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Abstract. This paper studies the existence, uniqueness and the exponential stability in p-th moment of
the mild solution of neutral second order stochastic partial differential equations with infinite delay and
Poisson jumps. The existence and uniqueness of the mild solution of neutral second order stochastic
differential equation is first established by means of Banach fixed point principle and stochastic analysis.
The exponential stability in the p-th moment for the mild solution to impulsive neutral stochastic integro-
differential equations with Poisson jump is obtained by establishing an integral inequality.

1. Introduction

The theory of stochastic differential equation is growing as an important field of study in recent decades,
empowered by their various applications to the many problems from biology, mechanics, electrical engi-
neering and physics and so on; see [1, 3, 4, 7, 13], wherein, all the time, future state of systems depends
on the present state as well as on its past history leading to stochastic functional differential equation
instead of stochastic differential equations. Stochastic differential equations involving Poisson jumps have
become very popular in modeling the phenomena arising in the many fields. In financial and actuarial
modeling and other areas of application, such jump diffusions are frequently used to illustrate the dy-
namics of various state variables. In finance, these may represent, for instance, asset prices, credit ratings,
stock indices, interest rates, exchange rates or commodity prices. The jump component can capture event-
driven uncertainties, for example, corporate defaults, operational failures or insured events. For details,
see [6, 8, 14,17, 19, 23-27, 29, 31, 35, 36].

Second order differential equations capture the dynamic behavior of many natural phenomena and have
found applications in various fields, for example, mathematical physics, biology and finance. Converting
a second-order system into a first-order system may not yield desired results due to the behavior of the
semigroup generated by the linear part of the converted first order system. In many cases, it is advantageous
to treat the second-order stochastic differential equations directly rather than converting them to first-order
systems. A variety of problems arising in, mechanics, elasticity theory, molecular dynamics and quantum
mechanics can be described in general by second order nonlinear differential equations, see [2, 5, 9-
12, 16, 21, 22, 28, 29, 35, 36]. The second-order differential equations involving randomness are seem
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to be correct model in continuous time to account for integrated processes that can be made stationary.
Due to this reason, researchers’ interest is focused on second order differential equations. In recent years,
existence and stability results for second order stochastic evolution equations have been considered by many
researchers [2, 3, 9-12, 28, 29]. Taniguchi and Luo[31] considered a stochastic evolution equation driven by
Poisson jumps and studied the almost surely exponentially stability or exponentially ultimate bounded in
mean square. Caraballo and Liu [30] derived the sufficient conditions for the pth exponential stability and
pathwise exponential stability of mild solutions by using properties of the stochastic convolution. Chen
[15] established the pth exponential stability of mild solution for impulsive stochastic partial differential
equation with delays by establishing an impulsive-integral inequality, and generalized and improved the
results of [30]. Cui et al [19] proved the existence and exponential stability in mean square as well as almost
surely exponential stability of mild solutions utilizing Banach fixed point theorem. Chen [16] obtained
the exponential stability and asymptotical stability for mild solution to the second-order neutral stochastic
partial differential equations with infinite delay. In [17], the mean square exponential stability of the
mild solution to neutral stochastic partial differential equations and Poisson jump is discussed by using
established integral inequality. Arthi et al [11] obtained a set of sufficient conditions proving exponential
stability of the mild solution of second order neutral stochastic differential equation by establishing an
impulsive integral inequality. Ren and Chen [34] discussed the existence and uniqueness of the solution to
neutral stochastic functional differential equation driven by Poisson jumps with non-Lipschitz coefficients.
Ren and Sakthivel[35] considered a second-order neutral stochastic evolution equations with infinite delay
and Poisson jumps, and studied existence, uniqueness and stability of the mild solution by means of the
successive approximation and Bihari inequality. Sakthivel and Ren [29] discussed the exponential stability
problem of second-order nonlinear stochastic evolution equations with Poisson jumps using stochastic
analysis theory. By Banach fixed point principle, Diop et al [24] first established the existence, uniqueness
and the shown the exponential stability in mean square of mild solution for stochastic neutral partial
functional integro-differential equations with delays and Poisson jumps. Yang and Zhu [32] first established
the existence and uniqueness mild solution of stochastic partial differential equation with Poisson jumps,
and then exponential stability in p-th moment by mean of fixed point theory was proved. They also proved
the mild solution is almost surely p-th moment exponentially stable by using Borel-Cantelli Lemma. By
using Kunita’s first inequality, Chadha and Bora [2] proved the existence, uniqueness and exponential
stability of the mild solution of second order impulsive neutral stochastic differential equation involving
Poisson jumps with help of established a new integral inequality. In [36], p-th moment asymptotic stability of
mild solutions to second-order impulsive partial stochastic functional neutral integro-differential equations
involving infinite delay was considered without assuming Lipschitz continuity of nonlinear term.

Motivated by above mentioned work, this work investigates the existence, uniqueness and exponential
stability in p-th moment of a mild solution to a class of second order neutral stochastic integro-differential
equation involving Poisson jumps and impulsive effects

0
dlu’ () + H(t, ut,f h(0, u(t + 0))d0))] = [Au(t) + F(t, uy, f(O,u(t + 0))do))]dt

. —c0 —00
+ G(t, ut,f g(0, u(t + 0))d0)dw(t) + f?((t, Uy, y)ﬁ(dt, dy), t >0, t#t, (1)
—o0 Z
AM(tn) = In(u(t;))/ n= 1/ 2/ Tty (2)
Au,(t”) = ]H(u(t;l))/ n= 1/2/' Tt (3)
u()=¢eC, u(0)=mx, 4)

where x1 is an ¥y measurable X-valued random variable independent of the Wiener process w(t), H,F :
[0,00) XC XX = X, h, f : [0,00) X [0,00) XC = X, G : [0,00) x CX X = LYK X), K :[0,00) xCXZ — X
are appropriate functions satisfying certain conditions. The operator A : D(A) c X — X is infinitesimal
generator of a strongly continuous cosine family on X. The impulsive points t, satisfy the inequality
O<t<ty<:---<ty,<---,and [, ], : C = X, Au(t) = u(t*) — u(t"), where u(t*) and u(t~) represent the right
and left limit of u at ¢, respectively.
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This article has four sections. Section 2 summarizes various important working tools on the Wiener
process, Poisson jumps and second order differential equations. Section 3 establishes the existence and
uniqueness of the mild solution of second order stochastic differential equation with Poisson jumps by
means of Banach space fixed point theorem. Section 4 provides the exponential stability of the mild
solution of second order stochastic differential equations. An integral inequality is used to establish some
algebraic criteria of p-th exponential stability of the second order impulsive stochastic differential equation
with Poisson jumps utilizing Kunita inequality. This work generalizes and improves some previous existing
results.

2. Preliminaries

This section presents some basic definitions, theorems and lemmas which will be required establishing
main results.

Throughout the article, the notations (X, || - [|x, (-, -)x) and (K, || - Ik, (-, -)x) stand for the separable Hilbert
spaces. The notation C(J, X) stands for the Banach space of continuous functions from | = [a,b](a,b € R, b > a)
to X with supremum norm, i.e., |lyllc = sup,; lly(®ll, ¥ y € C(J,X) and LY(J, X) denotes the Banach space

of functions y : ] — X which are Bochner integrable normed by [|yll;: = fﬂ ’ lly(®)ldt, for all y € LI(], X). A
measurable function y : | — X is Bochner integrable if and only if ||y|| is Lebesgue integrable. The notation
B(X) stands for the Banach space of all linear bounded operator from X into itself with norm

Ifllsy = suplllfWIl = Iyl <1}, ¥ f € B(X). (5)

Let C((—o0,0], X) be the space of all bounded and continuous function C from (—o0,0] to X with the
norm || - [lc = SuPy_q IC(O)ll, and C be the space of all F(t > 0)-measurable and C((¢;,tj+1], X)(j =
1,2,---, and for j = 0, t; = —oo, tj;; = 0)-valued random variables, where ¥; is defined next paragraph.

Let (Q, 7, IP) be a complete probability space equipped with a normal filtration F = 7, t € [0, T] that
satisfies the usual conditions, i.e. right continuous and %, containing all IP-null sets. A filtration F is a
sequence of o-algebra {F;};>0 with F; C ¥ for each t and t; < f, = F}, C F4,. An X-valued random variable
is an F;-measurable function y(f) : Q — X and the space S = {y(t,w) : Q — X : t € [a,b]} which contains
all random variables is called a stochastic process. In addition, we use the notation y(t) instead of y(t, w),
where y(t) : ] = X € S. We assume that {w(t) : t > 0} is a K-valued Wiener process defined on the probability
space (QQ, ¥, P;F) with covariance operator Q, where Q is a positive, self-adjoint, trace class operator on
K. Especially, w(t) denotes a K-valued Q-Wiener process with respect to {F;}0. Let {e;}:2, be a complete
orthonormal basis of K and {1}, be a bounded sequence of nonnegative real numbers with Qe; = Aje.
Further, we consider a sequence f3; of independent Brownian motions with

(@(t),) = ) Aulen, OBult), e€K, te[0,T]
n=1

and F; = F," is the o-algebra generated by {w(s) : 0 < s < t}. The symbol L(K, X) stands for the space of all
bounded linear operators from K into X with the usual norm || - || x) and L(X) when K = X.

Let p(t), t > 0 be a o-finite stationary #;-adapted Poisson point process on (Q2, ¥, ¥, IP). The counting
random measure N, defined by N,((t1, t2] X A)(w) = ¥4, <s<t, In(p(s)) for any A € B,(K) is called the Poisson
random measure associated with the Poisson point process p. Define the measure N by N(dt,du) =
N, (dt,du) — dtu(du), where u is the characteristic measure on K called the compensated Poisson random
measure associated with the Poisson point process p. For a Borel set Z € B,(K — {0}), the space P*([0, T] X
Z,X),p = 2 denotes the the space of all predictable mapping F : [0, T] X Z X Q — X with

T
[ [ Er, i <o
0 Z
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Here, [E denotes the integration with respect to a probability measure IP, i.e., Ey = fQ ydIP. For a basic study
on stochastic differential equation, we refer to the book by Prato and Zabczyk [13], and Applebaum [6].

Let {S(t) : t € R} C L(X) be a strongly continuous cosine family and the corresponding strongly
continuous sine family {C(f) : t € R} C L(X) be defined by

t
Cltyy = f S(s)yds, teR, yeX
0

The generator A : X — X of {S(t) : t € R} is given by Ay = %S(t)yltzo forally € D(A) ={y € X:S()y €
CY(R, X)}.
Consider the second order differential equation

y'(t) = Ay@®)+ht), t=0 (6)
y(0) Yo, y¥'(0) =, 7)

We shall also define the set E = {y € X : %S(t)y is continuous} with the norm ||yllz = [|y|| + sup, IAC(#)]|.
In (6), h is to be an integrable function and o, y1 € X. The existence of the solution of above second order
system given by

t
y(&) = S(yo + CBO)y1 + fo C(t —s)h(s)ds, t>0, 8)

has been studied in the Travis and Webb [5]. If yy € E, then solution is continuously differentiable on
[0,T], T < o and

¢
y'(t) = AC(H)yo + S(Hy1 + f S(t —s)h(s)ds, t € [0, T]. )
0

For more details, see the articles [5, 21, 22].

Definition 2.1. The mild solution y(t) of the system (1)-(4) is said to be exponentially stable in the p-th moment for
p = 2, if there exist two positive constants y > 0 and M* > 1 such that

Elly(hlP < M'e?', t>0, p=>2, (10)
for any solution y(t) with initial condition ¢ € C.

Lemma 2.2. [13] For any p > 2 and for an arbitrary L5-valued predictable process y(-),

S t 2/ p/2
sup Ell | y(o)dw(@)| < Cy( f (Blly@)P,) " do)
sef01] 0 0 2

where C, = (p(p — 1)/2)P'? and L3 denotes the space of all Q-Hilbert Schmidt operators from K to X.

Lemma 2.3. [6, 14] (Kunita’s first inequality) For any p > 2, there exists C, > 0 such that

£ _ P t
osiEt]E[” fo fz ’K(T,x)N(dT,dx)H] < CP{IE[( fo fz ||(K(s,x)||zydxds)7’/2]
t
+]E[f0 L|l7<(s,x)||”ydxds]}.

Next, the definition of mild solution for the stochastic system (1)-(4) is provided.
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Definition 2.4. A piecewise continuous X-valued stochastic process y(t), t € R is called a mild solution of a system
(1)-(4) if

(1) y(t) is adapted to F(t > 0) and has a cddlig path on t > 0 almost surely.

(ii) For t € [0, +00) almost surely,

S(EYP0) + C(t)[x1 + H(O, uo, [ (6, u(6))d6)]
— [ S(t = 9)H(s,us, [, (6, us + 0)d6))ds + [, Ct —$)F(s, us, [ (6, u(s + 6))d6))ds

y(t) = 1+ [ Ct=9)G(s, us, [ 9(0,u(s + 0))d0)dw(s) + [; [, C(t — )K(s, us, y)N(ds, dy) (11)
+ Y SE=BLEE) + Y CE=t)Ju(E), te[0,T],
O<t;<t O<ti<t

¢ eC, te(—oo,0]

and y'(0) = x1.

3. Existence Result

This section presents the existence and uniqueness of the mild solution of the impulsive stochastic
system (1)-(4). Before proving the results, we make the following assumptions.

(A1) The function H,F : [0,00) XCX X — X, G : [0,00) XCX X — Lg(K, X)and h, f,L; : (=00,0] X X — X are
continuous functions and there exist constants Lr, Ly, Lg > 0 and L¢, Ly, Ly > 0 such that

0
IF(t, %1, y1) = Ft, 2o, )l < L f K(O)xr (t +8) = xa(t + 9)dS + llys = yall],
0
IF(t, x1, 1) = H(t 2, y2)l < L f KO)lxa (¢ + 9) = xa(t + A + llyr = woll],
0
IG(t,x1, 1) = Glt, 22, y)l < Lo f K(O)xr ( + 9) = xa(t + NS + llys = yall],
It x) = fEx)l < Lek(®)lx = xall,
h(t, x1) — h(t, x2)ll < Lpk(H)llx1 — x2ll,
llg(t, x1) — gt, x2)ll < Lgk(t)llx1 — x2l|

for all x1,x2 € C,y1,y2 € X and t € [0,00) with [[F(t,0,0)|| < L, [IH(t0,0)| < Ly, IG(,0,0) < L,
Lf (¢, 0| = lIk(t,0)ll = llg(t,0)ll = 0. Here the function k : (—c0,0] — [0,c0) is a function satisfying

[2 k(®)dt = 1and [*_k(te™'dt < +oo(ly > 0).
(A2) The function K(t, -, -) is continuous and there exist positive constants Ly such that

0

Kt 11, ) — Kt 1, | < Lic f KOIK (ua(t + 9), y) — K (uat + 9), )9, (12)
and forany y € Zand uj,u; € C,t 20
f K, v) — K (o, y)lFudy < L, x lu — olf, K0, y) = 0. (13)
Z

wherei =2,4.

(A3) The cosine family of operators {S(t) : t > 0} and corresponding sine family {C(f) : t > 0} satisfy
ISl < Me~#1t and ||C(t)]| < Me 2! t > 0, where M, 1, i are positive constants.



A. Chadha / Filomat 32:15 (2018), 5173-5190 5178

(A4) The function I, ], : C —» X(n = 1,---,) are continuous functions and there exist numbers c,,d, >
0(n=1,2,---,) such that

M (u1) — Ln(u)ll
1] (1) = Jun(u2)l

Cullur — upll,

INIA

Aullur — usl| (14)

+00 +00
for uy,u, € C and I,(0) = J,(0) =0, ch < +OO’Zd" < +o0.
n=1 n=1

Theorem 3.1. The system (1) and (4) has a unique fixed point in Br if conditions (A1)-(A4) are satisfied and

_ _ 2(p — 1)\1-p/2
{MPLQLZ + MPLY (1 + Ly)PT + MPLE ;" (14 L) T + €M ( — )

2(19_—21) ) PP TR + Lomp + M i )

n=1

+M”(i dn)p} <8l (15)

n=1

" PLE(1 + Loy T + Gy

Proof. First define the space Br of all functions y(t, w) : (—oo0, T] X Q — X such that y(t, w) is measurable in
w for each fixed t € (—oo, T] and bounded and continuous in f for a.e. fixed w € Q with norm

lylls, = (EC sup_ Iyt ) -

te(—oo,T]

Clearly, Br is a Banach space with the above defined norm. We now define the operator I' : 8r — Br as

SHP(0) + C(t)lx1 + HO, uo, [*, h(6, u(6))d6)]
— [ S(t— 9)H(s, us, [ 16, u(s + 6)dO)ds + [ C(t —$)E(s, us, [, (6, u(s + 6))d6))ds

Tu(t) = |+ [ C(t = $)G(s, s, [ 9(0,u(s + 0)dO)dw(s) + [; [, C(t - K (s, us, y)N(ds, dy) (16)
+ ) St=t)LuE) + ), Ct=t)Juu(t,), tel0,T],
0<t, <t 0<t, <t

¢ eC, te(—oo,0]

This theorem is proved in several steps.

First, the right continuity of operator I' on the interval [0, T] is shown. Let u € Br and |e| be sufficiently
small. Then, for t € (0, T),
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ElCu(t + €) — Tu(®)|P

0
< FE|(S(E+e) - S)pO)IF + 8 EI(C(E + ) - C®)(x1 + H(O, uo, f 1O, w(0)dO)IP
t+e 0
+87LE|| fo S(t + € —s)H(s, us, Iw h(B, u(s + 6))do))ds
¢
- f S(t — s)H(s, us, fU h(B, u(s + 6))do))ds||
0 —o0
t+e
+871E|| f C(t + € —s)F(s, us, fU (6, u(s + 6))do))ds
¢ ’ 0 -
—f C(t — s)F(s, us,f (6, u(s + 0))do))ds|
0 —0
f+e 0
+87 1| f C(t + € —5)G(s, us,f g(0, u(s + 6))d0))dw(s)
0 —0o
¢ 0
- f C(t —s)G(s, us,f g(0, u(s + 0))do0))dw(s)|l
0 —oo

t+e t

T f f C(t + € — 5)K(s, us, y)N(ds, dy) — f f C(t — s)K (s, us, y)N(ds, dy)|lP
0 Z 0 Z

8 EI Y IS+ e t) = S(t = b))

0<t, <t

+8El| Y [C( +e =) = Clt = ()P,
O<t, <t
8

= gl Z J;. (17)

=1

From the conditions

I < EIS(t+e) - SOIP X EllpO)IF, (18)
0
I < 2”‘1]EIIC(t+e)—C(t)|Ip><[]E||x1||”+lE||H(0,u0,f h(6,u(6))do))II’] (19)
t+€ 0
I < Zp_l]Ellf S(t+e—s)H(s,us,f h(0,u(s + 6))do))ds|
t —00
¢ 0
+2p‘1]E||f[S(t+e—s)—S(t—s)]H(s,u5,f (O, u(s + 6))do))ds|”,
0 —00
t+e 1 t+e 0
< o S(t + e —s)|PP-ds| E|H(s,us, | 10, u(s + 0)d0))|Fd
< 2 [ asere-owria] " [ B, [ h0,u6+ oo

0

+2P*1[ f ||S(t+e—s)—3(t—s)||p%ds]p - f EJ|H(s, us, f WO, u(s + 0))d0))|Pds
0 0

—00

— 0, as € >0, (20)
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t+e 0
2”‘1]E||f C(t+ € —s)F(s, us,f £(6,u(s + 0))do))ds|l
t —00
t
+E|| f [C(t+€e—s)—C(t —s)]F(s, us, fO (6, u(s + 0))do))ds|lF
0 —00
t+e p-1 t+e 0
2 [ wcure-gpria] " [ EIFGu, [ fe,us opdoprd
t t —00

¢ . t 0
+2r71| f IC(t + e —s)— C(t — )l ds] 1 f E|IF(s, us, f £(6,u(s + 6))d0)) P ds
0 0 —00

0, as € >0,

t+€ 0
2P| f C(t +e€—9s)G(s, us,f g(0, u(s + 0))do))dw(s)|IP
; _

0

¢ 0
+27 1| f [C(t + € —35)—C(t — 5)]G(s, us,f 9(0, u(s + 0))d0)dw(s)|lP
0 —00

p/2

Zp_lcf’[ fm (IE”C(t +e—=5)G(s, us, fo g(0,u(s + 9))d9))||p)2/pds]
t (o8]

2/PdS]P/2

t 0
+271¢, f (EI[C(t + e = 5) = C(t = 9)IG(s, us, f 9(0, u(s + 0))doO))IF)
0 —0co

0, as € =0,

t+e
2’”‘1]E||f fC(t+e—s)‘K(s,us,y)N(ds,dy)II”
t VA
t
+2P || f f [C(t + € —5) — C(t — s)]K (s, us, y)N(ds, dy)|IP
0 VA
t+e p/Z
271G E| ft fz IC(t + € = YK (s, 15, y)|Pdsudy]
t+e
+2"1C, | f f IC(t + € = YK (s, us, y)IPdspdy]
t Z
! p/2
+2V‘1Cp]E[f fII[C(t+e—s)—C(t—s)]W(s,us,y)IIstydy]
0 Z
t
+2"1C, | f f IC(t + e —5) = C(t + € = )IK (s, us, y) P dspdy]
0 Z
t+e p/2
276,] [ icu+e-IP [ B u y)Puns]
t Z
t+e
1271, [t e [ B 1 P
t Z
t 2
296, ] [t +e=9) - -9 [ B, nifucnas]
0 Z

t
+201¢, fo I[C(t + e —s) = C(t = ) fz ENIK (s, s, ) u(dy)ds
0, as € >0,
Y ISt +e =) = St = )P X ElLu(E)IP -0, as e =0,

O<t,<t

Y lC(+e = t) = Clt = )P X EllJu(u(t)IP >0, as € = 0.

O<t,<t

5180

(21)

(22)

(23)
(24)

(25)



A. Chadha / Filomat 32:15 (2018), 5173-5190 5181

Thus, the above estimations gives

Um E[|(Tu)(t + €) = Tu)OIF = 0. (26)

Consequently, we conclude that the function t = (I'u)(t) is continuous on the interval (oo, T].
Next, we show that I'(8r) € Br. For y € Br, we have

E|[Tu(E)|IP

IA

IN

IA

0
8" EIISHSO)IF + 8" EIIC(H)[x1 + H(O, ”O’f h(6,u(0))d0)]IP

—00

t 0
+87 V|| f S(t — s)H(s, us, f (O, u(s + 0))d0))ds|’
0 —

00

t 0
+81E|| f C(t — s)F(s, us,f (6, u(s + 0))do))ds|
0 —00
¢ 0
+8771E|| f C(t — s)G(s, us,f 9(0, u(s + 6))d0)dw(s)|IP
0 —00

¢
+8”_11E||f fC(t—s)‘]((s,us,y)ﬁ(ds,dy)llp

0 Jz
A E] Y S - L) +8EL Y C — t)u(u()IP

O<t,<t O<t, <t

0
8”‘1{M”e"’”“ll¢ll”+2”‘1M”e"’“2f(llxlll”+1E||H(0,uo, f h(6, u(6))do)II")
t 0
+2r7 M [ e OB s, u, f h(0, u(s + 0))d0)) — H(s,0,0)|I" + E||H(s, 0,0)|[P1ds
0

t 0
+27 M, f e 2 I[E|F(s, us, f h(6, u(s + 6))dO)) — F(s,0,0)| + E||F(s, 0, 0)|F1ds
0

—00

' —pua(t—s) ° P 2p | P12
+MPC”(](; [e pii2 ]E||G(s,u5,f:mg(6,u(s+9))d6)||Lg ds)
t t
+C, | E( f f IC(t = $YK (s, s, y)|Pdspdy) ~ + f f IC(t = $YK (s, us, y)IPdsudy]
0 VA 0 Z

p=1 p=1
+MP]E(Z ¢, c;/pe_‘“(t‘t")||u(t;)||)p + WE(Z 47 bi/pe‘f“(t—tﬂ)||u(t;)||)p}

c=1 n=1
0
8’7_1{1\/1”6_’7””||¢|V7 + 2P MPe P! (|| |IP + IBIIH(O, uo,f h(0, u(6))do)IIP)

—00

t 0
+20 D mEIMPLE P [ e IE( f k(9)lu(s + 9)lld9
0 —

00

0
+2r71L, f k(9)lu(s + S)||d8)p ds + 2P IMP(LL P P + 20 Do EOMPLP TP

0

¢ 0 0
xf e”Z(tS)lE(f k(9)|lu(s + 9)l|dS + zplLff k()|lu(s + ‘9)||d‘9)pd5
o ~ _

00 (o]

B ) /2-1
+2P M (LLY i, + €M ( f = “‘Shis)p
0

t 0
XL e =G, us,f g9(0,u(s + 6))d6)||zgds+CpM7’[L§(

00
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t t
—2ua(t—s r/2 - -5
x( fo ¢ 2alt=s) fz ElIK (s, us, y)|Pudyds) + L fo P9 fz E|IK (s, s, y)| udyds]

(Y e + (Y dn)”]uu(tn)np}
n=1

n=1
0
8”‘1{M”e"’”” llpIIP + 27~ MPePH2!(||xy||P + TEIIH (O, uo, f h(6,u(0))do)II")

—00

IA

t 0
+2<P-1>59"<Lb>MpLgy}‘P(1+2Lh)P f e t(t=9) f k(9)E|u(s + 9)|[Pddds
0 —00
t
+2 IMP (LY P 4+ 20D EOMPLE P (1 4 2L Y f eha(t=s)
0
X fo k(S)Elu(s + 9)PdSds + 2P\ MP(LLY P + 20~ Dsmto)C, MPLY.

24i(p = 1)\1-4 d 0

X(—M;(}iz )) (1 +Ly) f et f k(9)llu(s + 9)|PdSds
2 -£ 2 —1)\1-¢ [t

+2p71pr2*1MP(L )P(M) 2 +CPMP[L$(<M) 2 f o Ha(t=s)
p-2 0

0 5 . _g
x [ [ KOs + 9 yPdsudyds + L%(%)l
Z J-0 —

¢ s ) o 00 »
x fo ettt fz f; KO (s + 9), )P dSpdyds] + [M( ch ) +me() d) ]IIu(tn)IIP},

n=1
0
8”’1{M”e_”“ltll¢ll” + 2V MPe P (||, |IP + IE|IH(O, uo,f h(6, u(0))do)IF)

—00

IN

+20 Vs MPLY LS +2LY sup (@I + 27 MP (LY u,”
te(—oo,T]

+20 D EDMPL 7P (1 + 2L, sup (lu(®IF + 2P IMP(LLY ! + 20Dl MPLY.
te(—o0,T]
2ua(p —1)\1-3 1 - 2ua(p —1)\1-3
x(——— 1+L,) x — sup |[u@®|Ff +2"'Cyus ' MP(LL ”—
( — ) “a+Ly) iz Sup o) oty MPLEY (=)

2 -1y-51
21ap — Dy —(1L2)”/2 sup [P +L}

( Mz(P‘
P_Z te(—oo,T] P—2

+C,M,|L! Q) 7;(]1]’)17
piVip| Lo

8

xyi sup [lu(®)|F]+ [MP( cn)”+MP(Zdn)”1nu(tn>||"}<oo
1 n=1

2 te(~00,T] n=

SinceE sup |[Tu()|l <E sup [Tu(®)|P+E sup II(jJ(Q)II2 therefore, it can be concluded that E SUP (-0 7] [ITu()lF <
te(—o0,T] te[0,T] 0€(—0,0]
0.

Next, we show that I is a contraction in Br. Let uy,u; € By and t € [0, T]. Thus, we have
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[T (£) = Tuz(B)IP

0

< 7EICHIHO, uo, f n(6, 1(0))d6) — H(O, uy, f h(O, u2(O)dO)]IP

—00 —00

0

f
471 f S(t = $)[Hs, (1), f 1O, 115 + 6))6)) — H(s, (w2)s f 1O, us(s + 6))dO)ds]P
0 —00

—00

t 0 0
+7E| f Clt - $)[FGs, (1) f (6, 11(s + 0))d6)) — F(s, (1), f (6, us(s + 0))dO))ds]P
0 —c0 —oo
f 0 0
7 E| f Clt - )G, (1), f 96, (s + 0))d6) — Gs, (u2)s, f 9(6, ux(s + 0)dO)dw(S)
0 —00 —c0

t —_—
+7P1E|| L LC(t —5)[K (s, (u1)s, y) — K(s, (u2)s, y)IN(ds, dy)|IP

A7) S = b)) — LGP

O<t,<t

AR Y Cl = ) () = T (oGNP

O<t,<t

IN

_ - _ 2(p — 1)\1-p/2
7" 1{M”L§§Li + ML (1 + LT + MPLE s (1+ L)' T + €M ( ;’ — )

) 20~ 1)y )
xiy L + LT + Gy ; —7) LT + @ +M( Y )

n=1

+MP( i dn)”} XE sup [[ui(s) — u2(s)lP. o

=1 s€(—00,t]

Therefore, by condition (15), we have

_ - - 2(p — 1)\1-p/2
7" 1{M”LZLZ + ML P (1 + LT + MPLE ;" (1 + L)' T + €M ( ;f —)

2(p - 1))1‘1’/2

- = P
— L TR Y + Wy )MP + MP( ) )

n=1

+M”(idn)p} <1 (28)

n=1

" PLE(1 + Loy T + Gy

Thus, we conclude that I is a contraction operator on Br. Therefore, by Banach fixed point theorem, (1)-(4)
has a unique solution on [0, T]. This completes the proof of the theorem. [

4. Exponential Stability

This section studies the p-th exponential stability of the mild solution of impulsive stochastic system
(1)-(4). We use the following lemma for establishing the exponentially stability of the mild solution of
considered system (1)-(4).
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Lemma 4.1. [9] Let W : R — [0, 00) be a function and assume that there exist some constantsn; > 0(j = 1,2,3,4,5),

C>0andc,,d,(n=1,2,---) such that

me it 4 et e (—00,0],

et 4 ett 4 1, fof et (t-9) f_“m k(S)W(s + 9)d9ds

e [y et [0 KW+ 9)d3ds + Ly o cue W)
+ Ly e () +C

WP(t) <

holds for p1, 2 € (0,71, ¥ > 0. If

a::E+E+Z(cn+d,,)<1,
S A

then

W(H) < b M + % £ € (=00, ),

where A € (0, u1 A up) and 6 > 11 + 1y satisfy

0 =)

3 T4 -8

oy, = |—+ k(S)e d\9+E cn+d,) <1,
g ([Jl—/\ Hz—/\)foo ) n:l( )

m+n
1—0)\,

oroy <1land

(1 = Aotz = D1 + 1) = (2 + )]

2 7
[0 K®)e a9z = A) = nalp — A)

where n3(u2 — A) # naur — A).

(29)

(30)

(31)

(32)

(33)

Theorem 4.2. Let us assume that the conditions (Al)-(A4) hold and uy, up € (0,y]. Then, (1)-(4) is exponentially

stable in p-th moment provided

2(p=Dsgn(ly) MPLY P (1 + L) + 2(P=1sgn(Ly) ppp Lus’Q+ L) + 20-Ds7LIC, MPL(1 + L)

) ey« m(Y e

a2y

2u(p - 1)
+C,ML) (L
YD) e 2

2

+ M i d,) <8

n=1

Proof. From (11), we have

(34)
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E[fu(t)|lP

0 t 0
= [IS®¢(0) + C(t)[x1 + H(O, uo,f h(6, u(0))do)] —fo S(t —s)H(s, uS,I h(0, u(s + 6))d0))ds

—00 0

0

t 0 t
+ f C(t — $)F(s, us, f £(6,u(s + 0))do))ds + f C(t — $)G(s, us, f (0, us + 6))d6)dw(s)
0 —00 0 -

0o

v [ [ -k NS d + Y, S+ Y, O - L)
0 Z O<t, <t O<t, <t

0
8 EISHPO)IP + 8 EIC(H)[x1 + H(O, Mo,f h(6,u(0))d0)]IP

—00

IA

t 0
+87 1| f S(t — s)H(s, us, f (O, u(s + 0))d0))ds|’
0 —

(o)

t 0
+81E|| f C(t — s)F(s, us,f f(6,u(s + 0))do))ds|]P
0 —00
¢ 0
+8P71E|| f C(t — s)G(s, us,f 9(8, u(s + 6))d0)dw(s)|FP
0 —00

t
+8 1| fo fz Clt = SYK(s, s, y)N(s, dy)lP + & Ell Y S(t = b)L(u(t)IP

o<t,<t

+87E Y Clt )P (35)

O<t, <t

By the assumption (A1)-(A4) and Hélder inequality, we get

¢ 0
IEII](; S(t—s)H(s,us,f h(6, u(s + 6))do))ds|P

0

0

t 1 t
<M ( f (e—ul<t—s><v+1>/p);%ds)’” X f e M| H(s, us, f WO, u(s + 0))do))|Pds
0 0 _

o0

t 0
< Mpyi”’ f e MU= E| H (s, us, f h(0, u(s + 0))d0)) — H(s,0,0) + H(s, 0,0)|/Pds
0 —_

t 0
< 20 Vs UMPLP 11 7P(1 + Ly )P fo e i I( [ k(S)llu(s+9)||d8)pds+2’”‘1]\/f”L}{yl_p.

Similarly, we can estimate

IEIIfOS(t—S)F(S,us,fH f(6,u(s + 0))d0))ds|l”

t 0
< 20D EDOMPLE U1 (1 + Ly fo et ( f k(9)||u(s+9)||ds)” ds + 2P IMPLLuSY.

o0

From the conditions (A1) and (A4), we have

[ p-1
= P
MPE( ) e, a/Te luce)l)

Ell Y St -t <
0<t, <t n=1
-1
< (Y o) Y e EuE)P
O<t, <t O<t,<t
-1
< m( Z Cn)p Z cpe M1EWE () IP,

O<t,<t O<t, <t
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and
- p-1 (i -
Bl Y Cl—t)aw&DIP < MY d) ) due Bl
0<t, <t O<t, <t O<t, <t
By Lemma 2.2,

t 0
IEIIf C(t—s)G(s,us,f g(0, u(s + 6))do)dw(s)|I’

0 —c0

t ’ p/2
SMPCp(f(e—#zp(t—s)]EHG(s,us,f g(@,u(s+9))d9)||i0)2/pds)

0 . 0

£ —21i5(t—s) P2/ /2
:MPCp(fO e (| G(s, us, _mg(Q,u(s+9))d9)||Lg) ”ds)

t o, /-1 [t 0
< M f ) f e UIENGs, us, f 90, u(s + O)AO)I} s
0 0 -

0

_ _ t
< 20D, MPLo(1 ﬁLLg)rﬂ(%)1 h f ¢t
- 0
uz(p 1))1 pi2

=) (36)

0

0 p
x]E( f k(9)| |u(s+9)||d8) ds + Cp2" s ' MP(L} )P(

where C, = (p(p — 1)/2)"">.
By Lemma 2.3, we have

Ell [, [, C(t ~ 9)K(s, us, y)N(ds, dy)|P

IA

oo [ [ oo Pasas) s [ [[ertemts sy

IA

C,,MP[( fo fz | KO (uls + 9), y)||d8)2dsydy)p2

t 0
—pu2(t=s) 4 14
v f [em e[ ko + 9, i dsydy]

CMPL”[ f f ~24i2(t=s) f k(O)IIK (u(s + 9), y)IIZdesydy)

f fe pia(t- s)f k(O)IK' (u(s + 9), y)llpdeSde]

uin(p — 1)1
cr:pzvﬂﬂL’;([(lLﬁ,)P/z(%)1 h f et f KO)lluts + 9)[49) ds
- 0 —00

— _ t 0
+(1LZ,)”(%)1 " fo et I KO)lu(s + )lIds) ds]

C,,MPL’;((%)H’”((L;)WZ+(1LZ,)F’) fo ettt f KOs + 9)lIdS) ds. 37)

IN

IA

IA

Thus, from (35) and Hélder inequality, we get
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Ellu®)IlP
0
8" MPE||p|Pe 1! + 87X MPE||x, + H(O, uy, f h(0, u(0))do)|Pe+2!

—00

IN

t 0
+8 71 X 207D EINPLE 1P (1 + LY f e =g f k(O)lu(s + 3)||d9)” ds
0

—00

t
+16P‘1MPL}iyl_p + sp—lz<p—1>sgn<L}>MvL§y§"’(1 + L) f e_Hz(f—S)]E( f k(9)|lu(s + 9)||d9)pds
0

—00

_ 2ua(p — 1)\1-p2 *
-1 1,7 —1n(p—T)sgn(L Hatp -
+16" IMPLL,? + 87120l G)C,,M’”LG(1+Lg)”(PT) foe Halt=s)
2un(p - 1))1#7/2

0 p
xlE( f k(9)||u(s+8)||d8) ds + 16" Cppy ' MP(LE)( >

(o]

2 —1)\1-p/2 t 0 p
+8P-1CPMPL§<(%) L2y + @y fo et I mk(S)IIu(s+S)|IdS) ds

+8 P Z cn)p ' Z cne M Bt + 87 M Z dn)” '
O<t,<t O<t,<t O<t,<t
x Y dpe B ()P
O<t, <t
. 0
= K+ 8 'MPE|¢p|Pe ! + 8~ MPE||x; + H(0, uy, f h(0, u(0))dO)|Pe 2!

—00

t 0 t 0
+K; f e m-I( f k(®)llu(s + 9)IPd9)ds + Ky f e alt-I( f K(9)llu(s + 9)|Pds)ds
0 —o0 0 )

+ ) GBI + Y dae I EuE)IP, (38)

O<t, <t O<t, <t

7

B ~ 2 —1)\1-p/2
K = 16/"'MLyu,” + 16" MPLLu ? + 16771 Cpuy ' MP(LG Y (—u;(;i 5 )) ’
Ky = 87 x 20 DsmUippr? P (1 + Ly,

K, = 8;;—1z(p—l)sgn(L;)MpLiy;—P(1 +Lp)f + gp—lz(!’—l)sy"(Lé)CpMpLG(1 + Lg)p(%)l_p/2

e (D) e s ),
G o= owm( Y of o d=gm( Y a) . (39)
o<t, <t O<t, <t

Therefore, it is obvious that there exist two positive numbers B” and B” such that for any t € (—oo0,0]

Ellu@®)|f < Be ! + B et

If inequality (34) holds, i.e. % + % + Yoet, <t Cn + Loxt, <tfi; < 1, then condition (30) of Lemma 4.1 holds.

Thus, there exist positive constants B and y such that E|[u(t)|l < Be ", t € [0, ). This finishes the proof of
the theorem. O

When p = 2, we have the following result by Theorem 4.2. For this result, we need following assumption
and lemma.
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(A’) The function K(t, -, ) is continuous and there exist positive constants L(K,E andzz > 0 and a continuous
function k' : C X Z — X such that

0

||7<(tr X, M) - (]<(tr Y, Ll)” < L?( f k(S)”k,(x(t + ‘9)/ u) - k’(]/(t + ‘9)/ u)lldS, 7((tl 0/ 0) = 0/

—00

and foranyze€ Zand x,y € C, t > 0,

| W) - K e <Tiie- i, =24, KO =0.
z
Corollary 4.3. Suppose assumptions (A1) — (A2),(A’), (A4) — (AD5) hold and uy, up € (0,y]. Then, (1) is mean
square exponentially stable provided
25 M2L2 (1 + Ly)? N 25 EOM2L2(1 + Ly)?
ui H3

+ 2 EINPLE (1 + Ly)? X '

af +v2(Y ) <

n=1 n=1

(e8]

+ CM2L2 (LT + T \/i)) + M¥( (40)

|-

Remark 4.4. Here,Corollary 4.3 is different from the lemmas of Chen [17], Hua and Jiang [33], Jiang et al. (2016a),
Sakthivel et al. [29], and Chadha and Bora [2], that played an important role in proving the stability of the mild
solution of stochastic system (1). The nonnegative constant C plays an important role in the lemma 4.2. Lemma 4.1
is the generalization of the paper Lemma 3.2 in [16], (if nj > 0(j =1,2,3,4),C = 0in Lemma 4.1) . Meanwhile, in
Lemma 4.1 we only require A to satisfy o, <1 or o < 1, which can be found more easily than the condition o, = 1 of
[16].

Remark 4.5. The inequalities (34), (40) are independent of initial state which is needed in most of existing results.

Besides, in this article, the function k(t) satisfies the two important conditions f_ Ooo k(t)dt = 1 and f_ ODO k(e dt <
oo(h > 0).

Remark 4.6. Equation (1) is more general than those considered in [2, 3, 16, 17, 24, 25, 29, 32, 35]. Sufficient
conditions on exponential stability of (1) are derived by establishing a new integral inequality with impulses generalize
and improves the results of [2, 29].

Corollary 4.7. Ifthe conditions (A1)—(A4) hold with Ly = L}, = L. = 0and uy, y € (0, ], then (1) is exponentially
stable in the p-th moment provided

i ) _p2.2(p — 1)\1-p/2
MLy (U4 LY + MPLE " (1 + LY + CMPLo(1+ Ly)” x iy p-2 )

+CPMPLZ((%)1_NZ((1%)WZ + (L) + M i aj) +M( i bj) <8

j=1 i=1

If I; = J; = 0, then the system (1)-(4) turns out to be the following system:

0
dlu’(t) + H(t, ut,f h(B, u(t + 0))d0))] = [Au(t) + F(t, u, f(6,u(t + 0))do))]dt

. —c0 —00
+ G(t, ut,f (0, u(t + 0))d0)dw(t) + f?((t, us, y)ﬁ(dt, dy), t >0, t#t (41)
o z
u()=p€C, u'(0)=x,. (42)

Then, we similarly can get following results by Lemma 4.1.
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Corollary 4.8. Let us assume that (A1)-(A4) are satisfied and uy, u, € (0,y]. Then, system (1) is p-th exponentially
stable provided
2(p’1)5y”(L}i)MpLZyl_p(1 + L) + 2("’1)5-‘7”(L})M”L§y;p(1 + L) + Z(Pfl)syn(Llc)CpMP

s 2(p = 1)1-pi2 2uin(p — 1)\1-p/2 )
<L+ Ly (U2 e (BRI gy gy <61,

2

Corollary 4.9. Suppose assumptions (Al) — (A2),(A"), (A4) hold and pq,ur € (0,y]. Then, (1) is mean square
exponentially stable provided

2mEIML2 (1 + L2 27 COMPL2(1 + Ly)?
+
ui 3

~ 1
+ CMPLa (LT + T \/’Z:)) <z (43)

+ 227 EIMPLE (1 + L) X i

Corollary 4.10. If the conditions (A1) — (A4) hold with Ly = L}, = LL = 0 and py,u, € (0,), then (1) is
exponentially stable in the p-th moment provided

2p - 1))1—7’/2

_ _ —p/2
MPLE P (U + Ly + MPLY " (1 + LY + CMPLa(1 + Ly)” x p1,"( 2

2
2ur(p — 1))1—v/2

p
+C,MVL] ( >

(L + (LPY) < 6! 7.
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