = ZAﬁ,sm(x, y,u) < (s0m) + 5( 171_1)2[ b 1) + iy u)]’ ueY, x,yel me M,
n=0 m

Thus, according to Theorem 2.1, for each m € My the function [, : UXx U — Y, given by J.(x,y) =
limy, o T f(x, y) for x, y € U, is a unique fixed point of 7, i.e.,

Jn(x, ) = 47 Tu(mx, my) + 47 Ju(mx, (2 = m)y) + 47 (2 — m)x, my) + 47 Ju(2 — m)x, (2 — m)y)
for all x, y € U; moreover

| - 47F (s(m) + s(2 — m)) [h(x, u) + h(y, u)]
B~ 1-b,

forallu € Y, x,y € U and m € M,. Similarly as in the proof of Theorem 3.1, we show that

1 ) = T, ), u

a7 (52 257 ) - Tanf o) = T ) = T fte, ) - Tif e, ),

< bl [h(x, u) + h(y, u) + h(z, u) + h(w, u)]

|,g

. -+ « .
for every n € No, m € Mo, u € Y and x,y,z,w € U with &2, £= € U. Also the remaining reasonings are

analogous as in the proof of that theorem. O

Remark 3.4. The Theorem 3.3 also provide y-hyperstability results in each of the following cases:
o y(x,y,zzw)=h(x,u), xel uey;
o v(x,y,z,w)=h(x,u) + h(y,u), x,yel, uey;
o v(x,y,z,w) =h(x,u) + h(y,u) + h(z,u), x,y,zel ucy.

By using Theorems 3.1, 3.3 and the same technique we get the following hyperstability results for the
inhomogeneous bi-Jensen functional equation.

Corollary 3.5. Let U be a nonempty subset of X \ {0} fulfilling condition (9) with some ng € N. Let F : U* > Y
be a given mapping and hy, hy, hs3,hy : U XY — Ry be four functions such that (10) is an infinite set, where
si(xn) := inf{t € Ry : hi(xnx, u) < thi(x,u) forall (x,u) e UX Y} forn e N, andi=1,2,3,4, such that

lim s1(xn)s3(xn) = lim s1(n)s3(2 —n) = 0.

Suppose that f : U?> — Y satisfies the condition

X+z y+w
(5= 557 ) - £ = ) = fzr) = @) = Fex,y, 2,0, (24)
< I (x, whay, hs(z W@, weY, xyzwet, 252y
and the functional equation
xX+z y+w
4 ( > ]/T) =g(x,y) + g(x,w) + g(z, y) + g(z,w) + F(x, y,z, w), (25)
x+z y+w
x,y,z,w €l R el

has a solution fy : U*> — Y. Then f is a solution of (25).
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Proof. Let fi(x,y) := f(x,y) — fo(x,y) for x,y € U. Then

4 (5= 55 - At v = At ) = e, ) = itz

=Jar (55 55) - Fww - ) - fe ) - flaw) - Fx g, z,0)

— 4o (555 L5 )+ o) + o) + foler )+ fles )+ Fe, v,z 0,

<Jar (552 ““w) £03,) = £, 0) = £z, ) = £z ) = Fex, 7,0,
||4:f0(x+Z y+w) Jolx, y) = fo(x,w)—fo(Z,y)—fo(Z,w)—F(x,y,Z,w),u|ﬁ
= Jor (555 557) - £ = ) = e, ) = Fzy0) = Fes 2,00

< In(x, wha(y, whs(z, ha(w,w), weY, vy zwel, S22y

It follows from Theorem 3.1 with f replaced by f; that f; satisfies the bi-Jensen functional equation (7).
Therefore,

x+z yt+w

1 (55 E0) - fn) - o w) - fe ) - flaw) - Fy,z,0)
=47 (52 50 - Ay - il w) - filey) - Ao
raf (5555 ' L5V foy) = fw ) = f ) - ) - Fes,y,2,0) = 0

forallx,y,z,we Uwith 22, L2 e U O

Analogously we prove the following.

Corollary 3.6. Let U be a nonempty subset of X \ {0} fulfilling condition (9) with some ng € N. Let F: U* —» Y
be a given mapping and h : U XY — R, be a function such that (18) is an infinite set, where s(+n) := inf{t € R, :
h(xnx, u) < th(x,u) forall (x,u) € U XY} forn € N,,, such that

lim s(n) = lim s(—n) =

Suppose that f : U?> — Y satisfies the condition

X+z y +w
(5572 257 = ) = ) = e, ) = fay0) = Fex 2,0, 26)
< h(x,u) + h(y,u) + h(z,u) + h(w,u), ueY, x,yzwel, x;—z, y-lz-w ey,
and the functional equation
x+z y+w
4 ( > Y > ) =g(x,v) + g(x,w) + g(z, y) + g(z, w) — F(x, y,z,w), (27)
X+z y+tw
x,y,z,wel, ) el

has a solution fy : U*> — Y. Then f is a solution of (27).
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4. Some particular cases and examples

According to Theorems 3.1, 3.3 and Corollaries 3.5, 3.6 with h(x,u) := cIIxIIZIIu,allﬁ and h;(x,u) :=
cillxllﬁillu,allﬂ for all (x, ) € U X Y and for some arbitrary element a € Y, where c,p,c;,pi € Rand i =1,2,3,4,
we derive some corollaries of our main results.

Corollary 4.1. Let U be a nonempty subset of X \ {0} fulfilling condition (9) with someng € N. If f : U> - Y
satisfies the functional inequality

x+z +w
(5= 55 )~ fe ) = ) = fea,) = e )], < el ol
+w
ueyY, x,yzwell, xTJrZ,yZ el

with some fixed numbera € Y,c > 0,and p,q,r,1 € Rsuch that p +r <0or q +1 <0, then (7) holds.
Proof. Define hy, hy, h3,hy : UXY — Ry by hi(x,u) = c1||x|| lu,allg, ha(x,u) = czllxllﬁllu allg, ha(x,u) =

C3||x||;||u,u||/; and hy(x, u) = C4||x|| |lu, al|g for an arbitrary elementa € Y,wherecy, ¢, c3,c4 € Ryandp,g,1,1 € R

such that p + v < 0 (the case g + l < 01is analogous), ¢ = c1cpc3c4 and fix £ € IN,.
For each n € IN,,, and for an arbitrary elementa € Y

s1(xn) = inf{t € R, : hi(xnx, u) < thy(x,u) forall (x,u) e UXY}
=inf{t e R, : clllanIZIIu,allﬁ < tC1||x||Z||u,ﬂ||/3 forall (x,u) e UXY}
= nfr.
Also, for each n € N, we have s3(+n) = n". So
32?0475[51(”)53(”) +51(2 = n)s3(2 — m)] X [52(€)s4(€) + $2(2 = £)s4(2 = 0)]
= lim 47 P[P0+ 4 (n — 2)BP)] x [£P4*D 4 (¢ — 2)P+D]
=0.
Clearly, there is n; € IN,, such that
47 P[P 4 (1 = 2)PPI] x [P9HD 4 (£ - 2P0 <1, 1> my.
Also, we have
lim 47Ps1(n)sp(€)s3(2 — n)sa(2 — €) = lim 4 PP ebi(n —2)P (£ - 2)F = 0
Thus, all the conditions in Theorem 3.1 are fulfilled. So, we get the desired results. [

Corollary 4.2. Let U be a nonempty subset of X \ {0} fulfilling condition (9) with some ng € N. Let F: U* — Y be
a given mapping, ¢ > 0 and p,q,r,1 € R be such that p +r < 0 or g+ 1 < 0. Suppose that f : U?> — Y satisfies the
condition
z y+w
||4f ) ) flx,y) = flx,w) - f(z,y) — f(z,w) = F(x,y,z,w),u
X+z ytw
27 2

< cllxlBIyI Izl ol 1, alls,
‘,g sl llglZllgletlg I, allg

ueyY, x,yzwel, el

for some fixed element a € Y, and the functional equation

4 (xT” == ; w) = g(x,y) + g(x, w) + g(z,y) + g(z, w) + F(x, y,z,w), (28)

X+z y+w
1 Yr 4 EU/ A 7
xyzw > 5

el

has a solution fy : U*> — Y. Then f is a solution of (28).
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Corollary 4.3. Let U be a nonempty subset of X \ {0} fulfilling condition (9) with some ng € N. If f : U> - Y
satisfies the functional inequality

X+z + w
4 (552 557) = £ = 5,0) = £z, ) = ez 0, < el gl + 1l + ol s, el
ueyY, xyzwel, XTJFZ,y;weu,

with some fixed elementa € Y, ¢ > 0, and p < 0, then (7) holds.

Corollary 4.4. Let U be a nonempty subset of X \ {0} fulfilling condition (9) with some ng € N. Let F: U* — Y be
a given mapping, ¢ > 0 and p € R be such that p < 0. Suppose that f : U*> — Y satisfies the condition

(552 257) = ) = ) = e, ) = fa,0) = Fla 2,0,
< el + 1yl + el + Il ally, wey, xyzweu, 5% ey
for some fixed element a € Y, and the functional equation
4 (x -2'- Z, Y -; w) =g(x,y) + g(x,w) + g(z, y) + g(z,w) + F(x, y,z, W), (29)
x,y,z,wel, xzﬁ,wTw el

has a solution fy : U*> — Y. Then f is a solution of (29).

Proof. The proofs of Corollary 4.2, 4.3 and 4.4 are direct consequences of Corollary 3.5, Theorem 3.3 and
Corollary 3.6 respectively. O

Now, we give some examples which show that in the above theorems the additional assumption on U
are necessary.

Example4.5. Let X = Y = R, U = [-1,1]\ {0}, p,r < 0, and f : U> — R be defined by f(x,y) = |x|. Let
hy, hy, hs, hy « U — Ry be functions such that hy(x) = |x|P, h3(x) = |x|" and ha(x) = ha(x) = 2. Then f satisfies

‘ f(x+z ]/-iz-w

but f is not solution of Eq. (7) on U. We see that 0 ¢ U and U does not satisfy the assumption of Theorem 3.1.

) fy) = flx,w) = f(z,y) - flz,w)| < 4xFlzl’, x,y,z,wel

Example 4.6. Let X =Y =R, U = (0,),p <0and f : U> - R be defined by f(x,y) =xP + y. Leth: U - R,
be a function such that h(x) = 2>7F|x|. Then f satisfies

47 (552 57 ) - fw) — fesw) = fary) = S )] < PP 41 + P + o), xy,z 0 e U

but f is not solution of Eq. (7) on U, which shows that in Theorem 3.3 the assumption that —x € U for every x € U
is necessary.

We end the paper with an open problem.
Problem. For the cases h; and h are constants functions for i = 1,2, 3,4, the method used in the proofs of the
above theorems can not be applied, thus this is still an open problem.
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