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Abstract. We extend the improved Schwarz inequality of Dragomir [1, Theorem 2] to any power p > 2,
<, e)l (IlxlPP — |<x,6>|”)””l

4

Iyl = Kx, )l = |det

Ky, el Uyl = Ky, ey

for any vectors x, y, e € C" with |le]| = 1. Applications to n-tuples of complex numbers are also included.

1. Introduction
Let (V, (-,-)) be an inner product space over a number field (R or C). The Schwarz inequality states that
Iyl > Kx, y)I?, for any x,y € V. 1)

Equality holds if and only if x and y are linearly dependent. A large number of generalizations and
refinements of the Schwarz inequality have been investigated in the literature.
In 1985, Dragomir [2] established the following inequality related to Schwarz inequality

(IRl = 1¢x, 252 ) (IyIPlil? - Ky, 2)P)
> |, P = (x, 20z, )
> i, IR = Kx, 2z, I )

If we take the square root of (2) and divide it by ||9c||||y||||z||2 # 0, then

e, I~ Kx, 2)] Kz, y)l x, Z)I? Ky, 2)
- 1- 1-———. 3
lctltyll izl izl yl = \/ IIXIIZIIZIIZ\/ Iyl ©
Also we can get
K e)F Ky el 1ol Kx el Ky el Kx, )l 1<0, )

+ + - -
[lx/12 Iyl> Pl 121 I 7 7
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for any x, y # 0 with [le|]| = 1.
Recently, the following refinements of the Schwarz inequality were proposed [1]. Let x, y, e € V with
lle]l =1 and p > 2, then

(1| (P = Kx, eplPyve)”
[IxlPlIyllP = 1<x, )l > |det 5)
[yl (lylP = Ky, eyp)1/?
and
[{x, el (2 = 1¢x, e)) 1127\
llxlPlyl* = ¢x, )l > | det . (6)
Ky, e)l (Il = Ky, e)})1/?

In this paper, we shall prove that the inequality (6) can be extended for any power p > 2,
4
Pyl = Kx, )l =

[I(x, el (Il = KK, 6)|”)””]
det

Ky, el Uyl = Ky, exlP)?

Moreover, we show that the above inequality is stronger than (5).

2. Some Lemmas

In the following, we prove some basic lemmas that will be needed in the proof of the main results.

Lemma 2.1. [3] Let n be an integer greater than one and let A = (a;;) be an n X n real symmetric positive semidefinite
matrix with nonnegative entries. If p is a real number such that p > n — 2, then AV = (afj) is positive semidefinite.

Lemma 2.2. Leta,b>0,p > 2, then
la — b < ab —2aP2bP% + P = (aP/? — bPI2)2. 7)
Proof. Without loss of generality, we may assume thata > b > 0. Equivalently, we need to prove
@-b¥ <@ -v)y, p=1,
or
(a-byf<a" -0, p=1
Lett = 2—7 €[0,1], a # 0, it remains to prove
1-tyf<1-#, p=1,
which is trivial since
-t <1-t<1-#, px1.
O

Lemma 2.3. Leta, b€ [0,1], p > 2, then

aVl—bP—bVl—aPiz|Vl—bP—V1—aPi.
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V1-tr
1

—t

Proof. It is trivial fora = 1 or b = 1. Assume thata,b # 1 and a > b. Fix p > 2 and set f(t) = for

t €[0,1), then

1— ) i1 =1 .
(1-1)2 -

d ..
/0=

Since f(t) is increasing, if a, b € [0,1) and a > b, then

1-ar  V1-0r
fla) = P = f(b),

a

in another form

aV1i--bV1-ww>V1-tr - V1-w,

which leads to the desired result. [

3. Main Results

In this section, we generalize the inequality (6) (see also [1, Theorem 2]) to any power p > 2.

Theorem 3.1. Let x, y, e € V with |lel| = 1, p > 2. Then the following refinement of the Schwarz inequality holds

I€x, )l (Il = [Kx, e)P) e[
IxlPllyllP = [<x, )P > |det ®)
Ky, el (IYllP = Ky, eyt
Proof. It is trivial for x = 0 or y = 0. Assume that x # 0 and y # 0, then (8) is equivalent to
4
el (ke[ kel el [T [er o)
lxlPlylle | [l lyllP Il llxlP
For convenience, taking
_kxel Ky, el ~ Kx, )l
- s - s C=
llxll Il llxlllwl
then 0 <a,b,c < 1and a? + b? + ¢ — 2abc — 1 < 0 according to (4).
1 ¢ a 1 & a
LetG=|c 1 b| itisclear that G is positive semidefinite. With Lemma 2.1, G® = |¢? 1 b"|isalso
a b 1 a’ b1
positive semidefinite for p > 1. Hence
1422P6°cP — (@ + b +c¥) >0, p=1, (10)

equivalently,

P —abP) < VI —a V1 -0, p>1. (11)
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Using the above inequalities (10) and (11), it follows from Lemma 2.2 that

ol _Kwor Kol [ Kk
Il P~ Iyl BTG

P
= [T =1 - b=
<aP(1 - ) = 2a"20P2 N1 —bP V1 —a? + bP(1 — aP)
@’ + P =20 P — 2aPP0P2 N1 —ap N1 — 1P
aP + b — 2aPpP — 2aP2pp/2 |CP/2 - ap/pr/Z‘

a’ + P — 2a°?pP/? (a”/sz/z + ’c”/z - a”/sz/2|)

14

IAN I

<aP + b — 2072 bPI2 P2
<1-c°
e, y)lP
RGeS

which proves (9). O

5332

Remark 3.2. The result (8) is stronger than (5), since the inequality (5) (see also [1, Theorem 1]) is equivalent to

p

7

)l | Ko [ Kxew
G P

llxlPllyll

forany x, y # 0. By Lemma 2.3, we have

|<xre>| . |<y/e>|}’7 _ |<}//€>| 'l |(x,e>|7" >
[l llyllP iyl N llxIlP

Remark 3.3. It is also true that

p

IxIPllyllP — IRedx, y)IP > |det

7

IRex, €)] (IIxIl” ~ IRedx, e)P)" ”]

IRey, e)| (Il = ReCy, eylP)1/7
forx,y,ee Vuwithllel|=1,p =2

The following inequality has been obtained by Wang and Zhang in [4] (see also [5, p. 195])

I{x, yI? (x, 2)I? Ky, 2)I?
1- 2 <\ [1- +4]1- ,
\/ Iyl [l 1?11z]1> Iyl 111>

for any x, y, z € V' \ {0}. In [6], Lin showed that it can be extended for any power p > 2,

P p
LIS Ly (€ T PO /1
llxlPllyllP llxclPl=IP ylPlizIlP

For any nonzero vectors x and y, define the angle between x and y by [5, p. 30]

1 K6 )l
[yl

Now we obtain the following result when Wy Wiz, Vyz € [0, Z].

W, = cos

R Y AT
P Il
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Theorem 3.4. Letx,y,z€ V\ {0}, p 2 2, if Wy, Wy, Wy € [0, 7], then we have

, Kx )l _ Ky2l, Kx,2)F  Kx,2)], Ky, 2)lF
i /1 - i /1 - . 12
IIxIIPIIyIIF’ Iyl [Ix[[P{]z[P " [Ix[lll] IyIIPl1zIP (12)

Proof. The idea of proof is similar to that in [6, Proposition 2]. Using the fact that W, < W, + W, for any
x, Y,z # 0 [6], we obtain

sin Wy, < sin(W,; + W) = cos W, sin Wy, + cos Wy, sin W,
since the function sin is increasing on [0, 7]. Taking

[{x, 2)|
[lx(ll|zIl”

Ky, z)| [<x, )|
DIER 2 cos Wy =
T O = iy

a=cosW¥,, = b=cosV¥,, =

then we have

0<Vi-2<aVi-R2+bV1i-a2<1,

similarly,

Vi-@2<aVi-12+bV1-a2,
Vi-p2<aVi-02+bV1-a?
for Wy, Wy, Wy, € [0, 1.
F. _ 2\p/2 1/77
ixp >2and setf(t)—(l—(l—t ) ) for t € [0,1]. Then

S0 =(1-a-pyR) " a gy o
and

S8 (- -pR) " -yt -1) <o

t
Since f(t) is increasing and Jg is decreasing, we can get

f(V1-) < faV1-12 +bV1-a?)
avV1-b2f(avV1-b2 +bV1-a?) +b\/1—112f(a‘/1—b2+b\/1_,12)

aV1—b2+bV1-a2 aV1—b2 +bV1-a2
- avV1-b2f(V1-1b2) +b\/1—a2f(\/1—a2)
- Vi-1? Vi-a2
=af(V1-0) + bf(V1—a?),

which leads to the desired result. [

_1 Rel{x, y)|

Remark 3.5. If we define the angle between x and y by @y, = Tl

the angle @, still holds

_Relx, )l _Re(y,2)| , [, IReCx, 2)P  IRex, )l [, IReCy, )P (13)
IIxIIPIIyII’” lIylllz] TR E] IylPlizlP *

for q)xy/ CDXZ/ q)yz e 4 4]

, X,y # 0, the corresponding result for
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4. Applications
In this section, we show some applications of Theorem 3.1 to n-Tuples of complex numbers. Let

x=@1,,x%), y=Wi, -, Yn), e=(e1, -+ ,e,) € C" with }:Zﬂ lex|* = 1. C" is an inner product space over C
with the inner product (x, y) = y*x = Y;_; XxJx. Then the inequality (8) can be written as

n P2y p/2 n P
[Z |xk|2] [Z w] =) xed (14)
k=1 k=1 k=1
n = n 2\n/2 n _ PP

[ 2k=1 Xkl ((Zkzl |xxl)” —|Zk=1xk€k|”)

> |det
_ _ A\/p
| S vl (T P2 = 1 T e

for any power p > 2.
(i) Taking e = (0,---,0,1,0,--- ,0), which has a 1 as its mth entry and Os elsewhere, then

n pI2 oy p/2 n p
[Z |xk|2] [Z |]/k|2] - Zxkyk
k=1 k=1 k=1
1/p7|P
ol (T b2 = )
> Iﬂax | det
me{l, n 1/p
1Yol (T Y2 = lyul?)

For p = 2, we can get a simpler inequality

n n
2 2
3Rl Y il -
k=1

k=1

n 2

Z X Yk

k=1

172
%] (lek#mﬂ: |xk|2)

> max |det
mefl, ,n}

1/2
|]/m| (lek#msn |]/k|2)
When n = 2, this is as follows
(1 + )yl + 1y2?) = g + 272 + (xallyzl — ).

Equality holds for real numbers.
(ii) Taking e = (%, e, \/Lﬁ)' by (14) we get

n P2y p/2 n p
[Zw] [Zw] 1Y o
k=1 k=1 k=1
1/p7|P
12 T xd (& i b2 = 1L Ly i)

> n? |det

n n n 1/
Lriawl  (GT PP -1 T wr)
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For p = 2, we can get an interesting result mentioned by S. S. Dragomir [1],

n 2

ipckﬁzn)yuz ) xid
k=1 k=1

k=1
1y 1y 2y _ 11y 2\1/2
1L, xd (& i ) = 12 5y )
> n?| det ,
1/2
1L, (& Zi ) = 12 Ty i)

which is equivalent to

ECXP < EAE(Y?) = (IE)] Y Var(Y) - [EM)| Y Var(X)).

for real numbers in the probability version [7].
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