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Quasihyperbolic Quasi-Isometry and Schwarz Lemma
of Planar Flat Harmonic Mappings

Qingtian Shia, Yi Qia

aSchool of Mathematics and Systems Science & LMIB, Beihang University, Beijing, 100191, China

Abstract. A sufficient condition of a flat harmonic quasiconformal mapping to be a quasihyperbolic quasi-
isometry on any subdomain of C is given in this paper, which generalizes the corresponding results of
Euclidean and 1/|ω|2 harmonic mappings. As an application, Schwarz lemma of flat harmonic mapping is
also investigated. Besides, properties and constructions of flat harmonic mapping are obtained at the same
time.

1. Introduction

Let Ω and Ω′ be two proper domains of complex plane C with conformal metric ds2 = σ(z)|dz|2 and
ds2 = ρ(z)|dz|2 respectively. If f is a C2 mapping from Ω into Ω′, then f is said to be harmonic with respect
to ρ (denoted ρ-harmonic mapping for short) if it satisfies the Euler-Lagrange equation

fzz(z) +
(
logρ

)
ω ◦ f · fz(z) fz(z) = 0 (1.1)

on Ω with ω = f (z). Specially, when ρ equals to a positive constant, then f is called a Euclidean harmonic
mapping, which has been conducted extensive studies by many scholars, see [4], [27], [28] for more details.

It is well known that (1.1) holds true if and only if its Hopf differential Ψdz2 = ρ( f ) fz fzdz2 is a holomorphic
quadratic differential on Ω. Moreover, Wan proved that f is a ρ-harmonic quasiconformal mapping if and
only if its Hopf differential is bounded with respect to the Poincaré metric in [30]. Here, ρ-harmonic
quasiconformal mapping on Ω refers to a ρ-harmonic mapping which satisfies those conditions of K-
quasiconformal mapping on Ω , that is to say,

| fz(z)| ≤ k| fz(z)| a.e. z ∈ Ω, with k =
K − 1
K + 1

∈ [0, 1). (1.2)

For the theory of quasiconformal mapping, please refers to [2].
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It needs to explain that (1.2) holds under the assumption that f is a sense preserving mapping on Ω,
i.e. the Jacobian of f satisfies J f (z) := | fz(z)|2 − | fz(z)|2 > 0 for all z ∈ Ω. Since Lewy ([18], [27]) proved that
Euclidean harmonic mapping f is locally univalent in Ω if and only if J f (z) , 0 for any z ∈ Ω, which has
been generated to an arbitrary ρ-harmonic mapping [25]. Thus, without loss of generality, we assume that
f is sense preserving in this paper.

Let ds2 = ρ(ω)|dω|2 be a conformal metric on Ω′ ⊂ C. The Gaussian curvature of ρ is given by

K(ρ)(ω) = −
1
2

∆ logρ
ρ

.

Distinguishingly, ρ is flat if K(ρ)(ω) = 0, meanwhile f is called to be a flat harmonic mapping on Ω when
f : Ω → Ω′ is a ρ-harmonic mapping. It shown that ∆ logρ = 0 implies that ρ(ω) = |e1(ω)

|, where 1 is a
holomorphic function on Ω′ in [15]. Thus flat metric ρ is induced by non-vanishing holomorphic function
ϕ(ω) = e1(ω) for ω ∈ Ω′ with ρ = |ϕ|. For convenience, flat harmonic mapping f is said to be ϕ-harmonic
mapping. Therefore, (1.1) deduce to

fzz(z) +
ϕ′(ω)
2ϕ(ω)

fz(z) fz(z) = 0, ω = f (z) and z ∈ Ω.

Consider the hyperbolic distance and quasihyperbolic distance as follows respectively. Let λΩ|dz|2 be
the hyperbolic metric of domain Ω ⊂ Cwith K(λΩ)(z) = −1. For any given z ∈ Ω, denote

d (z, ∂Ω) := inf {|z − ω| : ω ∈ ∂Ω} .

If z1, z2 ∈ Ω, then the hyperbolic distance and quasihyperbolic distance are defined by

dh (z1, z2) = inf
γ

∫
γ

√
λΩ(z)|dz|, κ (z1, z2) = inf

γ

∫
γ

1
d (z, ∂Ω)

|dz|.

Here, the infimum is taken over all rectifiable curves γ in Ω joining z1 and z2. It is well known that there
exists a quasihyperbolic geodesic γ0 in Ω connecting z1 and z2 [20]. Notice that when Ω is the upper half
plane H, then dh(z1, z2) = κ(z1, z2). When Ω is a general simply connected domain, then the link between
dh(z1, z2) and κ(z1, z2) is as follows [5], [13]

C2κ (z1, z2) ≤ dh (z1, z2) ≤ C1κ (z1, z2) , (1.3)

for all z1, z2 ∈ Ω, where C1,C2 are two universal constants.
A mapping f of Ω into Ω′ is said to be a hyperbolic Lipschitz continuity if there is a positive constant

C1 such that
dh

(
f (z1), f (z2)

)
≤ C1dh (z1, z2)

holds for all z1, z2 ∈ Ω. Moreover, if there exists another positive constant C2 such that

C2dh (z1, z2) ≤ dh
(

f (z1), f (z2)
)
≤ C1dh (z1, z2) , (1.4)

then we say that f is hyperbolic bi-Lipschitz continuity or hyperbolic quasi-isometry on Ω. Researches on
the hyperbolic quasi-isometry of quasiconformal mapping see [12] for more details.

Martio [19] first investigated the Euclidean Lipschitz and bi-Lipschitz continuities of Euclidean harmonic
quasiconformal mappings. In 1992, Wan [30] further studies on hyperbolic quasi-isometry and finds that
every Euclidean (hyperbolic) harmonic quasiconformal diffeomorphism ofD onto itself is hyperbolic quasi-
isometry. Later, Knez̆vić and Mateljević [17] retrieve Wan’s result by using Ahlfors-Schwarz lemma and
prove that every Euclidean harmonic quasiconformal mapping ofH onto itself is also a hyperbolic quasi-
isometry. Chen and Fang generated Wan’s result to any convex domain in [8]. In 2014, Mateljević [24]
further generated Wan’s result to any simply connected proper domain for Euclidean harmonic mapping,
see [22], [23], [24] for more details.
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For a ρ-harmonic quasiconformal mapping, as the metric ρ and the characteristic of image domain are
associated with its hyperbolic quasi-isometry, thus studying on hyperbolic bi-Lipschitz continuity is much
more complicated relative to Euclidean case. By building a differential equation for hyperbolic metric of an
angular range, Chen [6] obtained hyperbolic quasi-isometry of 1/|ω|2-harmonic quasiconformal mapping
from D onto an angular. We find that Chen’s result can be generated to any simply connected domain
in [29]. Besides, the hyperbolic bi-Lipschitz continuity for a class of ρ-harmonic quasiconformal mapping
fromD to a strongly hyperbolically convex ranges have been studied in [9]. In 2015, a sufficient condition
of ρ-harmonic quasiconformal mapping to be a hyperbolic quasi-isometry is given as follows.

Theorem A.[10] Let f be a ρ-harmonic K-quasiconformal mapping ofD onto a simply connected domain Ω. If the
pair of metric densities ρ and λΩ defined on Ω satisfies the inequality∣∣∣(logλΩ

)
ωω − 2

(
logλΩ

)
ω

(
logρ

)
ω −

(
logρ

)
ωω + 2

(
logρ

)2
ω

∣∣∣ +
∣∣∣(logρ

)
ωω

∣∣∣
(λΩ)2 ≤ 1 (1.5)

then f is hyperbolic K-Lipschitz. If f also satisfies that

λΩ| fz| → +∞ as |z| → 1−, (1.6)

then f is hyperbolic (1/K, K)-bi-Lipschitz.
Note that (1.5) and (1.6) depend on the metric ρ andλΩ which are not easy to verify. Recall that Euclidean

and 1/|ω|2 harmonic mappings are ϕ-harmonic mapping, thus it is natural to investigate the hyperbolic
quasi-isometry and quasihyperbolic quasi-isometry of ϕ-harmonic quasiconformal mappings.

In 2006, Kalaj and Mateljević prove that every ϕ-harmonic mapping F can be decomposed into the
form as F = φ ◦ f , where φ is a conformal mapping and f is a Euclidean harmonic mapping. Thus
every ϕ-harmonic quasiconformal mapping is hyperbolic quasi-isometry in any simply connected domain. It shows
that (1.5) and (1.6) are not necessary. Meanwhile, we find that ϕ-harmonic quasiconformal mapping is
quasihyperbolic quasi-isometry if it satisfies the equation (1.7) as follows.

Theorem 1. For any two subdomains Ω and Ω′ of the complex planeC. Let ϕ be an non-vanishing analytic function
on Ω′ and ω = f (z) be a ϕ-harmonic K-quasiconformal mapping from Ω onto Ω′. If ϕ satisfies

<

{ (ϕ′(ω)
ϕ(ω)

)′
−

1
2

(
ϕ′(ω)
ϕ(ω)

)2 fz fz
}

= 0, ω ∈ Ω′. (1.7)

Then for any z1, z2 ∈ Ω, there exists a positive constant c such that

1
c
κΩ(z1, z2) ≤ κΩ′

(
f (z1), f (z2)

)
≤ c κΩ (z1, z2) . (1.8)

In addition, if ϕ satisfies

<

{ (ϕ′(ω)
ϕ(ω)

)′
−

1
2

(
ϕ′(ω)
ϕ(ω)

)2 fz fz
}
≤ 0, ω ∈ Ω′. (1.7a)

Then there exists a positive constant c such that

κΩ′
(

f (z1), f (z2)
)
≤ c κΩ (z1, z2) . (1.8a)

If ϕ satisfies

<

{ (ϕ′(ω)
ϕ(ω)

)′
−

1
2

(
ϕ′(ω)
ϕ(ω)

)2 fz fz
}
≥ 0, ω ∈ Ω′. (1.7b)

Then there exists a positive constant c such that

κΩ′
(

f (z1), f (z2)
)
≥ c κΩ (z1, z2) . (1.8b)
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Notice that Euclidean and 1/|ω|2 harmonic mappings are satisfy the equation (1.7), thus Theorem
1 generalizes the corresponding results in [24] and [29]. In addition, Example 4.1 shows that (1.7) is
not necessary and Example 4.2 implies that there exists a ϕ which is not the derivative of a Möbius
transformation such that (1.7a) holds true but we don’t know if the solutions of the equation (1.7) are only
the derivative of a Möbius transformation.

In section 3, the Schwarz lemma ofϕ-harmonic mapping is investigated. Recall that the classical Schwarz
lemma states that every analytic function f fromD into itself has

| f ′(z)| ≤
1 − | f (z)|2

1 − |z|2
, z ∈ D. (1.9)

In 1989, Colonna [11] established an analogue Schwarz lemma for planar Euclidean harmonic mapping.
The corresponding case of planar harmonic quasiregular mapping is obtained by Knežević and Mateljević
as follows.

Theorem B.[17] Let f be a K-quasiregular Euclidean harmonic mapping from D into itself, then for all z ∈ D we
have

| fz(z)| + | fz(z)| ≤ K
1 − | f (z)|2

1 − |z|2
. (1.10)

It is not difficult to find that (1.9) is the special case of (1.10), as K-quasiregular Euclidean harmonic
mapping degenerates to an analytic function when K = 1. Recently, we prove that (1.10) holds for 1/|ω|2-
harmonic K-quasiregular mapping in [29]. In the second part of this paper, We want to investigate the
question that can the inequality (1.10) holds for ϕ-harmonic quasireguar mapping? We partially answer
this question as follows.

Theorem 2. Let ϕ be an non-vanishing analytic function on D and ω = f (z) which maps from D into itself be a
ϕ-harmonic K-quasiregular mapping. If ϕ satisfies (1.7) and∣∣∣ωϕ′(ω)

∣∣∣ ≤ 2|ϕ(ω)|. (1.11)

Then

Λ f (z) := | fz(z)| + | fz(z)| ≤ K
1 − | f (z)|2

1 − |z|2
z ∈ D. (1.12)

Notice that Theorem 2 also contains the corresponding results of Euclidean and 1/|ω|2-harmonic map-
ping and we find that (1.11) is not necessary through Example 4.1. The related researches of Schwarz lemma
refer to [7], [14], [16] for more details.

2. The Proof of Theorem 1

Let ω = f (z) be a sense preserving mapping defined on Ω ⊂ C with f , 0, then f is said to be a
logharmonic mapping if there exists an analytic function a(z) with |a(z)| < 1 such that

fz(z) = a(z)
f (z)
f (z)

fz(z), (2.1)

holds for all z ∈ Ω. It is proved that f is a logharmonic mapping if and only if f is a 1/|ω|2-harmonic
mapping in [6] and [29]. The following conclusion shows that (2.1) can be generalized to arbitrary ϕ-
harmonic mapping.
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Proposition 2.1. Let ω = f (z) ∈ C2 be a sense preserving mapping from domain Ω onto Ω′ and ϕ be an non-
vanishing analytic function defined on Ω′. Then f is a ϕ-harmonic mapping if and only if there exists an analytic
function a(z) with |a(z)| < 1 such that

f 2
z (z) = a(z)

ϕ(ω)

ϕ(ω)
f 2
z (z) (2.2)

holds for all z ∈ Ω.
Proof First, we prove the necessary part of this statement. Assume that f (z) is a ϕ-harmonic mapping
defined on Ω. Then we have

fzz(z) +
ϕ′(ω)
2ϕ(ω)

fz(z) fz(z) = 0 z ∈ Ω.

Since ϕ(ω) is analytic on Ω′, then we get

∂

∂z

(
ϕ(ω) f 2

z (z)
)

= fz(z)
[
2ϕ(ω) fzz(z) + ϕ′(ω) fz(z) fz(z)

]
= 0, (2.3)

and
∂
∂z

(
ϕ(ω) f 2

z (z)
)

= fz(z)
[
2ϕ(ω) fzz(z) + ϕ′(ω) fz(z) fz(z)

]
= 0. (2.4)

Set
h(z) = ϕ(ω) f 2

z (z) and 1(z) = ϕ(ω) f 2
z (z) z ∈ Ω.

From the equalities (2.3) and (2.4), h(z) and 1(z) are analytic on Ω and h(z) , 0 (since f (z) is sense preserving
on Ω). Then

a(z) :=
1(z)
h(z)

=
ϕ(ω)
ϕ(ω)

f 2
z (z)

f 2
z (z)

is also analytic on Ω and |a(z)| < 1. That is to say, there exists an analytic function a(z) with |a(z)| < 1 such
that (2.2) holds true for all z ∈ Ω.

Conversely, if there is an analytic function a(z) with |a(z)| < 1 such that (2.2) holds for all z ∈ Ω, then
differentiate with respect to z on both side of (2.2), we get that

ϕ′(ω) fz f 2
z + 2ϕ(ω) fz fzz = a(z)ϕ′(ω) f 2

z fz + 2a(z)ϕ(ω) fz fzz,

which implies that
| fz|

∣∣∣ϕ′(ω) fz fz + 2ϕ(ω) fzz

∣∣∣ = |a(z)|| fz|
∣∣∣ϕ′(ω) fz fz + 2ϕ(ω) fzz

∣∣∣ . (2.5)

Denoted E =
{
z ∈ Ω : fz(z) = 0

}
and Ec = Ω − E. Then E is a discrete set, since a(z) is analytic on Ω.

Case 1 If z ∈ E, it is obvious that ϕ′ fz fz + 2ϕ fzz = 0 holds for z ∈ E.

Case 2 If z ∈ Ec, we obtain that ϕ′ fz fz + 2ϕ fzz = 0 holds true for all z ∈ Ec from (2.5).

Combined with the above analysis, we conclude that 2ϕ fzz +ϕ′ fz fz = 0 holds for all z ∈ Ω, which implies
that f is a ϕ-harmonic mapping on Ω. The proof of this Proposition is finished.

Notice that ϕ f 2
z and ϕ f 2

z are analytic on Ω is consistent with Lemma 1 and Lemma 2 in [25].

Given a sense preserving Euclidean harmonic mapping f on Ω, it is well known that f ◦ φ preserves
harmonicity butφ◦ f may not, ifφ is analytic on the corresponding domains. However, Kalaj and Mateljević
[15] prove that if φ is a conformal mapping, then φ◦ f is a ϕ-harmonic mapping. Meanwhile, they also find
that every ϕ-harmonic mappings can be decomposed into the form as f = φ ◦ f1, where φ is a conformal
mapping and f1 is a Euclidean harmonic mapping. Applying Proposition 2.1, this conclusion also can be
obtained easily.
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Corollary 2.2. For domains D, Ω, Ω′ ⊂ C. Let f be an sense preserving Euclidean harmonic mapping of D onto
Ω and let 1 be a conformal mapping of Ω onto Ω′. Then F = 1 ◦ f is a ϕ-harmonic mapping, where

ϕ(ω) = 1/
(
1′ ◦ 1−1(ω)

)2
ω ∈ Ω′. (2.6)

Proof Differential on the both sides of ω = F = 1 ◦ f on z and z respectively, we have

Fz = 1′ · fz, Fz = 1′ · fz.

Therefore,
F2

z

F2
z

= a(z)2 1
′2

1′2
,

where a(z) =
fz
fz

is analytic and |a(z)| < 1 in Ω since f is a Euclidean harmonic mapping. Let ϕ(ω) = 1/1′(ξ)2

with ω = 1(ξ) and ξ = f (z), then it easy to get that F is a ϕ-harmonic mapping from Proposition 2.1.

Corollary 2.3. If F is a ϕ-harmonic mapping from D onto Ω′, then there exist an Euclidean harmonic mapping f
which maps from D onto f (D) = Ω and a conformal mapping 1 which maps Ω onto Ω′ such that F = 1 ◦ f .

Proof Let ϕ = ϕ2
1. As F is a ϕ-harmonic mapping on D, then there is an analytic function a(z) with |a(z)| < 1

such that
Fz

Fz
= a(z)

ϕ1

ϕ1
.

Let 11 be a conformal mapping on Ω′ satisfying 1′1(ω) = ϕ1(ω). Consider the composite function f = 11 ◦ F :
D→ 11(Ω′) = Ω. Then we have

fz = 1′1Fz, fz = 1′1Fz.

Therefore,
fz
fz

=
ϕ1

ϕ1

Fz

Fz
= a(z)

holds for all z ∈ D, which implies that f is an Euclidean harmonic mapping by differentiating on the both
sides of above equation on z. Let 1 = 1−1

1 and f = 11 ◦ F, then the proof of this corollary is complete.

In order to proof Theorem 1, the following two lemmas should be given at first.

Lemma 2.4. Let ω = f (z) be a ϕ-harmonic mapping from Ω onto Ω′. Then log | fz(z)| is a real-valued harmonic
mapping on Ω if and only if ϕ satisfies the equality (1.7) for all ω ∈ Ω′.

Proof Based on the proof of the necessary part of Proposition 2.1, we obtain that ϕ(ω) f 2
z (z) is analytic

about the variable z on Ω, which deduce that

∆z log |ϕ(ω)| + ∆z log | fz(z)|2 = 0, (2.7)

where ∆z := ∂2

∂x2 + ∂2

∂y2 , z = x + iy ∈ Ω.

Since

∆z log |ϕ(ω)| = 2
(
ϕ′

ϕ
fz +

ϕ′

ϕ
fz

)
z

= 2

ϕ′′ϕ − ϕ′2ϕ2 fz fz +
ϕ′′ϕ − ϕ′

2

ϕ2 fz fz +
ϕ′

ϕ
fzz +

ϕ′

ϕ
fzz

 , (2.8)

substitute in (2.8) with the equation fzz = −
ϕ′

2ϕ fz fz to find

∆z log |ϕ(ω)| = 4<
{ (ϕ′ϕ

)′
−

1
2

(
ϕ′

ϕ

)2 fz fz
}
. (2.9)
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Together with (2.7) and (2.9),

∆z log | fz(z)| = 0⇐⇒<
{ (ϕ′ϕ

)′
−

1
2

(
ϕ′

ϕ

)2 fz fz
}

= 0,

Therefore, we finished the proof of this Lemma.

Note that if ϕ satisfies (
ϕ′

ϕ

)′
−

1
2

(
ϕ′

ϕ

)2

= 0, (2.10)

then the relation (1.7) obviously holds true. Set Φ(ω) =
∫ ω

0 ϕ(ω)dω, then Φ(ω) is analytic on Ω. From the
relation (2.10), we obtain that SΦ(ω) = 0 for all ω ∈ Ω′. Here SΦ is the Schwarzian derivative of Φ. Thus,∫ ω

0
ϕ(ω)dω = Φ(ω) =

Aω + B
Cω + D

, (2.11)

where A,B,C,D ∈ C are constants which satisfy AD − BC , 0. Differentiate with respect to ω on both side
of (2.11) to find

ϕ(ω) =
AD − BC
(Cω + D)2 , ω ∈ Ω′.

Thus by the remark of Proposition 2.1, Lemma 2.4 implies the following.

Corollary 2.5 For C,D ∈ C with |C| + |D| , 0. Let ϕ(ω) = 1
(Cω+D)2 and ω = f (z) be a ϕ-harmonic mapping from Ω

onto Ω′, then ∆z log | fz(z)| = 0 holds for all z ∈ Ω.

Lemma 2.6 (Astala-Gehring) [3] Suppose that D and D′ are domains in Rn (n ≥ 2), if f : D → D′ is a
K-quasiconformal mapping, then there exists a positive constant c := c(K,n) such that

1
c

d
(

f (z), ∂D′
)

d (z, ∂D)
≤ α f ,D(z) ≤ c

d
(

f (z), ∂D′
)

d (z, ∂D)
.

where

α f ,D(x) = exp
{

1
n|Bx|

∫
Bx

log J f (z)dz
}

(2.12)

for all x ∈ D, here Bx := B(x, d(x, ∂D)) is a ball and |Bx| stands for the volume of the ball Bx.

Proof of Theorem 1 As f is a sense preserving ϕ-harmonic mapping on Ω, by Proposition 2.1, there exists
an analytic function a(z) with |a(z)| < 1 on Ω such that (2.2) holds on Ω. So the Jacobian J f (z) of f (z) can be
represented as

J f (z) = Λ f (z)λ f (z) = (1 − |a(z)|)| fz(z)|2, z ∈ Ω,

where
Λ f (z) = | fz(z)| + | fz(z)|, λ f (z) = | fz(z)| − | fz(z)|.

Thus, the quantity α f ,Ω(z) defined in (2.12) has the following form

α f ,Ω(z) = exp
{

1
2|B(z, r)|

∫
B(z,r)

[
log (1 − |a(ξ)|) + log | fξ(ξ)|2

]
dxdy

}
, (2.13)

where ξ = x + iy. Since ϕ(ω) satisfies the condition (1.7), using Lemma 2.4, then log | fz(z)| is a real-valued
harmonic function on Ω. Therefore, by mean value theorem,

log | fz(z)| =
1

2|B(z, r)|

∫
B(z,r)

log | fξ(ξ)|2dxdy (2.14)
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holds for every z ∈ Ω and every disk B (z, r) ⊂ Ω centered at z with radius r. Together with (2.13) and (2.14),
for z ∈ Ω

α f ,Ω(z) = | fz(z)| exp
{

1
2|B(z, r)|

∫
B(z,r)

log (1 − |a(ξ)|) dxdy
}
. (2.15)

Since f (z) is a K-quasicomformal mapping, by (2.2) we have

|a(z)| ≤ k2 =
(K − 1

K + 1

)2

< 1

Therefore,
√

1 − k2| fz(z)| ≤ α f ,Ω(z) ≤ | fz(z)|, z ∈ Ω,

which derived directly

1
√

K
Λ f (z) ≤ α f ,Ω(z) ≤

K + 1
2

λ f (z), z ∈ Ω. (2.16)

Applying Lemma 2.6, (2.16) implies

C2Λ f (z) ≤
d( f (z), ∂Ω′)

d(z, ∂Ω)
≤ C1λ f (z), z ∈ Ω,

here C1 = K+1
2 c, C2 = 1

√
K

c and c is the constant appeared in Lemma 2.6.

For any z1 and z2 ∈ Ω. By a result of [20], there exists a quasihyperbolic geodesic γ0 in Ω connecting z1
and z2. So

κΩ(z1, z2) =

∫
γ0

1
d(z, ∂Ω)

|dz| ≥
∫
γ0

1
d(z, ∂Ω)

1
Λ f (z)

∣∣∣ fzdz + fzdz
∣∣∣

≥

∫
f (γ0)

C2

d(ω, ∂Ω′)
|dω|

≥ C2κΩ′
(

f (z1), f (z2)
)
. (2.17)

Similarly, there exists a geodesic γ′0 in Ω′ joining f (z1) and f (z2), and thus

κΩ′ ( f (z1), f (z2)) =

∫
γ′0

1
d(w, ∂Ω′)

|dw| ≥
∫

f−1(γ′0)

1
d( f (z), ∂Ω′)

λ f (z)|dz|

≥

∫
f−1(γ0)

1
C1d (z, ∂Ω)

|dz|

≥
1

C1
κΩ(z1, z2). (2.18)

Therefore, (1.8) comes from (2.17) and (2.18). Analogously, (1.8a) and (1.8b) can be deduced from the
properties of subharmonic and superharmonic functions respectively. Hence, the proof of Theorem 3.1 is
complete.

Remark: Example 4.1 shows that there exists a ϕ0-harmonic quasiconformal mapping F0 such that ϕ0 is
not the solution of the equation (1.7) but F0 is bi-Lipschitz with respect to hyperbolic metric, therefore F0 is
quasihyperbolic quasi-isometry onD. That is to say, (1.7) is not necessary in Theorem 1.



Q. Shi, Y. Qi / Filomat 32:15 (2018), 5371–5383 5379

3. Schwarz Lemma of Flat Harmonic Quasiregular Mapping

To prove Theorem 2, the following Ahlfors-Schwarz lemma is needed.

Lemma 3.1. [1] Let ρ(z) be the density of a Riemann metric of the unit disk D with its Gaussian curvature
K(ρ)(z) ≤ −1. Then ρ(z) ≤ λ(z) for all z ∈ D, where λ(z) is the hyperbolic density ofD with K(λ)(z) = −1.

Proof of Theorem 2 Assume that ω = f (z) is a ϕ-harmonic K-quasiregular mapping which maps the
unit disk D into itself. Without loss of generality, f is sense preserving, i.e. | fz(z)| > | fz(z)| for all z ∈ D.
Consequently, there exists an analytic function a(z) with |a(z)| < 1 such that (2.2) holds in D and ϕ(ω) f 2

z (z)
is an analytic function about the variable z from Proposition 2.1. Furthermore, |a(z)| ≤ k2 = ( K−1

K+1 )2, since f
is a K-quasiregular mapping onD. Let

σ(z) = (1 − k)2λ( f (z))| fz(z)|2 z ∈ D, (3.1)

where

λ(z) =
4

(1 − |z|2)2 z ∈ D. (3.2)

Through a series of calculations, we obtain

∆ log σ(z) = ∆ logλ( f (z)) − ∆z log |ϕ(ω)|

=
8

(1 − | f |2)2

{
| fz|2 + | fz|2 + 2< fz fz f

[
f − (1 − | f |2)

ϕ′

2ϕ

]}
− 4<


(ϕ′ϕ

)
−

1
2

(
ϕ′

ϕ

)2 fz fz

 (3.3)

Thus, if ϕ satisfies the equality (1.7), then (3.3) becomes to the following form

∆ log σ(z) =
8

(1 − | f |2)2

{
| fz|2 + | fz|2 + 2< fz fz f

[
f − (1 − | f |2)

ϕ′

2ϕ

]}
. (3.4)

Moreover, when |ωϕ′| ≤ 2|ϕ| for all ω = f (z) ∈ D and f , 0 onD, then from (3.4) we get that

∆ log σ(z) =
8

(1 − | f |2)2

| fz|2 + | fz|2 + 2< fz fz
f
f

[
|ω|2 − (1 − |ω|2)

ωϕ′

2ϕ

]
≥

8| fz|2

(1 − | f |2)2

{
1 + |a(z)| − 2|a(z)|1/2

}
≥

8(1 − k)2
| fz|2

(1 − | f |2)2 = 2σ(z)

It is not difficult to find that ∆ log σ(z) ≥ 2σ(z) also holds true when f = 0 onD from (3.4). That is to say, we
prove that

K(σ)(z) ≤ −1, z ∈ D. (3.5)

which deduced to the fact that
σ(z) ≤ λ(z) z ∈ D, (3.6)

by Lemma 3.1. Together with (3.1), (3.2) and (3.6) to get that

| fz(z)| ≤
1

1 − k
1 − | f |2

1 − |z|2
z ∈ D,
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which directly implies that

| fz(z)| + | fz(z)| ≤ K
1 − | f (z)|2

1 − |z|2
z ∈ D.

From Theorem 2 the following corollary is obtained, which illustrate the fact that the conditions (1.7)
and (1.11) are non empty in Theorem 2.

Corollary 3.2 Given C,D ∈ C with |C| + |D| , 0. Let ϕ(ω) = 1
(Cω+D)2 on D and ω = f (z) be a ϕ-harmonic

K-quasiregular mapping ofD intoD. If D = 0 or |D| ≥ 2|C|, then (1.12) holds for all z ∈ D.

Notice that when D = 0 and C , 0, f is a 1/|ω|2-harmonic mapping. When C = 0 and D , 0, f is
a Euclidean harmonic mapping. Thus, Theorem 2 improves the relative results of Euclidean and 1/|ω|2

harmonic quasiregular mapping. Meanwhile, Example 4.1 shows that (1.11) is also not necessary.

4. Auxiliary Example

In this section, we first give a special ϕ-harmonic mapping which shows that the relations (1.7) and
(1.11) are not necessary in Theorem 1 and Theorem 2 respectively.
Example 4.1 Consider the function

ω = f (z) =
(K + 1)|z|2 − 2z − (K − 1)
(K − 1)|z|2 + 2z − (K + 1)

: D onto
−−−→ D, (4.1)

which is the composite mapping f = ψ ◦ AK ◦ φ, where ψ, AK and φ are defined as

ψ(z) =
z − i
z + i

, AK(z) = x + iKy, φ(z) = i
1 + z
1 − z

, z = x + iy.

Thus it is not difficult to obtain that f |∂D = id and

fz(z) =
1 + K

2
ψ′

(
AK(φ)

)
φ′(z),

fz(z) =
1 − K

2
ψ′

(
AK(φ)

)
φ′(z).

z ∈ D (4.2)

Therefore,  fz
fz

2

=
(1 − K

1 + K

)2 ψ′
(
AK(φ)

)2

ψ′
(
AK(φ)

)2 =
(1 − K

1 + K

)2
(
AK(φ) + i

)4

(
AK(φ) + i

)4 . (4.3)

Set ϕ(ω) = −2
(1−ω)4 , which deduce to

ϕ(ω)

ϕ(ω)
=

(1 − ω)4

(1 − ω)4 =

(
AK(φ) + i

)4

(
AK(φ) + i

)4 ω ∈ D. (4.4)

Combined (4.3) and (4.4), by applying Proposition 2.1, we obtain that f is a ϕ-harmonic K-quasiconformal
mapping ofD onto itself. In addition, by (2.6), ϕ can be obtained by the form with

ϕ(ω) =
1(

ψ′(ψ−1)
)2 ω ∈ D.
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Recall that f is a hyperbolical quasi-isometry on D by the fact that Euclidean harmonic mapping is
hyperbolical quasi-isometry on simply connected domain. However, from the first equation in (4.2), we
have

∆ log | fz| = −∆ log |AK(φ) + i|2 − ∆ log |1 − z|2

= −(1 − K2)|φ′(z)|

(
AK(φ) + i

)2
+

(
AK(φ) + i

)2

|AK(φ) + i|4

, 0,

that is to say, (1.7) is not necessary in Theorem 1.

Meanwhile, we find that the partial derivatives of f satisfies

| fz(z)| + | fz(z)| =
2

|1 − z|2
2K

|AK(φ) + i|2

≤
2K
|1 − z|2

2K
|AK(φ) + i|2

≤
2K

|AK(φ) + i|2
i
(
AK(φ) − Aφ(φ)

)
1 − |z|2

= K
1 −

∣∣∣∣∣∣AK(φ) − i
AK(φ) + i

∣∣∣∣∣∣2
1 − |z|2

= K
1 − | f |2

1 − |z|2
,

for all z ∈ D, which shows that (1.11) is also not necessary.

Next, the following example shows that there is aϕ, which is not the derivative of Möbius transformation,
such that (1.7a) holds true. But we are not sure if the solution of (1.7) are just the derivative of certain Möbius
transformations in the view of ϕ.

Example 4.2 Consider the function

ω = f (z) =
1

2z + z + 2
: D→ f (D), (4.5)

where D = {z = x + iy : |y| < |2 + 3x|, x ∈ R, y ∈ R} is a subdomain of C containing two angular domains.
Direct computation show that

fz(z) =
2

(2z + z + 2)2 , fz(z) =
−1

(2z + z + 2)2 .

Hence, we obtain
f 2
z

f 2
z

=
1
4

(2z + z + 2)4(
2z + z + 2

)4 =
1
4
ω4

ω4 ,

which implies that f is a 1/|ω|4-harmonic mapping according to Proposition 2.1, that is, ϕ(ω) = 1/ω4 here,
is not a derivative of a Möbius transformation.

Meanwhile, it is not difficult to verify that f is univalent and its Beltrami coefficient is bounded away from
1 on D. Thus f is a ϕ-harmonic quasiconformal mapping on D. Next, we illustrate the fact that f is not the
solution of the equation (1.7).
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Since ϕ(ω) = 1
ω4 , then (ϕ′(ω)

ϕ(ω)

)′
−

1
2

(
ϕ′(ω)
ϕ(ω)

)2 fz(z) fz(z) = 8ω2.

Then

<


(ϕ′(ω)
ϕ(ω)

)′
−

1
2

(
ϕ′(ω)
ϕ(ω)

)2 fz fz

 = 8<
{

1

(2z + z + 2)2

}
=

8∣∣∣2z + z + 2
∣∣∣4<

{
(2z + z + 2)2

}
> 0

by the fact that z ∈ D = {z = x + iy : |y| < |2 + 3x|, x ∈ R, y ∈ R}.
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