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Available at: http://www.pmf.ni.ac.rs/filomat

On Complete and Complete Moment Convergence for Weighted Sums
of Widely Orthant Dependent Random Variables

Caoqing Wua, Mingming Ninga, Aiting Shena

aSchool of Mathematical Sciences, Anhui University, Hefei 230601, P.R. China

Abstract. In this article, the complete convergence for weighted sums of widely orthant dependent (WOD,
in short) random variables without identical distribution is investigated. In addition, the complete moment
convergence for weighted sums of WOD random variables is also obtained. The results obtained in the
paper generalize some corresponding ones for some dependent random variables.

1. Introduction

It is well known that the complete convergence plays an important role in probability limit theory
and mathematical statistics, especially in establishing the convergence rate for sums or weighted sums of
random variables. The concept of complete convergence was introduced by Hsu and Robbins [1] as follows.
Definition 1.1. A sequence of random variables {Un,n ≥ 1} is said to converge completely to a constant a if for any
ε > 0,

∞∑
n=1

P(|Un − a| > ε) < ∞.

In view of the Borel-Cantelli Lemma, this implies that Un → a almost surely (a.s.). The converse is
true if {Un,n ≥ 1} are independent. Hsu and Robbins [1] proved that the sequence of arithmetic means of
independent and identically distributed (i.i.d.) random variables converges completely to expected value if
the variance of the summands is finite. Erdös [2] proved the converse. The result of Hsu-Robbins-Erdös is
a fundamental theorem in probability theory and has been generalized and extended in several directions
by many authors. One of the most important generalizations is Baum and Katz [3] for the strong law of
large numbers as follows.
Theorem 1.1. Let 1/2 < α ≤ 1 and αp > 1, let {Xn,n ≥ 1} be a sequence of independent and identically distributed
random variables. Assume further that EX1 = 0 if α ≤ 1. Then the following statements are equivalent:

(i) E|X1|
p < ∞;
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(ii)
∑
∞

n=1 nαp−2P(max1≤k≤n |
∑k

i=1 Xi| > εnα) < ∞ for all ε > 0.
Since then, many authors were devoted to studying the Baum-Katz type strong law of large numbers

for dependent random variables, such as Sung [4] for ρ∗-mixing sequences, Wang and Hu [5] for martingale
difference sequences, Zhang [6] for estended negatively orthant dependent sequences, and so on. The main
purpose of the article is to study the Baum-Katz type result for weighted sums of widely orthant dependent
random variables.

The concept of widely orthant dependence structure was introduced by Wang et al. [7] as follows.
Definition 1.2. For the random variables {Xn,n ≥ 1}, if there exists a finite positive sequence {1U(n),n ≥ 1} satisfying
for each n ≥ 1 and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P(X1 > x1,X2 > x2, · · · ,Xn > xn) ≤ 1U(n)
n∏

i=1

P(Xi > xi), (1.1)

then we say that the random variables {Xn,n ≥ 1} are widely upper orthant dependent (WUOD, in short); if there
exists a finite positive sequence {1L(n),n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈ (−∞,∞), 1 ≤ i ≤ n,

P(X1 ≤ x1,X2 ≤ x2, · · · ,Xn ≤ xn) ≤ 1L(n)
n∏

i=1

P(Xi ≤ xi), (1.2)

then we say that the {Xn,n ≥ 1} are widely lower orthant dependent (WLOD, in short); if they are both WUOD and
WLOD, then we say that the {Xn,n ≥ 1} are widely orthant dependent (WOD, in short), and 1U(n), 1L(n), n ≥ 1, are
called dominating coefficients.

An array {Xni, i ≥ 1,n ≥ 1} of random variables is called rowwise WOD random variables if for every n ≥ 1,
{Xni, i ≥ 1} is a sequence of WOD random variables.

From (1.1) and (1.2), we can see that 1U(n) ≥ 1 and 1L(n) ≥ 1. It is easily seen that if both (1.1) and
(1.2) hold for 1L(n) = 1U(n) = M for any n ≥ 1, where M is a positive constant, then the random variables
{Xn,n ≥ 1} are called extended negatively dependent (END, in short). This is the definition of END
sequence which was introduced by Liu [8]. If both (1.1) and (1.2) hold for 1L(n) = 1U(n) = 1 for any n ≥ 1,
then the random variables {Xn,n ≥ 1} are called negatively orthant dependent (NOD, in short), which
was introduced by Ebrahimi and Ghosh [9]. It is well known that negatively associated (NA, in short)
random variables are NOD. Hu [10] pointed out that negatively superadditive dependent (NSD, in short)
random variables are NOD. Hence, the class of WOD random variables includes independent sequence,
NA sequence, NSD sequence, NOD sequence and END sequence as special cases. Studying the probability
limit theory and its applications for WOD random variables is of great interest.

Since Wang et al. [7] introduced the concept of WOD random variables, many authors were devoted
to the study of limit behavior of WOD random variables. Wang et al. [7] provided some examples which
showed that the class of WOD random variables contains some common negatively dependent random
variables, some positively dependent random variables and some others; in addition, they studied the
uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant
interest rate. He et al. [11] provided the asymptotic lower bounds of precise large deviations with
nonnegative and dependent random variables. Wang et al. [12] investigated the asymptotics of the finite-
time ruin probability for a generalized renewal risk model with independent strong subexponential claim
sizes and widely lower orthant dependent inter-occurrence times. Shen [13] established the Bernstein type
inequality for WOD random variables and gave some applications. Qiu and Chen [14] obtained some
results on complete convergence and complete moment convergence for weighted sums of WOD random
variables. Wang et al. [15] established some results on complete convergence for arrays of rowwise WOD
random variables with application to complete consistency for the estimator in a nonparametric regression
model based on WOD errors. Wang and Hu [16] studied the consistency of the nearest neighbor estimator
of the density function based on WOD samples. Yang et al. [17] presented the Bahadur representation of
sample quantiles for WOD random variables. Chen et al. [18] established an inequality of WOD random
variables and gave some applications, including the strong law of large numbers, the complete convergence,
the a.s. elementary renewal theorem, and the weighted elementary renewal theorem. Wang et al. [19]
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obtained some results on complete convergence for arrays of rowwise WOD random variables and gave
some applications. Xia et al. [20] established the complete consistency and strong convergence rate for the
weighted estimator of nonparametric regression model based on WOD errors.

In this article, we will further study the complete convergence and complete moment convergence for
weighted sums of WOD random variables under some mild conditions.

The concept of complete moment convergence was introduced by Chow [21] as follows: let {Zn,n ≥ 1}
be a sequence of random variables and an > 0, bn > 0, q > 0. If

∞∑
n=1

anE{b−1
n |Zn| − ε}

q
+ < ∞ for some or all ε > 0,

then the above result was called the complete moment convergence.
It can be easily verified that complete moment convergence implies complete convergence; thus, com-

plete moment convergence is much stronger than complete convergence. For more details about complete
moment convergence, one can refer to Liang et al. [22], Wu et al. [23], Shen et al. [24] and Wu et al. [25] for
instance.

The following definitions of slowly varying function and stochastic domination play important roles
throughout the article.
Definition 1.3. A real-valued function l(x), positive and measurable on (0,∞), is said to be slowly varying if

lim
x→∞

l(xλ)
l(x)

= 1

for each λ > 0.
Definition 1.4. A sequence {Xn,n ≥ 1} of random variables is said to be stochastically dominated by a random
variable X if there exists a positive constant C such that

P(|Xn| > x) ≤ CP(|X| > x)

for all x ≥ 0 and n ≥ 1 .
Throughout the article, C denotes a positive constant which may be different in various places. Denote

X+ = max(X, 0), X− = max(−X, 0) and log x = ln max(x, e). Let I(A) be the indicator function of the set A and
bxc be the integer part of x.

2. Preliminaries

In this section, we will present some important lemmas, which will be used to prove the main results of
this work. The first one is a basic property for WOD random variables, which can be found in Wang et al.
[7].
Lemma 2.1. Let {Xn,n ≥ 1} be WLOD (WUOD) with dominating coefficients 1L(n),n ≥ 1 (1U(n),n ≥ 1). If
{ fn(·),n ≥ 1} are all nondecreasing, then { fn(Xn),n ≥ 1} are still WLOD (WUOD) with dominating coefficients
1L(n),n ≥ 1 (1U(n),n ≥ 1); if { fn(·),n ≥ 1} are all nonincreasing, then { fn(Xn),n ≥ 1} are WUOD (WLOD) with
dominating coefficients 1L(n),n ≥ 1 (1U(n),n ≥ 1).

The next one is the moment inequality for WOD random variables, which was established by Wang et
al. [15].
Lemma 2.2. Let q > 1 and {Xn,n ≥ 1} be a sequence of mean zero WOD random variables with dominating
coefficients 1(n) = max{1U(n), 1L(n)}. If E|Xn|

q < ∞ for any n ≥ 1, then there exist positive constants C1(q) and
C2(q) depending on q such that for each n ≥ 1,

E

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣
q

≤ [C1(q) + C2(q)1(n)]
n∑

i=1

E|Xi|
q, for 1 < q ≤ 2,
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and

E

∣∣∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣∣∣
q

≤ C1(q)
n∑

i=1

E|Xi|
q + C2(q)1(n)

 n∑
i=1

EX2
i


q
2

, for q ≥ 2.

The following one is a basic property for slowing varying function, where (i) is Proposition 1.3.6 (v) and
(ii) is Theorem 1.5.11 in Bingham et al. [26], and (iii) can be found in Bai and Su [27].
Lemma 2.3. If l(x) > 0 is a slowly varying function, then

(i) limx→∞ xδl(x) = ∞, limx→∞ x−δl(x) = 0 for each δ > 0;
(ii) C12krl(ε2k) ≤

∑k
j=1 2 jrl(ε2 j) ≤ C22krl(ε2k) for every r > 0, ε > 0, positive integer k and some C1 > 0, C2 > 0;

(iii) C32krl(ε2k) ≤
∑
∞

j=k 2 jrl(ε2 j) ≤ C42krl(ε2k) for every r < 0, ε > 0, positive integer k and some C3 > 0, C4 > 0.
The last one is a basic property for stochastic domination, which can be referred to Wu [28].

Lemma 2.4. Let {Xn,n ≥ 1} be a sequence of random variables which is stochastically dominated by a random variable
X. Then for any α > 0 and b > 0,

E|Xn|
αI(|Xn| ≤ b) ≤ C1[E|X|αI(|X| ≤ b) + bαP(|X| > b)],

and
E|Xn|

αI(|Xn| > b) ≤ C2E|X|αI(|X| > b),

where C1 and C2 are positive constants. Consequently, E|Xn|
α
≤ CE|X|α.

3. Main Results

Our main results are as follows.
Theorem 3.1. Let 0 < p < 2, αp > 1, and {Xn,n ≥ 1} be a sequence of WOD random variables with dominating
coefficients 1(n) = O(nδ) for some 0 ≤ δ < 2α − αp, which is stochastically dominated by a random variable X. Let
l(x) be a slowly varying function and l(x) ↑ if p = 1. Assume further that EXn = 0 if p ≥ 1, and {ani, 1 ≤ i ≤ n,n ≥ 1}
is an array of real numbers such that

n∑
i=1

a2
ni = O(n). (3.1)

If

E[|X|p+ δ
α l(|X|

1
α )] < ∞, (3.2)

then for any ε > 0,

∞∑
n=1

nαp−2l(n)P


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ > εnα
 < ∞. (3.3)

For αp = 2, we have the following corollary by Theorem 3.1.
Corollary 3.1. Let 0 < p < 2 and {Xn,n ≥ 1} be a sequence of WOD random variables with dominating coefficients
1(n) = O(nδ) for some 0 ≤ δ < 4

p − 2, which is stochastically dominated by a random variable X. Let l(x) be a slowly
varying function. Assume further that EXn = 0 if p > 1, and {ani, 1 ≤ i ≤ n,n ≥ 1} is an array of real numbers
satisfying (3.1). If

E
[
|X|p+

pδ
2 l(|X|

p
2 )
]
< ∞,

then for any ε > 0,
∞∑

n=1

l(n)P

 1

n
2
p

∣∣∣∣∣∣∣
n∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε
 < ∞.
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Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold and 1 ≤ p < 2.
(i) If 1 < p < 2, then for any ε > 0,

∞∑
n=1

nαp−2−αl(n)E


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ − εnα


+

< ∞; (3.4)

(ii) if p = 1 and

E[|X|1+ δ
α l(|X|

1
α ) log |X|] < ∞, (3.5)

then for any ε > 0, (3.4) stills holds.
Remark 3.1. Denote Sn =

∑n
i=1 aniXi. We point out that (3.4) implies (3.3). This can be obtained by the following

inequality:

∞∑
n=1

nαp−2−αl(n)E


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ − εnα


+

=

∞∑
n=1

nαp−α−2l(n)
∫
∞

0
P(|Sn| − εnα > t)dt

≥

∞∑
n=1

nαp−α−2l(n)
∫ εnα

0
P(|Sn| − εnα > t)dt

≥ ε
∞∑

n=1

nαp−2l(n)P(|Sn| > 2εnα).

Remark 3.2. In Theorem 3.1, if δ = 0, namely 1(n) = O(1), then the WOD random variables reduce to END random
variables. So the results of Theorems 3.1-3.2 and Corollary 3.1 also hold for END random variables.
Remark 3.3. There are many examples of slowly varying functions which are positive and monotone nondecreasing,
such as l(x) = 1, l(x) = log x, and so on.

4. Proofs of the Main Results

In this section, we will present the proofs of the main results obtained in Section 3.
Proof of Theorem 3.1.

Without loss of generality, we assume that

n∑
i=1

a2
ni ≤ Cn, (4.1)

ani ≥ 0 for all 1 ≤ i ≤ n and n ≥ 1 (Otherwise, we use a+
ni and a−ni instead of ani, respectively and note that

ani = a+
ni − a−ni).

It follows by (4.1) and Hölder’s inequality that

n∑
i=1

|ani| ≤

n
n∑

i=1

a2
ni


1
2

≤ Cn. (4.2)

For fixed n ≥ 1, denote for 1 ≤ i ≤ n that

X(n)
i = −nαI(Xi < −nα) + XiI(|Xi| ≤ nα) + nαI(Xi > nα),

T(n) = n−α
n∑

i=1

ani(X
(n)
i − EX(n)

i ).
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It is easily checked that for any ε > 0,

∞∑
n=1

nαp−2l(n)P


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ > εnα


≤

∞∑
n=1

nαp−2l(n)
n∑

i=1

P(|Xi| > nα) +

∞∑
n=1

nαp−2l(n)P

|T(n)
| > ε − n−α

∣∣∣∣∣∣∣
n∑

i=1

EaniX
(n)
i

∣∣∣∣∣∣∣


, I1 + I2. (4.3)

In order to prove (3.3), we just need to show that I1 < ∞ and I2 < ∞. By Lemma 2.3, we can get that

I1 ≤ C
∞∑

n=1

nαp−1l(n)
∞∑

j=n

P( jα < |X| ≤ ( j + 1)α)

= C
∞∑
j=1

P( jα < |X| ≤ ( j + 1)α)
j∑

n=1

nαp−1l(n)

≤ C
∞∑
j=1

P( j < |X|
1
α ≤ ( j + 1))

blog j
2c+1∑

i=1

2i∑
n=2i−1

nαp−1l(n)

≤ C
∞∑
j=1

P( j < |X|
1
α ≤ ( j + 1))

blog j
2c+1∑

i=1

2iαpl(2i)

≤ C
∞∑
j=1

P( j < |X|
1
α ≤ ( j + 1))2(blog j

2c+1)αpl(2blog j
2c+1)

≤ C
∞∑
j=1

P( j < |X|
1
α ≤ ( j + 1)) jαpl( j)

≤ C
∞∑
j=1

jαpl( j)E(
|X|

1
α

j
)δI( j < |X|

1
α ≤ ( j + 1))

≤ CE[|X|p+ δ
α l(|X|

1
α )] < ∞. (4.4)

In the following, we will prove that I2 < ∞. First, we show that

n−α
∣∣∣∣∣∣∣

n∑
i=1

EaniX
(n)
i

∣∣∣∣∣∣∣→ 0, as n→∞. (4.5)

By (3.2), one can get that for any 0 < γ < p + δ
α ,

E|X|p+ δ
α−γ < ∞. (4.6)

We consider the following two cases.
Case 1: 0 < α ≤ 1
Noting that αp > 1, we have that p ≥ 1. If p > 1, taking γ such that 0 < γ < αp+δ−1

α , we have by EXn = 0,
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(4.2), (4.6) and Lemma 2.4 that

n−α
∣∣∣∣∣∣∣

n∑
i=1

EaniX
(n)
i

∣∣∣∣∣∣∣ ≤ n−α
∣∣∣∣∣∣∣

n∑
i=1

EaniXiI(|Xi ≤ nα)

∣∣∣∣∣∣∣ +

n∑
i=1

|ani|P(|X| > nα)

≤ n1−αE|X|I(|X| > nα) + CnP(|X| > nα)
≤ Cn1−αE|X|I(|X| > nα)

= Cn1−αE|X|p+ δ
α−γ|X|1−p− δ

α+γI(|X| > nα)

≤ Cn1−αnα−αp−δ+αγE|X|p+ δ
α−γ

≤ Cn1−αp−δ+αγE|X|p+ δ
α−γ → 0, as n→∞.

If p = 1, we have by EXn = 0, (4.2) and Lemma 2.4 again that

n−α
∣∣∣∣∣∣∣

n∑
i=1

EaniX
(n)
i

∣∣∣∣∣∣∣ ≤ Cn1−αE|X|I(|X| > nα)

≤ Cn1−αp−δE|X|p+ δ
α I(|X| > nα)→ 0, as n→∞.

Case 2: α > 1
Take γ such that 1 + αγ − αp − δ < 0. It follows by Lemma 2.4 again that

n−α
∣∣∣∣∣∣∣

n∑
i=1

EaniX
(n)
i

∣∣∣∣∣∣∣ ≤ n1−αE|X|I(|X| ≤ nα) + CnP(|X| > nα)

= n1−α
n∑

k=1

E[|X|I((k − 1)α < |X| ≤ kα)] + CnP(|X| > nα). (4.7)

It follows by (4.6) that
∞∑

k=1

k1−αE|X|I((k − 1)α < |X| ≤ kα) ≤

∞∑
k=1

kP((k − 1)α < |X| ≤ kα)

=

∞∑
i=1

∞∑
k=i

P((k − 1)α < |X| ≤ kα)

=

∞∑
i=0

P(|X| > iα)

≤ 1 +

∞∑
i=1

E|X|p+ δ
α−γ

iα(p+ δ
α−γ)

< ∞,

which together with Kronecker’s Lemma yields that

n1−α
n∑

k=1

E[|X|I((k − 1)α < |X| ≤ kα)]→ 0, as n→∞. (4.8)

According to (4.6) and Markov’s inequality, we have

nP(|X| > nα) ≤ n1−αp−δ+αγE|X|p+ δ
α−γ → 0, as n→∞. (4.9)

In this case, (4.5) follows by (4.7)-(4.9) immediately. Hence, for all n large enough, we obtain

n−α
∣∣∣∣∣∣∣

n∑
i=1

EaniX
(n)
i

∣∣∣∣∣∣∣ < ε
2
,
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which implies that

I2 ≤ C
∞∑

n=1

nαp−2l(n)P(|T(n)
| >

ε
2

).

By Lemma 2.1, we can see that for fixed n ≥ 1, {ani(X
(n)
i − EX(n)

i ), 1 ≤ i ≤ n} are still WOD random variables.
Hence we have by Markov’s inequality, Lemma 2.2 (taking q = 2), (4.1) and Lemma 2.4 that

I2 ≤ C
∞∑

n=1

nαp−2l(n)E|T(n)
|
2

= C
∞∑

n=1

nαp−2−2αl(n)E

∣∣∣∣∣∣∣
n∑

i=1

ani(X
(n)
i − EX(n)

i )

∣∣∣∣∣∣∣
2

≤ C
∞∑

n=1

nαp−2−2αl(n)nδ
n∑

i=1

E
∣∣∣ani(X

(n)
i − EX(n)

i )
∣∣∣2

≤ C
∞∑

n=1

nαp−2−2α+δl(n)
n∑

i=1

a2
niE|X

(n)
i |

2

≤ C
∞∑

n=1

nαp−1+δl(n)P(|X| > nα) + C
∞∑

n=1

nαp−1+δ−2αl(n)E[X2I(|X| ≤ nα)]

, I3 + I4. (4.10)

In order to prove I2 < ∞, we just need to show that I3 < ∞ and I4 < ∞. Similar to the proof of (4.4), we can
get that

I3 ≤ C
∞∑

n=1

nαp−1+δl(n)
∞∑

j=n

P( jα < |X| ≤ ( j + 1)α)

= C
∞∑
j=1

P( jα < |X| ≤ ( j + 1)α)
j∑

n=1

nαp−1+δl(n)

≤ C
∞∑
j=1

jαp+δl( j)P( jα < |X| ≤ ( j + 1)α)

≤ C
∞∑
j=1

E|X|p+ δ
α l(|X|

1
α )I( jα < |X| ≤ ( j + 1)α)

≤ CE[|X|p+ δ
α l(|X|

1
α )] < ∞. (4.11)

By Lemma 2.3 and (3.2) again, we have

I4 = C
∞∑

n=1

nαp−1+δ−2αl(n)E[X2I(|X| ≤ nα)]

= C
∞∑
j=0

2 j+1
−1∑

n=2 j

nαp−1+δ−2αl(n)E[X2I(|X| ≤ nα)]

≤ C
∞∑
j=0

2 j(αp+δ−2α)l(2 j)E[X2I(|X| ≤ 2α( j+1))]

(4.12)
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≤ C
∞∑
j=1

2 j(αp+δ−2α)l(2 j)
j∑

k=1

E[X2I(2αk < |X| ≤ 2α(k+1))]

= C
∞∑

k=1

E[X2I(2αk < |X| ≤ 2α(k+1))]
∞∑
j=k

2 j(αp+δ−2α)l(2 j)

≤ C
∞∑

k=1

2k(αp+δ−2α)l(2k)E[X2I(2αk < |X| ≤ 2α(k+1))]

≤ C
∞∑

k=1

2kαp+kδl(2k)P(2αk < |X| ≤ 2α(k+1))

≤ C
∞∑

k=1

E[|X|p+ δ
α l(|X|

1
α )I(2αk < |X| ≤ 2α(k+1))]

≤ CE[|X|p+ δ
α l(|X|

1
α )] < ∞. (4.13)

This completes the proof of the theorem. �
Proof of Theorem 3.2.

We only give the proof for case (i), since the proof for case (ii) is similar to that of case (i). Let 1 < p < 2,
Sn =

∑n
i=1 aniXi and assume that ani ≥ 0. For any ε > 0, we have by Theorem 3.1 that

∞∑
n=1

nαp−α−2l(n)E(|Sn| − εnα)+

=

∞∑
n=1

nαp−α−2l(n)
∫
∞

0
P(|Sn| − εnα > t)dt

=

∞∑
n=1

nαp−α−2l(n)
∫ nα

0
P(|Sn| − εnα > t)dt

+

∞∑
n=1

nαp−α−2l(n)
∫
∞

nα
P(|Sn| − εnα > t)dt

≤

∞∑
n=1

nαp−2l(n)P(|Sn| > εnα) +

∞∑
n=1

nαp−α−2l(n)
∫
∞

nα
P(|Sn| > t)dt

≤ C
∞∑

n=1

nαp−α−2l(n)
∫
∞

nα
P(|Sn| > t)dt. (4.14)

Hence, we just need to show that

H ,
∞∑

n=1

nαp−α−2l(n)
∫
∞

nα
P(|Sn| > t)dt < ∞. (4.15)

For fixed t > 0, denote

Zti = −tI(Xi < −t) + XiI(|Xi| ≤ t) + tI(Xi > t), i = 1, 2, · · · ,
Uti = tI(Xi < −t) + XiI(|Xi| > t) − tI(Xi > t), i = 1, 2, · · · .
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It is easy to see that Xi = Uti + Zti = Uti + EZti + Zti − EZti, so we have

H ≤

∞∑
n=1

nαp−α−2l(n)
∫
∞

nα
P


∣∣∣∣∣∣∣

n∑
i=1

aniUti

∣∣∣∣∣∣∣ > t/3

 dt

+

∞∑
n=1

nαp−α−2l(n)
∫
∞

nα
P


∣∣∣∣∣∣∣

n∑
i=1

aniEZti

∣∣∣∣∣∣∣ > t/3

 dt

+

∞∑
n=1

nαp−α−2l(n)
∫
∞

nα
P


∣∣∣∣∣∣∣

n∑
i=1

ani(Zti − EZti)

∣∣∣∣∣∣∣ > t/3

 dt

, H1 + H2 + H3. (4.16)

In order to prove (3.4), it suffices to show H1 < ∞, H2 < ∞ and H3 < ∞. Noting that |Uti| ≤ 2|Xi|I(|Xi| > t),
and similar to the proof of (4.4), we have by Markov’s inequality, (4.2), Lemma 2.3 and Lemma 2.4 that

H1 ≤ C
∞∑

n=1

nαp−α−2l(n)
∫
∞

nα
t−1E

∣∣∣∣∣∣∣
n∑

i=1

aniUti

∣∣∣∣∣∣∣ dt

≤ C
∞∑

n=1

nαp−α−1l(n)
∫
∞

nα
t−1E[|X|I(|X| > t)]dt

= C
∞∑

n=1

nαp−α−1l(n)
∞∑

m=n

∫ (m+1)α

mα

t−1E[|X|I(|X| > t)]dt

≤ C
∞∑

n=1

nαp−α−1l(n)
∞∑

m=n

m−1E[|X|I(|X| > mα)]

= C
∞∑

m=1

m−1E[|X|I(|X| > mα)]
m∑

n=1

nαp−α−1l(n)

≤ C
∞∑

m=1

m−1E[|X|I(|X| > mα)]mαp−αl(m)

= C
∞∑

n=1

nαp−α−1l(n)E[|X|I(|X| > nα)]

= C
∞∑

n=1

nαp−α−1l(n)
∞∑

m=n

E[|X|I(m < |X|
1
α ≤ (m + 1))]

= C
∞∑

m=1

E[|X|I(m < |X|
1
α ≤ (m + 1))]

m∑
n=1

nαp−α−1l(n)

≤ C
∞∑

m=1

mαp−αl(m)E[|X|I(m < |X|
1
α ≤ (m + 1))]

≤ CE[|X|pl(|X|
1
α )]

< ∞. (4.17)
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According to the proof of (4.16), we have by Markov’s inequality, (3.2) and Lemma 2.3 that

H2 =

∞∑
n=1

nαp−α−2l(n)
∫
∞

nα
P


∣∣∣∣∣∣∣

n∑
i=1

aniEZti

∣∣∣∣∣∣∣ > t/3

 dt

≤ C
∞∑

n=1

nαp−α−2l(n)
∫
∞

nα
t−1

∣∣∣∣∣∣∣
n∑

i=1

aniEZti

∣∣∣∣∣∣∣ dt

≤ C
∞∑

n=1

nαp−α−2l(n)
∫
∞

nα
t−1

n∑
i=1

E[|aniXi|I(|Xi| > t)]dt

≤ C
∞∑

n=1

nαp−α−1l(n)
∫
∞

nα
t−1E[|X|I(|X| > t)]dt

< ∞. (4.18)

For fixed t > 0 and n ≥ 1, it is easily seen that {ani(Zti − EZti), i ≥ 1} are still WOD random variables by
Lemma 2.1. Hence, we have by Markov’s inequality, Lemma 2.2 (taking q = 2 ), Lemma 2.4 and (4.1) that

H3 =

∞∑
n=1

nαp−α−2l(n)
∫
∞

nα
P


∣∣∣∣∣∣∣

n∑
i=1

ani(Zti − EZti)

∣∣∣∣∣∣∣ > t/3

 dt

≤ C
∞∑

n=1

nαp−α−2l(n)
∫
∞

nα
t−2E

∣∣∣∣∣∣∣
n∑

i=1

ani(Zti − EZti)

∣∣∣∣∣∣∣
2

dt

≤ C
∞∑

n=1

nαp−α−2l(n)
∫
∞

nα
t−2nδ

n∑
i=1

E|ani(Zti − EZti)|2dt

≤ C
∞∑

n=1

nαp−α−2+δl(n)
∫
∞

nα
t−2

n∑
i=1

a2
niE|Zti|

2dt

= C
∞∑

n=1

nαp−α−2+δl(n)
∫
∞

nα
t−2

n∑
i=1

a2
ni[EX2

i I(|Xi| ≤ t) + t2P(|Xi| > t)]dt

≤ C
∞∑

n=1

nαp−α−1+δl(n)
∫
∞

nα
t−2E[X2I(|X| ≤ t)]dt

+

∞∑
n=1

nαp−α−1+δl(n)
∫
∞

nα
P(|X| > t)dt

≤ C
∞∑

n=1

nαp−α−1+δl(n)
∫
∞

nα
t−2E[X2I(|X| ≤ t)]dt

+C
∞∑

n=1

nαp−α−1+δl(n)
∫
∞

nα
t−1E[|X|I(|X| > t)]dt

, W1 + W2. (4.19)

Similar to the proof of (4.16), we have

W2 = C
∞∑

n=1

nαp−α−1+δl(n)
∫
∞

nα
t−1E[|X|I(|X| > t)]dt

≤ C
∞∑

m=1

mαp−α+δl(m)E[|X|I(m < |X|
1
α ≤ (m + 1))]

(4.20)
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≤ CE[|X|p+ δ
α l(|X|

1
α )]

< ∞. (4.21)

So we just need to show W1 < ∞. According to Lemma 2.3, Lemma 2.4, (3.2) and (4.12), we have

W1 = C
∞∑

n=1

nαp−α−1+δl(n)
∫
∞

nα
t−2E[X2I(|X| ≤ t)]dt

≤ C
∞∑

n=1

nαp−α−1+δl(n)
∞∑

m=n

∫ (m+1)α

mα

t−2E[X2I(|X| ≤ t)]dt

≤ C
∞∑

n=1

nαp−α−1+δl(n)
∞∑

m=n

m−α−1E[X2I(|X| ≤ (m + 1)α]

= C
∞∑

m=1

m−α−1E[X2I(|X| ≤ (m + 1)α]
m∑

n=1

nαp−α−1+δl(n)

≤ C
∞∑

n=1

nαp−2α−1+δl(n)E[X2I(|X| ≤ (n + 1)α]

= C
∞∑

n=1

nαp−2α−1+δl(n)E[X2I(nα < |X| ≤ (n + 1)α]

+C
∞∑

n=1

nαp−2α−1+δl(n)E[X2I(|X| ≤ nα]

≤ C
∞∑

n=1

n−1E[|X|p+ δ
α l(|X|

1
α )I(nα < |X| ≤ (n + 1)α]

+CE[|X|p+ δ
α l(|X|

1
α )]

≤ CE[|X|p+ δ
α l(|X|

1
α )]

< ∞. (4.22)

This completes the proof of the theorem. �
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