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Abstract. In this paper, we present some fixed point results for set-valued mappings of contractive type
by using the concept of w-distance. As an application, we prove the existence of solution of nonlinear
fractional differential inclusion.

1. Introduction and Preliminaries

Banach’s contraction principle is a forceful tool in nonlinear analysis, differential equation, inclusion
and many other related areas of mathematics. Many authors generalized this principle to various directions
[7-10,12,14, 19,21, 31, 37]. In particular, in 2012, Samet et al. [39] introduced the concept of a--contractive
type mappings and proved fixed point theorems for these mappings in complete metric spaces. After
that, Hasanzade Asl et al. [13] extended the notion of a.-i-contractive type for set-valued mappings and
presented a fixed point result for such set-valued mappings. Recently, many generalization of the concept
of a-y-contractive type mappings have been developed; see [22, 29, 32, 33, 35, 36, 38] and the references
therein.

On the other hand in 1996, O. Kada [28] introduced the notion of w-distance on a metric space. Using this
new notion, Lakzian et al. [34] introduced the new concept of generalized a-1)-contractive type mappings
and investigated the existence and uniqueness of fixed points for these mappings.

In this paper, the concept of set-valued generalized («, 1, p)-contractive type mappings in the setting of
w-distances is introduced. The existence of fixed points for such mappings with w-distances in a metric
space is presented.

Nonlinear fractional differential equations and inclusions play a key role in the modeling of anomalous
relaxation and diffusion processes. Fractional differential equations and inclusions appear naturally in
various fields of science, such as physics, engineering, bio-physics, fluid mechanics, chemistry and biology
[11, 17, 23, 25-27, 30]. Some standard fixed point theorems have a fundamental role for the study the
existence of solutions for the fractional differential equations and inclusions; see [1-3, 5, 6, 15, 16, 18]
and the references therein. Ahmad and Ntouyas [4] proved the existence of solutions for the fractional
differential inclusions with integral boundary value problems in non-convex valued by applying a fixed
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point theorem for set-valued mapping due to Covitz and Nadler [20]. In this paper, as an application

the existence of fixed point for (a, i, p)-contractive type mappings, we prove the existence of solution to a
nonlinear fractional differential inclusion in of the form

“DP(x(t)) € F(t,x(t)), te]=1[0,1]andp e (1,2]

by integral boundary condition

x(0) =0, x(1) = Ln x(s)ds, n€(0,1)

where x € C(J,R) and F : ] X R — P(R) is Caratheodory set-valued mapping.
Let us introduce some definitions and facts which will be used in the sequel. All topological spaces are
assumed to be metric. We denote by P(X), CB(X) and K(X) the family of all nonempty subsets of X, the
family of all nonempty closed and bounded subsets of X and the family of all nonempty compact subsets
of X, respectively.
The set-valued mapping T : X — P(Y) is said to be:
(i) upper semicontinuous, if for each closed set BC Y, T~(B) = {x € X : T(x) N B # 0} is closed in X.
(ii) lower semicontinuous if for each openset VCY, T~ (V) = {x € X : T(x) NV # 0} is open in X.
(iif) continuous if it is both upper and lower semicontinuous.

The concept of a w-distance on a metric space was introduced in [28] as follows:

Definition 1.1. A function p : X x X — [0, 00) is said to be w-distance on metric space (X, d) if it satisfies the
following properties:

(p1) p(x,z) < p(x, y) +ply,z) forany x,y,z € X;
(p2) pislower semicontinuous in its second variable; i.e., ifx € Xandy, — y € X, then p(x, y) < iminf, . p(x, yu);
(p3) for each € > 0, there exists a & > 0 such that p(z, x) < 6 and p(z,y) < 6 imply d(x, y) < .

Some example of w-distance can be found in [28].
In order to prove of our main results, we need the following lemma:

Lemma 1.2. ([28]). Let (X, d) be a metric space and p be a w-distance on X. Suppose that {x,} and {y,} are sequences
in X, {a,} and {B,,} are sequences in [0, co0) converging to 0, and let x, y,z € X. Then the following assertions hold.

(i) If p(xu, y) < ay and p(x,, z) < B for all n € N, then y = z. In particular, if p(x, y) = p(x,z) = 0, then y = z.
(ii) If p(xu, Yn) < vy and p(x,, y) < B for all n € N, then {y,} converges to y.
(iii) If p(xp, Xm) < a, for all m,n € IN with m > n, then {x,} is a Cauchy sequence.
Let W be the family of all functions ¢ : [0, c0) — [0, o0) satisfying the following conditions:
(W1) ¢ is nondecreasing;
(Ws) Yooy () < oo; for all t > 0, where " is the nth iterate of .

It is known that () < t forall t > 0O and ¢p € W.
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2. Main Results

In this section, first we introduce the concept of set-valued generalized («, ¢, p)-contractive type map-
pings in the setting of w-distances. Then we present new fixed point result for («, ¢, p)-contractive type for
set-valued mappings by using w-distances in complete metric spaces.

Suppose that p is a w-distance on X. For any x € X and two subsets A, B € P(X), we define

Dy(x,A) = inf{p(x, y) : y € A}
and

Hy(A, B) = max{sup D,(x, B), sup Dy(y, A)}.
xeA yeB

The maximum in this definition always exists; it can be finite or infinite.
Notice that if p = d then H,(A, B) is Pompeiu-Hausdorff metric H(A, B).

Definition 2.1. Let (X, d) be a metric space with w-distance p and T : X — CB(X) be a set-valued mapping. We say
that T is an (a, 1, p)-contractive type mapping if there exist two functions a : X X X — [0, 00) and ¢ € WV such that
foreach x,y € X,

a(x, y)Hy(Tx, Ty) < ¢(p(x, ). 1)

Definition 2.2. Let (X, d) be a metric space. A set-valued mapping T : X — CB(X) is called an (a, )-contractive
type mapping if there exist two functions a : X X X — [0, o) and 1 € WV such that for each x,y € X,

ax, yH(Tx, Ty) < P(d(x, y))- (2)

Definition 2.3. Let T : X — CB(X) be a set-valued mapping and o : X X X — [0, o0) be a given mapping. Then T
is called an a-admissible mapping if for each x,y € X, a(x, y) > 1 then a(z, w) > 1 for all z € T(x) and w € T(y).

Now, we present a fixed point theorem for set-valued mapping on a complete metric space endowed
with a w-distance.

Theorem 2.4. Let p be a w-distance on a complete metric space (X,d) and let T : X — K(X) be a set-valued
(a, , p)-contractive type mapping and T be an a-admissible mapping. Suppose that there exist xo € X and x1 € T(xp)
such that a(xo, x1) > 1. Furthermore, let T satisfies one of the following hypotheses:

(i) T is continuous;

(ii) for any sequence {x,} in X if a(xp, x441) 2 1 foralln € N and x, — x € X asn — oo, then a(x,, x) > 1 for all
n € IN;

(iii) for every u € X with u ¢ T(u), inf{p(x, u) + Dp(x, T(x)) : x € X} > 0.
Then there exists a u € X such that u € T(u).
Proof. By hypothesis, there exist xy € X and x1 € T(xp) such that
a(xg,x1) = 1.

Since p is lower semicontinuous in its second variable and T is compact valued, by Lemma 3.4 of [22], there
exists a point x, € T(x1) such that p(x;, x2) = D,(x1, T(x1)). Hence,

p(x1,x2) < Hp(T(xo), T(x1)).

By induction there exists a sequence {x,} in which x,.1 € T(x,) and

P, Xn1) < Hp(T(xn-1), T(xn))- €)
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for alln € IN.
If x, = xy,41 for some nyp € NU{0}, then u = x,,, is a fixed point of T. Thus, assume that for alln € INU{0},
Xn # Xpt1. Since T is an a-admissible mapping, then a(xg,x1) > 1 yields a(x1,x2) > 1. By mathematical
induction, for each n € IN, we have
a(xy, xp1) = 1. 4)

Now, we want to show that p(x,, x,+1) — 0. By inequalities (3), (1) and (4) we have

Hp(T(xp-1), T(xy))
(X1, xn)Hp(T(xn—l)/ T(xn))
P(p(xn-1,Xn)),

for each n € IN. Iterate this process to deduce that

p(xn/ xn+1)

IANIAIA

p(xn, Xns1) < P (p(xo, X1))-

Condition (W;) implies that lim, .« p(xs, Xs+1) = 0. Now, we prove that {x,} is a Cauchy sequence. For
m,n € IN with m > n, we have

P(xn/ xr{+1) +..+ P(xm—L Xm)
ity ¥ (p(xo, x1)) ®)
Y2 ¥ (p(xo,x1)) — 0.

From Lemma 1.2, we obtain that {x,} is a Cauchy sequence in (X, d). Since X is a complete metric space, {x,}
converges to u € X. It is enough to show that u is a fixed point of T.

If T is continuous, since x,,4+1 € T(x,;) and T is compact valued, we obtain u € T(u).

If (ii) holds, we have a(x,, u) > 1, for any n € IN. Property (p2) of Definition 1.1 follows,

p(xn/ xm)

INIA A

plxn, u) < minfp(x,, xp,) = ay

for each n € IN. Then by inequality (5), lim, @, = 0 and lim,_,., p(x,, #) = 0. Since function p is lower
semicontinuous in its second variable and T is compact valued, then for each n € IN, there exists w, € T(u)
such that p(x,+1, w,) = Dy(x441, T(1)). Hence, for each n € IN, there exist the following inequalities

Dy(xn, T(uw)) < Hy(T(x,), T(w))
a(xn, u)Hy(T(x,), T(w)) < (p(xn, 1))
p(xn, 1),

p(xn+1/ w?‘l)

IANIA I

then lim,, e p(Xy41, w,) = 0. By (P1) we have,
p(xn, Wn) < p(Xn, Xnt1) + P(Xns1, Wy),

and so
lim p(x,,, w,) = 0.

Since mapping T is compact valued, there exists a subsequence {w,, } of {w,} such that it is convergent to
w € T(u). It follows from Proposition 1 and Lemma 3 of [41] that lim,,—,c d(x,,, w,) = 0. Therefore, one can
conclude that u € T(u).

Let (iii) hold. Assume, on the contrary, that u ¢ T(u). Therefore hypothesis implies that following

0 < inf{p(x,u) + Dy(x, T(x)) : x € X}

inf{p(x,, u) + Dp(xy, T(x,)) : n € N}
inf{p(x,,, u) + p(xy, Xpn41) : 1 € N}
0.

INIA

But, this would be a contradiction and so u € T(4). O
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As a consequence of Theorem 2.4, we obtain the existence of a fixed point for set-valued («, {)-contractive
type mappings.
Corollary 2.5. Let (X,d) be a complete metric space and T : X — K(X) be a set-valued («, 1p)-contractive type

mapping and T be an a-admissible mapping. Suppose that there exist xo € X and x1 € T(xo) such that a(xg, x1) > 1.
Furthermore, let T satisfies one of the following hypothesis:

(i) T is continuous;

(ii) for any sequence {x,} in X, if a(xy,Xp+1) = 1 foralln € N and x, — x € X asn — oo, then a(x,,x) > 1 for
alln € IN;

(iii) for every u € X with u ¢ T(u), inf{d(x, u) + D(x, T(x)) : x € X} > 0.
Then there exists a u € X such that u € T(u).
Now, we present some examples that satisfy in conditions in Theorem 2.4.

Example 2.6. Let X = [0, co) with usual norm and p(x,y) = y, for all x,y € X. It can be easily seen that p is a
w-distance on (X, d). Let T : X — K(X) be defined by

1x? x€[0,1],
T(x) = (6)
[2,3] x ¢ [0,1].

Also we define a : X X X — [0, 00) as a(x,y) = 1 whenever x,y € [0,1] and a(x,y) = 0 whenever x ¢ [0,1] or
y ¢ [0,1]. It is clear that T is an a-admissible mapping. Let ¢ : [0,00) — [0, 00) be the function Y(t) = 1t for
t € [0,00). Then, T is an (a, , p)-contractive type mapping. Indeed, if x, y € [0,1] then a(x, y) = 1 and

1,1 1 1
alx, YHy(Tx, Ty) = p(;2%, 5%) = 5y < 5y = Ylp(x, ).
Otherwise, if x ¢ [0,1] or y ¢ [0, 1] then a(x, y) = 0 so

0 = a(x, )H,y(Tx, Ty) < Y(p(x, y)).

Moreover, suppose that there exist xo € [0, 1] and x1 € T(xo), then we have a(xg, x1) > 1. Now let {x,} be a sequence
in X such that a(x,, x,41) 2 1 for all n € IN and x,, convergence to x € X. By the definition of the function «, we have
Xy € [0,1] for all n € IN. Therefore x € [0,1] and so a(x,,x) > 1 for all n € IN. Thus, all the hypothesis of Theorem
2.4 are satisfied and T has infinitely many fixed points.

Example 2.7. Let X = [0, 1] with usual norm and p(x,y) = x + y, for all x,y € X. Clearly, p is a w-distance on
(X, d). Let T : X = K(X) be defined by

3 xe[0 1]\ {3},
T(x) = @)
L x=}
Alsowedefinea : XxX — [0, 00)as a(x, y) = 1. It is clear that T is an a-admissible mapping. Let ¢ : [0, 00) — [0, 00)
be the function (t) = 1t for t € [0, o). Now, we show that T is an (a, ¢, p)-contractive type mapping. If x,y # 1
then

1,1
H,(Tx, Ty) p(Tx, Ty) = p(52*, 5y")

1 1
= E(xz +17) < E(x + )

= P y).
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Ifx=1%andy# 1, then

1 11 11 11 1
Dyp(3, Ty) =p(g, Eyz) =5G+ v < 5G + 9 =90 y),

and similarly Dy(3, Ty) < Y(p(3, y)) and hence sup,.r. Dp(z, Ty) < (p(3, y)). Also

1 1,1 1,1 11 1
Dy(5y%, Tx) = min{p(Gy*, ) PGS ) < 5G +1) = ¥, ),

therefore, for each x, y € [0, 1], we have

a(x, Y)Hy(Tx, Ty) = Hy(Tx, Ty) < P(p(x, y)).

Thus, T is an (a, Y, p)-contractive type mapping.
Finally for u ¢ T(u), that is, for u € (0,1]

inf{p(x,u) + Dy(x, T(x)) : x€[0,1]} > inf{p(x,u):x€[0,1]}
inflx+u:xe[0,1]}
> u>0.

Therefore, all the hypothesis of Theorem 2.4 are satisfied and so u = O is a fixed point of T.

3. Application to Differential Inclusion

In this section, we extend results obtained by Ahmad and Ntouyas [4] for the existence of solution of
nonlinear fractional differential inclusion with non-convex valued right hand side. First, we provide some
definition and preliminaries that are required in this section.

Definition 3.1. A set-valued mapping F : [a,b] X R — P(R) is said to be Caratheodory mapping provided that
(i) F(t,.): [a,b] X R = P(R) is upper semicontinuous for a.e. t € [a, b]; and

(ii) F(.,x):[a,b] Xx R — P(R) is measurable for every x € R.

Theorem 3.2. (Kuratowskii Ryll-Nardzewski selection theorem)[40] Let (Q), A) be a measurable space and Y be a
separable complete space. Suppose that F : QO — CB(Y) is a set-valued mapping. If F is measurable, then it has a
measurable selection.

For a continuous function g : [0, 0) — R, the Caputo derivative of fractional order f is defined as

1
I'(n—p)

where [S] denotes the integer part of the positive real number § and I' is a gamma function.
We consider nonlinear fractional differential inclusion:

“DP(g(t) = fo t(t —5)" P g"(s)ds,  (Be(m-1n),n=[pl+1),

CDP(x(t)) € F(t,x(t)), te]=1[0,1]andp e (1,2] (8)

by integral boundary condition

x(0)=0, x(1) = fn x(s)ds, n€(0,1)
0
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where x € C(J,R) and F : ] X R — P(RR) is Caratheodory set-valued mapping.
We define set valued mapping T : C(J, R) — P(C(J,R)) as

Te) = {heCOR): ) = i ot = 9 g(s)ds
- - 1] F(ﬁ) fo s)F 19(5)515 )
* 7TT®<N£@—"M1ﬂmMmMs

where, g € Spy = {v € LY(J,R) : v € F(t,x(t)) for t € J}. Since F is a Caratheodory mapping, the set Sgy is
nonempty.
Now, we are in position to prove our main result in this section.

Theorem 3.3. Let set-valued mapping F : | x R — K(IR) be compact valued. Suppose that F(.,x) : | = K(R) is
measurable for each x € R and there exists € W and function | € L(], [0, o)) such that

H(E(, x), F(t, y)) < I (1x = yI) (10)

foreach t € ] and for each x, y € R. Moreover, F(t,0) C 1(H)B(0,1) for t € ] where B(0, 1) is open unit ball in R. Then
nonlinear fractional differential inclusion (8) has at least one solution if

i 51 f g
F(ﬁ) te](f |t — s ds+(2 |1 —s|P~"ds

n
— s — mlPYdmds)) < 1.
G [, [t

Proof. Let T be defined as (9). It is easy to check, fixed points of T are solutions of problem (8). Suppose
that x1,x; € C(J,R) and h; € T(x;) so there exists g1 € Sry, such that for each t € |

ha(t)

G} It = sy gu(s)ds
‘(ummﬁﬂsfwmm (1)
+ i b o =g omydmds.

From inequality (10), for each t € ], we have
H(E(t, x1(8), F(t, x2(t))) < I(D)ip(jxa (£) = x2(E))).

Since set-valued mapping F is compact valued then there is w(t) € F(t, x»(t)) such that for each t € ],
|91.(8) = w(®)] < IB)P(x1(t) = x2(B)).

We define set-valued mapping K : [0,1] — P(R) as
K(t) ={w e R |g1(t) — w| < IO (lxe () — 22O},

for each t € |. Since g; is measurable, K is measurable. It follows from Proposition 19.3 in [24] that set-
valued mapping G(t) = K(t)NF(t, x2(t)) is measurable. Hence, by the Kuratowskii Ryll-Nardzewski selection
theorem, G has a measurable selection g,. Therefore, g»(t) € F(t, x2(t)) and for each t € J,

191(8) = g2(D] < LY (lx1 (8) = x2(D)]).-

Now, we define

ha(t)

s o (= 5 ga(s)ds

1
- (2—n22t)r(5') fo (1 —35)P1ga(s)ds W
= I s = myP=t ga(m)dm)ds,
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so we have

[h1(t) — ha(t)]

. = a5

. Q_EW fo 1 gie)s

. Q_EW fo K fo s = g omdmds
- %) (- g

- T | (1 - 9 a9

' fo K fo (s = m) ga(om)dmds|
ol = s 5) - g2

T [ 1= P00 6) oo

2t 1 |
’ Wfo jo‘ Is = ml" g1 (1m) = ga(m)ldmds

1 t
_— _ qlf-1 _
) fo [t = sIP I(s)(Ix1(s) — x2(s)l)

IA

IA

2t 1 5
: Wfo 1= s ) ~ 226D

2t e .
’ WZ)T(JB)fo (fo s = P~ ) (1 (m) = xa(r))me)ds

2] i 51
(1 = x2le0) X =< su (f It — s ds
vliba =zl X pgy sup (],

2t fl » 2t fq fs »
+ —— | N-sfds+ — ls — mlfdmds
2-1)Jo 2-mJo Jo )

P(|lx1 — x2lloo)-

IA

IA

Then
1h1 = h2llo < P(llx1 = x2lleo)-

By similar way as above and by interchanging the roles of x; and x;, we deduce that H(T(x1), T(x2)) <
Y(llx1 — x2/ls)- Then for each x, y € X we have

H(T(x), T(y)) < ¢(llx = ylloo)- (13)

As 1 € W, T'is continuous mapping. Now, we consider the function a : XXX — [0, o) defined by a(x, y) = 1.
Therefore by inequality (13), we have

a(x, H(T ), T(y) < Yl = ylle),

for each x,y € X. Consequently, T is (a, {)-contractive type mapping. It can be easily checked that T is
a-admissible mapping and there exist points xp € C(J,R) and yo € T(xo) such that a(xo, yo) < 1.
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Moreover, since F is compact valued and F(t,0) C 1(t)B(0,1), we can prove that T has compact values too.

Thus, Corollary 2.5 can be applied for T and so there exists x. € X such that x. € T(x,) and x, is a solution of
problem (8). O

Example 3.4. Consider the problem

CD2(x(t) € F(t,x(t) 0<t<1,
1 (14)
x(0) =0 x(1) = 7 x(s)ds.

Also we consider the set-valued map F : [0,1] X R — P(R) given by

7 .
F(t,x) = [0, E(t +2)sinx + 1].

We set Y(t) = 1t and I(t) = 5 (t + 2) for each t € [0, o). Then

and

H(F(t, x), F(t, %)) < I(H)(Ix = X])

d(0,F(t,0)) =0 < I(t).

Therefore, ||I|| = % and M = 1. Hence by Theorem 3.3 the problem (14) has a solution.
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