
Filomat 32:15 (2018), 5361–5370
https://doi.org/10.2298/FIL1815361S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we present some fixed point results for set-valued mappings of contractive type
by using the concept of ω-distance. As an application, we prove the existence of solution of nonlinear
fractional differential inclusion.

1. Introduction and Preliminaries

Banach’s contraction principle is a forceful tool in nonlinear analysis, differential equation, inclusion
and many other related areas of mathematics. Many authors generalized this principle to various directions
[7–10, 12, 14, 19, 21, 31, 37]. In particular, in 2012, Samet et al. [39] introduced the concept of α-ψ-contractive
type mappings and proved fixed point theorems for these mappings in complete metric spaces. After
that, Hasanzade Asl et al. [13] extended the notion of α∗-ψ-contractive type for set-valued mappings and
presented a fixed point result for such set-valued mappings. Recently, many generalization of the concept
of α-ψ-contractive type mappings have been developed; see [22, 29, 32, 33, 35, 36, 38] and the references
therein.

On the other hand in 1996, O. Kada [28] introduced the notion ofω-distance on a metric space. Using this
new notion, Lakzian et al. [34] introduced the new concept of generalized α-ψ-contractive type mappings
and investigated the existence and uniqueness of fixed points for these mappings.

In this paper, the concept of set-valued generalized (α,ψ, p)-contractive type mappings in the setting of
ω-distances is introduced. The existence of fixed points for such mappings with ω-distances in a metric
space is presented.

Nonlinear fractional differential equations and inclusions play a key role in the modeling of anomalous
relaxation and diffusion processes. Fractional differential equations and inclusions appear naturally in
various fields of science, such as physics, engineering, bio-physics, fluid mechanics, chemistry and biology
[11, 17, 23, 25–27, 30]. Some standard fixed point theorems have a fundamental role for the study the
existence of solutions for the fractional differential equations and inclusions; see [1–3, 5, 6, 15, 16, 18]
and the references therein. Ahmad and Ntouyas [4] proved the existence of solutions for the fractional
differential inclusions with integral boundary value problems in non-convex valued by applying a fixed
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point theorem for set-valued mapping due to Covitz and Nadler [20]. In this paper, as an application
the existence of fixed point for (α,ψ, p)-contractive type mappings, we prove the existence of solution to a
nonlinear fractional differential inclusion in of the form

CDβ(x(t)) ∈ F(t, x(t)), t ∈ J = [0, 1] and β ∈ (1, 2]

by integral boundary condition

x(0) = 0, x(1) =

∫ η

0
x(s)ds, η ∈ (0, 1)

where x ∈ C(J,R) and F : J ×R→ P(R) is Caratheodory set-valued mapping.
Let us introduce some definitions and facts which will be used in the sequel. All topological spaces are
assumed to be metric. We denote by P(X), CB(X) and K (X) the family of all nonempty subsets of X, the
family of all nonempty closed and bounded subsets of X and the family of all nonempty compact subsets
of X, respectively.
The set-valued mapping T : X→ P(Y) is said to be:

(i) upper semicontinuous, if for each closed set B ⊆ Y, T−(B) = {x ∈ X : T(x) ∩ B , ∅} is closed in X.

(ii) lower semicontinuous if for each open set V ⊆ Y, T−(V) = {x ∈ X : T(x) ∩ V , ∅} is open in X.

(iii) continuous if it is both upper and lower semicontinuous.

The concept of a ω-distance on a metric space was introduced in [28] as follows:

Definition 1.1. A function p : X × X → [0,∞) is said to be ω-distance on metric space (X, d) if it satisfies the
following properties:

(p1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X;

(p2) p is lower semicontinuous in its second variable; i.e., if x ∈ X and yn → y ∈ X, then p(x, y) ≤ lim infn→∞ p(x, yn);

(p3) for each ε > 0, there exists a δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.

Some example of ω-distance can be found in [28].
In order to prove of our main results, we need the following lemma:

Lemma 1.2. ([28]). Let (X, d) be a metric space and p be a ω-distance on X. Suppose that {xn} and {yn} are sequences
in X, {αn} and {βn} are sequences in [0,∞) converging to 0, and let x, y, z ∈ X. Then the following assertions hold.

(i) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for all n ∈N, then y = z. In particular, if p(x, y) = p(x, z) = 0, then y = z.

(ii) If p(xn, yn) ≤ αn and p(xn, y) ≤ βn for all n ∈N, then {yn} converges to y.

(iii) If p(xn, xm) ≤ αn for all m,n ∈N with m > n, then {xn} is a Cauchy sequence.

Let Ψ be the family of all functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:

(Ψ1) ψ is nondecreasing;

(Ψ2)
∑
∞

n=1 ψ
n(t) < ∞; for all t > 0, where ψn is the nth iterate of ψ.

It is known that ψ(t) < t for all t > 0 and ψ ∈ Ψ.
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2. Main Results

In this section, first we introduce the concept of set-valued generalized (α,ψ, p)-contractive type map-
pings in the setting of ω-distances. Then we present new fixed point result for (α,ψ, p)-contractive type for
set-valued mappings by using ω-distances in complete metric spaces.

Suppose that p is a ω-distance on X. For any x ∈ X and two subsets A,B ∈ P(X), we define

Dp(x,A) = inf{p(x, y) : y ∈ A}

and
Hp(A,B) = max{sup

x∈A
Dp(x,B), sup

y∈B
Dp(y,A)}.

The maximum in this definition always exists; it can be finite or infinite.
Notice that if p = d then Hp(A,B) is Pompeiu-Hausdorff metric H(A,B).

Definition 2.1. Let (X, d) be a metric space with ω-distance p and T : X→ CB(X) be a set-valued mapping. We say
that T is an (α,ψ, p)-contractive type mapping if there exist two functions α : X × X→ [0,∞) and ψ ∈ Ψ such that
for each x, y ∈ X,

α(x, y)Hp(Tx,Ty) ≤ ψ(p(x, y)). (1)

Definition 2.2. Let (X, d) be a metric space. A set-valued mapping T : X → CB(X) is called an (α,ψ)-contractive
type mapping if there exist two functions α : X × X→ [0,∞) and ψ ∈ Ψ such that for each x, y ∈ X,

α(x, y)H(Tx,Ty) ≤ ψ(d(x, y)). (2)

Definition 2.3. Let T : X→ CB(X) be a set-valued mapping and α : X × X→ [0,∞) be a given mapping. Then T
is called an α-admissible mapping if for each x, y ∈ X, α(x, y) ≥ 1 then α(z,w) ≥ 1 for all z ∈ T(x) and w ∈ T(y).

Now, we present a fixed point theorem for set-valued mapping on a complete metric space endowed
with a ω-distance.

Theorem 2.4. Let p be a ω-distance on a complete metric space (X, d) and let T : X → K (X) be a set-valued
(α,ψ, p)-contractive type mapping and T be an α-admissible mapping. Suppose that there exist x0 ∈ X and x1 ∈ T(x0)
such that α(x0, x1) ≥ 1. Furthermore, let T satisfies one of the following hypotheses:

(i) T is continuous;

(ii) for any sequence {xn} in X if α(xn, xn+1) ≥ 1 for all n ∈N and xn → x ∈ X as n→∞, then α(xn, x) ≥ 1 for all
n ∈N;

(iii) for every u ∈ X with u < T(u), inf{p(x,u) + Dp(x,T(x)) : x ∈ X} > 0.

Then there exists a u ∈ X such that u ∈ T(u).

Proof. By hypothesis, there exist x0 ∈ X and x1 ∈ T(x0) such that

α(x0, x1) ≥ 1.

Since p is lower semicontinuous in its second variable and T is compact valued, by Lemma 3.4 of [22], there
exists a point x2 ∈ T(x1) such that p(x1, x2) = Dp(x1,T(x1)). Hence,

p(x1, x2) ≤ Hp(T(x0),T(x1)).

By induction there exists a sequence {xn} in which xn+1 ∈ T(xn) and

p(xn, xn+1) ≤ Hp(T(xn−1),T(xn)). (3)
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for all n ∈N.
If xn0 = xn0+1 for some n0 ∈N∪{0}, then u = xn0 is a fixed point of T. Thus, assume that for all n ∈N∪{0},

xn , xn+1. Since T is an α-admissible mapping, then α(x0, x1) ≥ 1 yields α(x1, x2) ≥ 1. By mathematical
induction, for each n ∈N, we have

α(xn, xn+1) ≥ 1. (4)

Now, we want to show that p(xn, xn+1)→ 0. By inequalities (3), (1) and (4) we have

p(xn, xn+1) ≤ Hp(T(xn−1),T(xn))
≤ α(xn−1, xn)Hp(T(xn−1),T(xn))
≤ ψ(p(xn−1, xn)),

for each n ∈N. Iterate this process to deduce that

p(xn, xn+1) ≤ ψn(p(x0, x1)).

Condition (Ψ2) implies that limn→∞ p(xn, xn+1) = 0. Now, we prove that {xn} is a Cauchy sequence. For
m,n ∈Nwith m > n, we have

p(xn, xm) ≤ p(xn, xn+1) + ... + p(xm−1, xm)
≤
∑m

i=n ψ
i(p(x0, x1))

≤
∑
∞

i=n ψ
i(p(x0, x1))→ 0.

(5)

From Lemma 1.2, we obtain that {xn} is a Cauchy sequence in (X, d). Since X is a complete metric space, {xn}

converges to u ∈ X. It is enough to show that u is a fixed point of T.
If T is continuous, since xn+1 ∈ T(xn) and T is compact valued, we obtain u ∈ T(u).
If (ii) holds, we have α(xn,u) ≥ 1, for any n ∈N. Property (p2) of Definition 1.1 follows,

p(xn,u) ≤ lim inf
m→∞

p(xn, xm) = αn

for each n ∈ N. Then by inequality (5), limn→∞ αn = 0 and limn→∞ p(xn,u) = 0. Since function p is lower
semicontinuous in its second variable and T is compact valued, then for each n ∈ N, there exists wn ∈ T(u)
such that p(xn+1,wn) = Dp(xn+1,T(u)). Hence, for each n ∈N, there exist the following inequalities

p(xn+1,wn) = Dp(xn,T(u)) ≤ Hp(T(xn),T(u))
≤ α(xn,u)Hp(T(xn),T(u)) ≤ ψ(p(xn,u))
≤ p(xn,u),

then limn→∞ p(xn+1,wn) = 0. By (P1) we have,

p(xn,wn) ≤ p(xn, xn+1) + p(xn+1,wn),

and so
lim
n→∞

p(xn,wn) = 0.

Since mapping T is compact valued, there exists a subsequence {wnk } of {wn} such that it is convergent to
w ∈ T(u). It follows from Proposition 1 and Lemma 3 of [41] that limn→∞ d(xn,wn) = 0. Therefore, one can
conclude that u ∈ T(u).

Let (iii) hold. Assume, on the contrary, that u < T(u). Therefore hypothesis implies that following

0 < inf{p(x,u) + Dp(x,T(x)) : x ∈ X}
≤ inf{p(xn,u) + Dp(xn,T(xn)) : n ∈N}
≤ inf{p(xn,u) + p(xn, xn+1) : n ∈N}
= 0.

But, this would be a contradiction and so u ∈ T(u).
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As a consequence of Theorem 2.4, we obtain the existence of a fixed point for set-valued (α,ψ)-contractive
type mappings.

Corollary 2.5. Let (X, d) be a complete metric space and T : X → K (X) be a set-valued (α,ψ)-contractive type
mapping and T be an α-admissible mapping. Suppose that there exist x0 ∈ X and x1 ∈ T(x0) such that α(x0, x1) ≥ 1.
Furthermore, let T satisfies one of the following hypothesis:

(i) T is continuous;

(ii) for any sequence {xn} in X, if α(xn, xn+1) ≥ 1 for all n ∈ N and xn → x ∈ X as n → ∞, then α(xn, x) ≥ 1 for
all n ∈N;

(iii) for every u ∈ X with u < T(u), inf{d(x,u) + D(x,T(x)) : x ∈ X} > 0.

Then there exists a u ∈ X such that u ∈ T(u).

Now, we present some examples that satisfy in conditions in Theorem 2.4.

Example 2.6. Let X = [0,∞) with usual norm and p(x, y) = y, for all x, y ∈ X. It can be easily seen that p is a
ω-distance on (X, d). Let T : X→ K (X) be defined by

T(x) =


1
2 x2 x ∈ [0, 1],

[2, 3] x < [0, 1].
(6)

Also we define α : X × X → [0,∞) as α(x, y) = 1 whenever x, y ∈ [0, 1] and α(x, y) = 0 whenever x < [0, 1] or
y < [0, 1]. It is clear that T is an α-admissible mapping. Let ψ : [0,∞) → [0,∞) be the function ψ(t) = 1

2 t for
t ∈ [0,∞). Then, T is an (α,ψ, p)-contractive type mapping. Indeed, if x, y ∈ [0, 1] then α(x, y) = 1 and

α(x, y)Hp(Tx,Ty) = p(
1
2

x2,
1
2

y2) =
1
2

y2
≤

1
2

y = ψ(p(x, y)).

Otherwise, if x < [0, 1] or y < [0, 1] then α(x, y) = 0 so

0 = α(x, y)Hp(Tx,Ty) ≤ ψ(p(x, y)).

Moreover, suppose that there exist x0 ∈ [0, 1] and x1 ∈ T(x0), then we have α(x0, x1) ≥ 1. Now let {xn} be a sequence
in X such that α(xn, xn+1) ≥ 1 for all n ∈N and xn convergence to x ∈ X. By the definition of the function α, we have
xn ∈ [0, 1] for all n ∈ N. Therefore x ∈ [0, 1] and so α(xn, x) ≥ 1 for all n ∈ N. Thus, all the hypothesis of Theorem
2.4 are satisfied and T has infinitely many fixed points.

Example 2.7. Let X = [0, 1] with usual norm and p(x, y) = x + y, for all x, y ∈ X. Clearly, p is a ω-distance on
(X, d). Let T : X→ K (X) be defined by

T(x) =


1
2 x2 x ∈ [0, 1] \ { 12 },

{
1
4 ,

1
8 } x = 1

2 .
(7)

Also we defineα : X×X→ [0,∞) asα(x, y) = 1. It is clear that T is anα-admissible mapping. Letψ : [0,∞)→ [0,∞)
be the function ψ(t) = 1

2 t for t ∈ [0,∞). Now, we show that T is an (α,ψ, p)-contractive type mapping. If x, y , 1
2

then

Hp(Tx,Ty) = p(Tx,Ty) = p(
1
2

x2,
1
2

y2)

=
1
2

(x2 + y2) ≤
1
2

(x + y)

= ψ(p(x, y)).
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If x = 1
2 and y , 1

2 , then

Dp(
1
4
,Ty) = p(

1
4
,

1
2

y2) =
1
2

(
1
2

+ y2) ≤
1
2

(
1
2

+ y) = ψ(p(
1
2
, y)),

and similarly Dp( 1
8 ,Ty) ≤ ψ(p( 1

2 , y)) and hence supz∈Tx Dp(z,Ty) ≤ ψ(p( 1
2 , y)). Also

Dp(
1
2

y2,Tx) = min{p(
1
2

y2,
1
4

), p(
1
2

y2,
1
8

)} ≤
1
2

(
1
2

+ y) = ψ(p(
1
2
, y)),

therefore, for each x, y ∈ [0, 1], we have

α(x, y)Hp(Tx,Ty) = Hp(Tx,Ty) ≤ ψ(p(x, y)).

Thus, T is an (α,ψ, p)-contractive type mapping.
Finally for u < T(u), that is, for u ∈ (0, 1]

inf{p(x,u) + Dp(x,T(x)) : x ∈ [0, 1]} ≥ inf{p(x,u) : x ∈ [0, 1]}
= inf{x + u : x ∈ [0, 1]}
> u > 0.

Therefore, all the hypothesis of Theorem 2.4 are satisfied and so u = 0 is a fixed point of T.

3. Application to Differential Inclusion

In this section, we extend results obtained by Ahmad and Ntouyas [4] for the existence of solution of
nonlinear fractional differential inclusion with non-convex valued right hand side. First, we provide some
definition and preliminaries that are required in this section.

Definition 3.1. A set-valued mapping F : [a, b] ×R→ P(R) is said to be Caratheodory mapping provided that

(i) F(t, .) : [a, b] ×R→ P(R) is upper semicontinuous for a.e. t ∈ [a, b]; and

(ii) F(., x) : [a, b] ×R→ P(R) is measurable for every x ∈ R.

Theorem 3.2. (Kuratowskiı̈ Ryll-Nardzewski selection theorem)[40] Let (Ω,A) be a measurable space and Y be a
separable complete space. Suppose that F : Ω → CB(Y) is a set-valued mapping. If F is measurable, then it has a
measurable selection.

For a continuous function 1 : [0,∞)→ R, the Caputo derivative of fractional order β is defined as

CDβ(1(t)) =
1

Γ(n − β)

∫ t

0
(t − s)n−β−11(n)(s)ds, (β ∈ (n − 1,n),n = [β] + 1),

where [β] denotes the integer part of the positive real number β and Γ is a gamma function.
We consider nonlinear fractional differential inclusion:

CDβ(x(t)) ∈ F(t, x(t)), t ∈ J = [0, 1] and β ∈ (1, 2] (8)

by integral boundary condition

x(0) = 0, x(1) =

∫ η

0
x(s)ds, η ∈ (0, 1)
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where x ∈ C(J,R) and F : J ×R→ P(R) is Caratheodory set-valued mapping.
We define set valued mapping T : C(J,R)→ P(C(J,R)) as

T(x) = {h ∈ C(J,R) : h(t) = 1
Γ(β)

∫ t

0 (t − s)β−11(s)ds

−
2t

(2−η2)Γ(β)

∫ t

0 (1 − s)β−11(s)ds

+ 2t
(2−η2)Γ(β)

∫ η
0 (
∫ s

0 (s −m)β−11(m)dm)ds},

(9)

where, 1 ∈ SF,x = {v ∈ L1(J,R) : v ∈ F(t, x(t)) f or t ∈ J}. Since F is a Caratheodory mapping, the set SF,x is
nonempty.

Now, we are in position to prove our main result in this section.

Theorem 3.3. Let set-valued mapping F : J × R → K (R) be compact valued. Suppose that F(., x) : J → K (R) is
measurable for each x ∈ R and there exists ψ ∈ Ψ and function l ∈ L1(J, [0,∞)) such that

H(F(t, x),F(t, y)) ≤ l(t)ψ(|x − y|) (10)

for each t ∈ J and for each x, y ∈ R. Moreover, F(t, 0) ⊂ l(t)B(0, 1) for t ∈ J where B(0, 1) is open unit ball in R. Then
nonlinear fractional differential inclusion (8) has at least one solution if

M = (
‖l‖

Γ(β)
sup

t∈J
(
∫ t

0
|t − s|β−1ds +

2t
(2 − η2)

∫ 1

0
|1 − s|β−1ds

+
2t

(2 − η2)

∫ η

0

∫ s

0
|s −m|β−1dmds)) ≤ 1.

Proof. Let T be defined as (9). It is easy to check, fixed points of T are solutions of problem (8). Suppose
that x1, x2 ∈ C(J,R) and h1 ∈ T(x1) so there exists 11 ∈ SF,x1 such that for each t ∈ J

h1(t) = 1
Γ(β)

∫ t

0 (t − s)β−111(s)ds

−
2t

(2−η2)Γ(β)

∫ 1

0 (1 − s)β−111(s)ds

+ 2t
(2−η2)Γ(β)

∫ η
0 (
∫ s

0 (s −m)β−111(m)dm)ds.

(11)

From inequality (10), for each t ∈ J, we have

H(F(t, x1(t)),F(t, x2(t))) ≤ l(t)ψ(|x1(t) − x2(t)|).

Since set-valued mapping F is compact valued then there is w(t) ∈ F(t, x2(t)) such that for each t ∈ J,

|11(t) − w(t)| ≤ l(t)ψ(|x1(t) − x2(t)|).

We define set-valued mapping K : [0, 1]→ P(R) as

K(t) = {w ∈ R : |11(t) − w| ≤ l(t)ψ(|x1(t) − x2(t)|)},

for each t ∈ J. Since 11 is measurable, K is measurable. It follows from Proposition 19.3 in [24] that set-
valued mapping G(t) = K(t)∩F(t, x2(t)) is measurable. Hence, by the Kuratowskiı̈ Ryll-Nardzewski selection
theorem, G has a measurable selection 12. Therefore, 12(t) ∈ F(t, x2(t)) and for each t ∈ J,

|11(t) − 12(t)| ≤ l(t)ψ(|x1(t) − x2(t)|).

Now, we define

h2(t) = 1
Γ(β)

∫ t

0 (t − s)β−112(s)ds

−
2t

(2−η2)Γ(β)

∫ 1

0 (1 − s)β−112(s)ds

+ 2t
(2−η2)Γ(β)

∫ η
0 (
∫ s

0 (s −m)β−112(m)dm)ds,

(12)
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so we have

|h1(t) − h2(t)| = |
1

Γ(β)

∫ t

0
(t − s)β−111(s)ds

−
2t

(2 − η2)Γ(β)

∫ 1

0
(1 − s)β−111(s)ds

+
2t

(2 − η2)Γ(β)

∫ η

0
(
∫ s

0
(s −m)β−111(m)dm)ds

−
1

Γ(β)

∫ t

0
(t − s)β−112(s)ds

−
2t

(2 − η2)Γ(β)

∫ 1

0
(1 − s)β−112(s)ds

+
2t

(2 − η2)Γ(β)

∫ η

0
(
∫ s

0
(s −m)β−112(m)dm)ds|

≤
1

Γ(β)

∫ t

0
|t − s|β−1

|11(s) − 12(s)|ds

+
2t

(2 − η2)Γ(β)

∫ 1

0
|1 − s|β−1

|11(s) − 12(s)|ds

+
2t

(2 − η2)Γ(β)

∫ η

0

∫ s

0
|s −m|β−1

|11(m) − 12(m)|dmds

≤
1

Γ(β)

∫ t

0
|t − s|β−1l(s)ψ(|x1(s) − x2(s)|)

+
2t

(2 − η2)Γ(β)

∫ 1

0
|1 − s|β−1l(s)ψ(|x1(s) − x2(s)|)

+
2t

(2 − η2)Γ(β)

∫ η

0
(
∫ s

0
|s −m|β−1l(m)ψ(|x1(m) − x2(m)|)dm)ds

≤ ψ(‖x1 − x2‖∞) ×
‖l‖

Γ(β)
sup
t∈(0,1)

(
∫ t

0
|t − s|β−1ds

+
2t

(2 − η2)

∫ 1

0
|1 − s|β−1ds +

2t
(2 − η2)

∫ η

0

∫ s

0
|s −m|β−1dmds)

≤ ψ(‖x1 − x2‖∞).

Then
‖h1 − h2‖∞ ≤ ψ(‖x1 − x2‖∞).

By similar way as above and by interchanging the roles of x1 and x2, we deduce that H(T(x1),T(x2)) ≤
ψ(‖x1 − x2‖∞). Then for each x, y ∈ X we have

H(T(x),T(y)) ≤ ψ(‖x − y‖∞). (13)

Asψ ∈ Ψ,T is continuous mapping. Now, we consider the functionα : X×X→ [0,∞) defined byα(x, y) = 1.
Therefore by inequality (13), we have

α(x, y)H(T(x),T(y)) ≤ ψ(‖x − y‖∞),

for each x, y ∈ X. Consequently, T is (α,ψ)-contractive type mapping. It can be easily checked that T is
α-admissible mapping and there exist points x0 ∈ C(J,R) and y0 ∈ T(x0) such that α(x0, y0) ≤ 1.
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Moreover, since F is compact valued and F(t, 0) ⊂ l(t)B(0, 1),we can prove that T has compact values too.
Thus, Corollary 2.5 can be applied for T and so there exists x∗ ∈ X such that x∗ ∈ T(x∗) and x∗ is a solution of
problem (8).

Example 3.4. Consider the problem
CD2(x(t)) ∈ F(t, x(t)) 0 ≤ t ≤ 1,

x(0) = 0 x(1) =
∫ 1

2

0 x(s)ds.
(14)

Also we consider the set-valued map F : [0, 1] ×R→ P(R) given by

F(t, x) = [0,
7

46
(t + 2) sin x + 1].

We set ψ(t) = 1
2 t and l(t) = 7

23 (t + 2) for each t ∈ [0,∞). Then

H(F(t, x),F(t, x)) ≤ l(t)ψ(|x − x|)

and
d(0,F(t, 0)) = 0 ≤ l(t).

Therefore, ‖l‖ = 21
23 and M = 1. Hence by Theorem 3.3 the problem (14) has a solution.
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[10] S. Al-Mezel, C. M. Chen, E. Karapinar, V. Rakocević, Fixed point results for various α-admissible contractive mappings on
metric-like spaces, Abstract and Applied Analysis Volume 2014 (2014) ,Article ID 379358

[11] D. Araya, C. Lizama, Almost automorphic mild solutions to fractional differential equations, Nonlinear Anal. 69 (11) (2009)
3692–3705.

[12] M. Arshad, E. Ameer, E. Karapinar, Generalized contractions with triangular alpha-orbital admissible mapping on Branciari
metric spaces Journal of Inequalities and Applications. 63 (2016).

[13] J. H. Asl, S. Rezapour and N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed Point Theory Appl. (2012)
201–212.

[14] H. Aydi, E. Karapinar, H. Yazidi, Modified F-Contractions via alpha-Admissible Mappings and Application to Integral Equations,
Filomat. 31 (5) (2017) 1141– 148.

[15] Z. B. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal. 72 (2010) 916–924.



Z. Soltani / Filomat 32:15 (2018), 5361–5370 5370

[16] K. Balachandran, J. J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach
spaces, Nonlinear Anal. 72 (2010) 4587–4593.

[17] M. Benchora, J. Henderson, S. K. Natouyas, A. Ouahab, Existence results for fractional order functional differential equations
with infinite delay, J. Math. Anal. Appl. 338 (2008) 1340–1350.

[18] A. Cernea, On the existence of solutions for fractional differential inclusions with anti-periodic boundary conditions, J. Appl.
Math. Comput. 38 (2012) 133–143.
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