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Abstract. In this paper, we study the class of unbounded generalized meromorphic operators GM(E,∞),
where E is a finite subset of C, which generalizes the notion of unbounded meromorphic operators. More
precisely, we give a decomposition and some characterizing properties of these operators based on the
punctured neighborhood theorem and the operational calculus for unbounded operators.

1. Introduction

In a Banach space X, denote by C(X) (resp. L(X)) the set of all closed (resp. the algebra of all
bounded) linear operators from X into X. For A ∈ C(X), we write D(A) ⊂ X for the domain, N(A) ⊂ X for
the null space and R(A) ⊂ X for the range of A. We set α(A) = dim N(A) and β(A) = codim(R(A)). Let σ(A)
(resp. ρ(A)) denote the spectrum (resp. the resolvent set) of A. For A ∈ C(X), we define the set

4(A) = {n ∈N : ∀m ∈N,m ≥ n⇒ R(An) ∩N(A) ⊂ R(Am) ∩N(A)}

The degree of stable iteration of A is defined as dis(A) = inf4(A), where dis(A) = ∞ if 4(A) = ∅.
We define the set of upper semi-Fredholm operators by

Φ+(X) = {A ∈ C(X) such that α(A) < ∞ and R(A) is closed in X}

and the set of lower semi-Fredholm operators by

Φ−(X) = {A ∈ C(X) such that β(A) < ∞ and R(A) is closed in X}

Φ(X) := Φ+(X) ∩Φ−(X) will denote the set of Fredholm operators from X into X.
The index of a Fredholm operator A is defined by i(A) = α(A) − β(A).

Following [12, Definition 3.1.2], an operator A ∈ C(X) is called quasi-Fredholm of degree d ∈ N if the
following three conditions are fulfilled:
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(i) dis(A) = d;
(ii) R(Ad) ∩N(A) is a closed and complemented subspace of X;
(iii) R(A) + N(Ad) is a closed and complemented subspace of X.
We will denote by QF(d) the set of quasi-Fredholm operators of degree d.
Note that, this definition is equivalent to the definition given in [5, Definition 2.2].

According to [5, Definition 2.4], an operator A ∈ C(X) is called upper semi B-Fredholm (resp. lower
semi B-Fredholm) if there exists an integer d ∈N such that A ∈ QF(d) and such that N(A)∩R(Ad) is of finite
dimension (resp. R(T) + N(Td) is of finite codimension). These sets are denoted respectively by Φ+

B(X) and
Φ−B(X). A B-Fredholm operator is an upper and lower semi B-Fredholm operator. The set of these operators
is denoted by ΦB(X). Note that, this definition coincides with that given in [3]. In this case, we define the
index of A as the integer: ind(A) = dim(N(A) ∩ R(Ad)) − codim(R(A) + N(Ad)).
For A ∈ C(X), the ascent a(A) of A is defined by:

a(A) = inf{n ∈N : N(An) = N(An+1)}

and the descent d(A) of A is defined by:

d(A) = inf{n ∈N : R(An) = R(An+1)}

An operator A ∈ C(X) is called Drazin invertible if a(A) and d(A) are both finite. This set is denoted
by DR(X). A is called left Drazin invertible (resp. right Drazin invertible) if a(A) is finite and R(Aa(A)+1)
is closed (resp. d(A) is finite and R(Ad(A)) is closed). These sets are denoted respectively by LD(X) and RD(X).

For A ∈ C(X), we define respectively the B-Fredholm spectrum, Drazin spectrum, the upper semi
B-Fredholm spectrum, the lower semi B-Fredholm spectrum, the left Drazin spectrum and the right Drazin
spectrum of A as follows:

σBF(A) = {λ ∈ C : λI − A < ΦB(X) }

σD(A) = {λ ∈ C : λI − A < DR(X) }

σBF+ (A) = {λ ∈ C : λI − A < Φ+
B(X) }

σBF− (A) = {λ ∈ C : λI − A < Φ−B(X) }

σLD(A) = {λ ∈ C : λI − A < LD(X) }

σRD(A) = {λ ∈ C : λI − A < RD(X) }

The upper semi B-Fredholm, the lower semi B-Fredholm and the B-Fredholm resolvent of A ∈ C(X) are
defined respectively by

ρBF+ (A) = C\σBF+ (A)

ρBF− (A) = C\σBF− (A)

ρBF(A) = ρBF+ (A) ∩ ρBF− (A)

The purpose of this paper is to extend the concept of unbounded meromorphic operators introduced
by S. R. Caradus in [8] to unbounded generalized meromorphic operators. It is well known that, this class
of operators is a generalization of that of Riesz operators which includes also the class of compact operators
as shown in [7]. We recall that, an operator A ∈ L(X) is of Riesz-type if λI − A is a Fredholm operator
and a(λI − A) = d(λI − A) < ∞, for each λ , 0 and is meromorphic, if every non-zero isolated point of
its spectrum is a pôle of the resolvent of A. In the bounded case, the generalized meromorphic operators
are studied by S. Č. Živković Zlatanović et al. in [17], they give some characterizing properties and they
have established an equivalence between this class of operators and that of polynomially meromorphic
operators (see Definition 3.8), which generalizes some of their results obtained in [16] on the structure of
bounded linear generalized Riesz operators on Banach spaces. As an example of generalized meromor-
phic operators, polynomially compact more generally polynomially Riesz and generalized Riesz operators
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introduced in [11] (see Remark 3.4 ii). In Theorem 3.10, we generalize the equivalence stated as above to
closed linear operators densely defined on a Banach space with a non-empty resolvent set. Among the
main results of this paper, we have also Theorem 3.6 in which we characterize the unbounded generalized
meromorphic operators by mean of B-Fredholm spectrum and the two decomposition Theorems 4.2 and 4.4
of these operators, which generalizes that obtained by S .R. Caradus in [8] on the structure of unbounded
meromorphic operators.

We organize our paper in the following way: In Section 2, we establish a punctured neighborhood
theorem for closed semi B-Fredholm operators with a non-empty resolvent set which plays an important role
in all of this work. In Section 3, by applying the results obtained in Section 2, we gather some characterizing
properties of unbounded generalized meromorphic operators which generalizes that obtained by P. Aiena
[1] in the case of Riesz operators and B.P. Duggal et al. [17] in the case of bounded linear generalized
meromorphic operators. Finally,

Section 4 is devoted to the decomposition of unbounded generalized meromorphic operators extending
an earlier result of S. R. Caradus obtained in [8].

2. On Punctured Neighborhood Theorem

It is well known that the punctured neighborhood theorem for semi B-Fredholm operators has been
established in [6] for bounded linear operators having topological uniform descent as a consequence of [10,
Theorem 4.7]. The aim of this section is to generalize this result to closed linear operators with a non-empty
resolvent set using another technique, since the previous reference is not applied in the case of unbounded
operators.

Theorem 2.1. Let A ∈ C(X) such that ρ(A) , ∅. If A is an upper semi B-Fredholm (resp. lower semi B-Fredholm )
operator, then there exists an open disc D(0, ε) centered at 0 such that λI −A is an upper semi-Fredholm (resp. lower
semi-Fredholm ) operator, for each λ ∈ D(0, ε)\{0}. Moreover, i(λI − A) = ind(A), for all λ ∈ D(0, ε).

Proof. Let A be an upper semi B-Fredholm (resp. lower semi B-Fredholm ) operator. Then, using [5,
Proposition 2.8], there exists n ∈ N such that R(An) is a closed subspace of X and the restruction of A
to R(An) denoted by An is an upper semi-Fredholm (resp. lower semi-Fredholm ) operator. So, by [13,
Theorem 2.3], there exist ε > 0 and a nonnegative integer r such that, for all 0 < |λ| < ε, we have

α(λI − An) = α(An) − r (2.1)

β(λI − An) = β(An) − r (2.2)

and
R(λI − An) = R(λI − A) ∩ R(An) is closed

To show that R(λI − A) is closed, the polynomials zn and λ − z are prime, then there exist u(z) and v(z) two
polynomials such that znu(z) + (λ − z)v(z) = 1. Thus,

Anu(A) + (λI − A)v(A) = ID(An) (2.3)

Since, ρ(A) , ∅, then from [13, Lemma 1.1], we have X = D(An) + R(An). Hence, by using the equality 2.3,
we obtain that X = R(λI −A) + R(An). On the other hand, since R(λI −A) + R(An) and R(λI −A)∩R(An) are
closed, then by Neubauer

Lemma [12, Proposition 2.1.1], we obtain that R(λI − A) is closed. By [13, Lemma 1.3], we have
α(λI−An) = α(λI−A) and β(λI−An) = β(λI−A), hence, by using Eqs. 2.1 and 2.2, we get λI−A is an upper
semi-Fredholm (resp. lower semi-Fredholm ) operator, for all 0 < |λ| < ε. So, we can deduce by using Eqs.
2.1, 2.2 and [3, Theorem 2.4], that i(λI − A) = i(An) = ind(A), for each 0 ≤ |λ| < ε. �

From Theorem 2.1, we can deduce the following result:
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Corollary 2.2. Let A ∈ C(X) such that ρ(A) , ∅. Then,
(i) ρBF+ (A), ρBF− (A) and ρBF(A) are open subsets of C.
(ii) ind(λI − A) is constant on any component of ρBF+ (A) (resp. ρBF− (A)).

Proof. (i) Let α0 ∈ ρBF− (A) resp. (ρBF+ (A)), then α0I − A is a lower semi B-Fredholm (resp. an upper semi
B-Fredholm) operator. Since, ρ(α0I − A) , ∅, from Theorem 2.1, there exists an ε > 0, such that λI − A is a
lower semi-Fredholm (resp. an upper semi-Fredholm) operator, for each λ ∈ D(α0, ε)\{α0}, which implies
that ρBF− (A) resp. (ρBF+ (A)) is an open subset of C.
Since, ρBF(A) = ρBF+ (A) ∩ ρBF− (A), then we get ρBF(A) is an open subset of C.
(ii) Let Ω be a component of ρBF+ (A) (resp. ρBF− (A)), λ0 ∈ Ω be a fixed point and λ1 ∈ Ω be an arbitrary
point that are connected by a polygonal line Γ contained in Ω. Hence, from the assertion (i) of this corollary,
for each µ ∈ Γ, there exits an open disc D(µ, ε), such that ind(µI − A) = ind(λI − A), for each λ ∈ D(µ, ε). By
the Heine-Borel theorem, there exist a finite number of open discs that cover Γ, therefore, we deduce that
ind(λ0I − A) = ind(λ1I − A). �

Remark 2.3. Assertions (i) and (ii) of the above corollary are well-known for the unbounded Fredholm operators
densely defined [14, Theorem 7.25].

We finish this section by the following assertions which are proved in [2] for bounded linear operators.
Based on the Theorem 2.1, we will prove that they remain also valid in the case of closed linear operators
with a non-empty resolvent set.

Theorem 2.4. Let A ∈ C(X) such that ρ(A) , ∅. Then
(i) If Ω is a connected component of ρBF+ (A), then λI − A ∈ LD(X), either for every point of Ω or for no point of Ω.
(ii) If Ω is a connected component of ρBF− (A), then λI − A ∈ RD(X), either for every point of Ω or for no point of Ω.
(iii) If Ω is a connected component of ρBF(A), then λI − A ∈ DR(X), either for every point of Ω or for no point of Ω.

Proof. (i) Let Ω be a connected component of ρBF+ (A) and define the set

Ψ1 = {λ ∈ Ω such that λI − A ∈ LD(X)}

Suppose there exists α0 ∈ Ψ1, then α0I − A is an upper semi B-Fredholm operator, a(α0I − A) < ∞ and
R(α0I−A)p+1 is closed, where p = a(α0I−A). Since, ρ(α0I−A) , ∅, then by using Theorem 2.1, we can find an
ε1 > 0 such that λI−A is an upper semi-Fredholm operator, for all λ ∈ D(α0, ε1)\{α0}. From [13, Lemma 2.5],
there exists ε2 > 0 such that a(λI−A) = 0, for all λ ∈ D(α0, ε2)\{α0}. If we take D(α0, ε) = D(α0, ε1)∩D(α0, ε2),
then we get D(α0, ε) ∩ Ω ⊂ Ψ1. This shows that Ψ1 is an open subset of Ω. To show that Ψ1 is a closed
subset of Ω, we consider α0 ∈ Ψ1 ∩ Ω, where Ψ1 is the closure of Ψ1. Hence, α0I − A is an upper semi
B-Fredholm operator. Hence, it follows from Theorem 2.1, that there exists ε > 0 such that λI − A is an
upper semi-Fredholm operator, for each λ ∈ D(α0, ε)\{α0}. Since, α0 ∈ Ψ1, then D(α0, ε) ∩ Ψ1 , ∅. Let
µ ∈ D(α0, ε) ∩Ψ1 and Γ a polygonal line contained in Ω connecting α0 and µ. By the Heine-Borel theorem,
there is a finite number of open discs that cover Γ. Therefore, we have α0 ∈ Ψ1, which entails that Ψ1 is
closed in Ω. Then, by the connectivity of Ω, we conclude that Ψ1 = Ω or Ψ1 = ∅. This shows the assertion
(i).
(ii) Let Ω be a connected component of ρBF− (A) and define the set

Ψ2 = {λ ∈ Ω such that λI − A ∈ RD(X)}

Suppose there existsα0 ∈ Ψ2, thenα0I−A is a lower semi B-Fredholm operator, d(α0I−A) < ∞ and R(α0I−A)q

is closed, where q = d(α0I−A). Thus, from [13, Lemma 2.4], there exists ε > 0 such that d(λI−A) = 0, for all
λ ∈ D(α0, ε)\{α0} and R(λI − A)0 = X is closed, which implies that D(α0, ε) ∩Ω ⊂ Ψ2. Hence, Ψ2 is an open
set of Ω. To show that Ψ2 is closed in Ω, we use the same proof as in part (i) and finally we conclude that
Ψ2 = Ω or Ψ2 = ∅.
(iii) It is an immediate result from (i) and (ii). �
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3. Unbounded Generalized Meromorphic Operators

The aim of this section is to give some characterizing properties of unbounded generalized mero-
morphic operators by mean of B-Fredholm spectrum and polynomially meromorphic operators. First, we
start with the following theorem proved in [4] in the case of Hilbert space. Based on the Kato decomposition
theorem [12, Theorem 3.2.1], which is also true in the case of Banach spaces as shown by Labrousse in [12,
p. 206], we can generalize this result to the case of Banach spaces.

Theorem 3.1. Let A ∈ C(X) be a densely defined linear operator such that ρ(A) , ∅. Let p(λ) =

n∏
i=1

(λ − λi)mi be

a polynomial of degree s with complex coefficients and λi , λ j. Then, p(A) is a B-Fredholm operator if and only if
A − λiI is a B-Fredholm operator, for all 1 ≤ i ≤ n.

Proof. Since, λi , λ j, then the polynomials pi(λ) = (λ−λi)mi , 1 ≤ i ≤ n, are relatively prime, and hence there
exist polynomials qi(λ) and q j(λ) such that qi(λ)pi(λ) + q j(λ)p j(λ) = 1, with 1 ≤ i , j ≤ n. Then, we have for
sufficiently large m

qi(A)pi(A) + q j(A)p j(A) = ID(Am) (3.1)

Using the identity 3.1, we can deduce that

R[p(A)]m = R[pi(A)]m
∩ R[p j(A)]m,∀m ≥ 1 (3.2)

N[p(A)]m = N[pi(A)]m + N[p j(A)]m,∀m ≥ 1 (3.3)

”⇐= ” Assume that A − λiI is a B-Fredholm operator, for all 1 ≤ i ≤ n. Then, by using [3, Theorem 3.6], we
obtain that (A − λiI)mi is a B-Fredholm operator, for all 1 ≤ i ≤ n. Hence, (A − λiI)mi is a Quasi-Fredholm
operator of degree di = dis((A−λiI)mi ), dim[N((A−λiI)mi )∩R((A−λiI)midi )] < ∞ and codim[N((A−λiI)midi ) +
R((A − λiI)mi )] < ∞, for all 1 ≤ i ≤ n. Set d = max

1≤i≤n
(di). Since, R((A − λi)mi )m is closed, for each m ≥ di, then

from the formula 3.2, we have R[p(A)]m is closed, for each m ≥ d. We have from [4, Lemma 3.2], that

N[p(A)] ∩ R[p(A)]d =

n∑
i=1

N((A − λiI)mi ) ∩ R((A − λiI)mid)

Since, the polynomials (A − λiI)mi
1≤i≤n are relatively prime, then we have

dim[N[p(A)] ∩ R[p(A)]d] =

n∑
i=1

dim[N((A − λiI)mi ) ∩ R((A − λiI)mid)]

Since, N((A − λiI)mi ) ∩ R((A − λiI)mid) ⊂ N((A − λiI)mi ) ∩ R((A − λiI)midi ) and using the same reasoning as in
[4, Theorem 3.3], we get dim[N[p(A)] ∩ R[p(A)]d] < ∞.
On the other hand, the fact that R(p(A∗)d) and N(p(A)∗)) are closed, this implies that dim[R(p(A))+N(p(A)d]⊥ =

dim[R(p(A∗)d) ∩ N(p(A)∗))] =

n∑
i=1

dim[N((A∗ − λiI)mi ) ∩ R((A∗ − λiI)mid)], where A∗ is the adjoint operator of

A. Since, (A− λiI)mi is a B-Fredholm operator, for all 1 ≤ i ≤ n, then it follows from [3, Proposition 2.5], that
(A∗ − λiI)mi is also a B-Fredholm operator, for all 1 ≤ i ≤ n. Therefore, we use the same arguments as above,
we obtain codim[R(p(A)) + N(p(A)d] = dim[R(p(A)) + N(p(A)d]⊥ < ∞. Finally, using [3, Proposition 2.2], we
can deduce that p(A) is a B-Fredholm operator.
” =⇒ ” If p(A) is a B-Fredholm operator, then it is a Quasi-Fredholm operator of degree d = dis(p(A)),
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dim(N[p(A)] ∩ R[p(A)]d) < ∞ and codim(R(p(A)) + N(p(A))d) < ∞. Set di = dis((A − λiI)mi ), then we have
d = max

1≤i≤n
(di). Using the same technique as above and [3, Proposition 2.2], we get (A− λiI)mi is a B-Fredholm

operator, for all 1 ≤ i ≤ n. Since

N(A − λiI) ∩ R((A − λiI)midi ) ⊂ N((A − λiI)mi ) ∩ R((A − λiI)midi )

R((A − λiI)mi ) + N((A − λiI)midi ) ⊂ N((A − λiI)midi ) + R(A − λiI)

Then, we have dim[N(A−λiI)∩R(A−λiI)midi ] < ∞ and codim[N(A−λiI)midi +R(A−λiI)] < ∞, which implies
from [3, Proposition 2.2], that A − λiI is a B-Fredholm operator, for all 1 ≤ i ≤ n. �

It is well known that the spectral mapping theorem, holds for the usual spectrum [9]. Here, using
Theorem 3.1, we can generalize it for the B-Fredholm spectrum of closed linear operators densely defined
with a non-empty resolvent set.

Theorem 3.2. Let A ∈ C(X) be a densely defined linear operator such that ρ(A) , ∅ and p be a polynomial with
complex coefficients. Then,

σBF(p(A)) = p(σBF(A))

Proof. Let λ < σBF(p(A)) and we show that λ < p(σBF(A)).
If there exists an α0 ∈ σBF(A) such that λ = p(α0), then we have p(α0) − p(z) = (α0 − z)kH(z), with H(α0) , 0.
Since, λ − p(A) is a B-Fredholm operator, then from Theorem 3.1, we get α0I − A is a B-Fredholm operator,
which contradicts the fact that α0 ∈ σBF(A). Hence, we conclude that λ < p(σBF(A)).

Conversely, assume that λ < p(σBF(A)) and set Q(z) = λ − p(z) = c
n∏

i=1

(z − λi)mi , with c is non-zero constant

and mi, 1 ≤ i ≤ n are positive integers. Suppose that there exists 1 ≤ i0 ≤ n such that λi0 ∈ σBF(A), then the
fact that Q(λi0 ) = 0, shows that λ = p(λi0 ), this contradicts the fact that λ < p(σBF(A)). Hence, λi < σBF(A),
for all 1 ≤ i ≤ n. Thus, from Theorem 3.1, we can deduce that Q(A) is a B-Fredholm operator and finally
λ < σBF(p(A)) which finish the proof of this theorem. �

In the sequel, we introduce a new class of operators which generalizes the notion of unbounded
meromorphic operators introduced by S. R. Caradus in [8].

Definition 3.3. Let A ∈ C(X) be an unbounded linear operator. We say that A is a generalized meromorphic operator
if there exists a finite subset E of C such that the only allowable points of accumulation of σ(A) are {∞} and the points
of E and every isolated point λ ∈ σ(A)\E is a pole of the resolvent of A. We will denote this set by GM(E,∞). If
λ ∈ E (resp. λ = ∞) is the only allowable point of accumulation of σ(A), we will write GM(E) (resp. GM(∞)) to
denote the corresponding class of operators. We will denote by GM f (E,∞) (resp. GM f (∞)) the set of all operators
A ∈ GM(E,∞) such that every λ ∈ σ(A)\E is an eigenvalue of finite multiplicity and the allowable accumulation
points of σ(A) are∞ and the points of E (resp. the set of all operators A ∈ GM(E,∞) such that every λ ∈ σ(A)\E is
an eigenvalue of finite multiplicity and∞ is the only point of accumulation of its spectrum).
Note that,

GM f (E) ⊆ GM(E) ⊆ GM(E,∞),

GM f (∞) ⊆ GM(∞) ⊆ GM(E,∞)

Remark 3.4. (i) If E := {0}, then we find the class of unbounded meromorphic operators introduced by S. R. Caradus
in [8].
(ii) We recall that an operator A ∈ L(X) is called a generalized Riesz operator [11, Definition 1.2] if there exists a finite
subset E of C such that
(a) For all λ ∈ C\E, (λI − A) is a Fredholm operator on X.
(b) For all λ ∈ C\E, (λI − A) has finite ascent and finite descent.
(c) All λ ∈ σ(A)\E are eigenvalues of finite multiplicity, and have no accumulation point except possibly points of E.
We note that, a generalized Riesz operator is a generalized meromorphic operator.
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Based on the Theorem 2.4, we can show the following important result, which is a generalization of
that obtained in [1] in the case of Riesz operators acting on a Banach space.

Proposition 3.5. Let A be a closed linear operator with a non-empty resolvent set and E a finite subset of C. Then
the following assertions are equivalent:
(i) λI − A ∈ ΦB(X), for all λ ∈ C\E .
(ii) λI − A ∈ DR(X), for all λ ∈ C\E.
(iii) λI − A ∈ LD(X), for all λ ∈ C\E.
(iv) λI − A ∈ Φ+

B(X), for all λ ∈ C\E.
(v) λI − A ∈ RD(X), for all λ ∈ C\E.
(vi) λI − A ∈ Φ−B(X), for all λ ∈ C\E.

Proof. (i =⇒ ii) Let λ0 ∈ C\E and set E′ = E\ρ(A), then λ0 ∈ C\E′ and λ0I − A ∈ ΦB(X). Since, C\E′ is a
connected component of ρBF(A), then applying Theorem 2.4 (iii), we obtain that λI − A ∈ DR(X) either for
every point ofC\E′ or for no point ofC\E′. The fact thatC\E′ contains ρ(A) which is non-empty, this entails
that λI − A ∈ DR(X) for every point of C\E′ in particular for λ = λ0. Thus, we obtain the assertion (ii).
By using Theorem 2.4 (i) and (ii) and the same proof as in (i =⇒ ii), we can prove the assertions (iv =⇒ iii)
and (vi =⇒ v).
Since, a left Drazin invertible (resp. right Drazin invertible) operator is an upper semi B-Fredholm (resp.
lower semi B-Fredholm) one, then we can deduce the following assertions (ii =⇒ i), (iii =⇒ iv) and (v =⇒ vi).
(iii =⇒ ii) If λI −A ∈ LD(X), for all λ ∈ C\E, then it is left Drazin invertible operator, for all λ ∈ C\E′, where
E′ = E\ρ(A).
Let

Ω1 = {λ ∈ C\E′ such that d(λI − A) < ∞}

The set Ω1 , ∅, since ρ(A) is non-empty. Let α0 ∈ Ω1, then α0 ∈ C\E′ and d(α0I −A) < ∞. From [13, Lemma
2.4], there exists an ε > 0 such that d(λI − A) = 0, for all λ ∈ D(α0, ε)\{α0}. Hence, Ω1 is an open set of C\E′.
To show that Ω1 is closed in C\E′, we consider α0 ∈ Ω1 ∩ C\E′. Then, α0I − A ∈ LD(X). So, it is an
upper semi B-Fredholm operator. Hence, by using Theorem 2.1, there exists ε > 0 such that λI − A is an
upper semi-Fredholm operator, for each λ ∈ D(α0, ε)\{α0}. Since, α0 ∈ Ω1, then we have D(α0, ε) ∩Ω1 , ∅.
Let µ ∈ D(α0, ε) ∩ Ω1 and Γ a polygonal line contained in C\E′ connecting µ and α0. By the Heine-Borel
theorem, there exist a finite number of open discs that cover Γ. Thus, Ω1 is a closed subset of C\E′ and
finally Ω1 = C\E′. Since, a(λI−A) < ∞ and d(λI−A) < ∞, for each λ ∈ C\E′, this entails that λI−A ∈ DR(X),
for each λ ∈ C\E′ and so it is Drazin invertible for every λ ∈ C\E which shows the assertion (ii).
(v =⇒ ii) We use Theorem 2.1 and [13, Lemma 2.5] and the same technique as in (iii =⇒ ii), we can obtain
the assertion (ii). Since, a Drazin invertible operator is both left and right Drazin invertible, then we can
deduce the assertions (ii =⇒ iii) and (ii =⇒ v).
The assertions (i =⇒ iv) and (i =⇒ vi) are immediate from the fact that a B-Fredholm operator is both upper
and lower semi B-Fredholm operator. �

In the following theorem, by applying Proposition 3.5, we give a characterization of unbounded
generalized meromorphic operators by mean of B-Fredholm spectrum.

Theorem 3.6. Let A ∈ C(X) with a non-empty resolvent set and E a finite subset of C. Then, A ∈ GM(E,∞) if and
only if σBF(A) ⊂ E.

Proof. Suppose that A ∈ GM(E,∞) and let λ ∈ C\E, then λ is a pôle of the resolvent of A. This, implies
that σD(A) ⊂ E and by Proposition 3.5, we get σBF(A) ⊂ E. Conversely, suppose that σBF(A) ⊂ E and let
λ0 ∈ σ(A)\E be an isolated point. Then, from Proposition 3.5, we have λ0I−A is a Drazin invertible operator,
which implies by using [13, Theorem 2.1], that λ0 is a pôle of the resolvent of A. Hence, σ(A) is a discrete
set, for which the points of E and∞ are the only possible points of accumulation. Finally, we conclude that
A ∈ GM(E,∞). �



M. Berkani et al. / Filomat 32:15 (2018), 5421–5431 5428

The following theorem extend [8, Corollary, p. 747] on the structure of unbounded meromorphic
operators to the case of unbounded generalized meromorphic operators.

Theorem 3.7. Let A ∈ C(X) be an unbounded operator such that 0 ∈ ρ(A). Then, A is a generalized meromorphic
operator if and only if A−1 is a bounded generalized meromorphic operator.

Proof. If A−1 is a bounded generalized meromorphic operator, then it follows from Theorem 3.6, that
σBF(A−1) is a finite subset of C. Then, from [5, Theorem 3.6], we have

σBF(A) = {λ−1
|λ ∈ σBF(A−1)\{0}} (3.4)

Set {λ1, .., λn} the non-zero elements of σBF(A−1). Then

σBF(A) = {λ−1
1 , ..., λ

−1
n } (3.5)

By using Theorem 3.6, we obtain that A is a generalized meromorphic operator.
Conversely, suppose that A is a generalized meromorphic operator, then there exists a finite subset E of C
such that A ∈ GM(E,∞). Thus, it follows from Theorem 3.6, that σBF(A) ⊂ E. Hence, we get

σBF(A−1) ⊂ {0} ∪ {λ−1, λ ∈ σBF(A)} (3.6)

This entails that, σBF(A−1) is also a finite subset of C which prove from Theorem 3.6, that A−1 is a bounded
generalized meromorphic operator. �

We present now the following definition:

Definition 3.8. We say that an operator A ∈ C(X) is polynomially meromorphic if there exists a non-zero polynomial
p(z) such that p(A) is meromorphic.

Remark 3.9. It is clear that, a polynomially compact operator more generally a polynomially Riesz operator is a
polynomially meromorphic one.

Now, we are able to characterize the unbounded generalized meromorphic operators densely defined by
mean of polynomially meromorphic operators.

Theorem 3.10. Let A ∈ C(X) be a densely defined linear operator such that
ρ(A) , ∅. Then, A is a polynomially meromorphic operator if and only if A is generalized meromorphic.

Proof. Let p be a non-zero polynomial, such that p(A) is a meromorphic operator, then from Theorem 3.6,
we have σBF(p(A)) ⊂ {0}. By using Theorem 3.2, we get σBF(p(A)) = p(σBF(A)) ⊂ {0} which implies that
σBF(A) ⊂ {λ1, ..., λn}, where λi are the roots of p. Thus, from Theorem 3.6, the operator A is generalized
meromorphic. Conversely, if A is a generalized meromorphic operator, then from Theorem 3.6, there exists

a finite subset E of C such that σBF(A) ⊂ E. Set E = {λ1, ..., λn} and p(z) =

n∏
i=1

(z − λi). We shaw that p(A) is a

meromorphic operator. Let λ , 0, Q(z) = λ − p(z) and {µ1, ..., µn} its roots. For this, let us show that µi , λ j,
for 1 ≤ i, j ≤ n. Suppose that there exists 1 ≤ i0, j0 ≤ n such that µi0 = λ j0 , then we get Q(µi0 ) = Q(λ j0 ) = λ , 0
which contradicts the fact that µi0 is a zero of Q. Hence, from our hypothesis, we conclude that µiI − A is a
B-Fredholm operator, for all 1 ≤ i ≤ n and so by Theorem 3.1, Q(A) = λ− p(A) is a B-Fredholm operator, for
all λ , 0 which implies that the operator p(A) is meromorphic. �

Remark 3.11. The theorem stated as above has been established in [17, p. 93] in the case of bounded linear operators.
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4. Decomposition of Unbounded Generalized Meromorphic Operators

Our main result in this section is to yield a decomposition of unbounded generalized meromorphic
operators which generalizes a result of S. R. Caradus in [8] on the structure of unbounded meromorphic
operators.
In order to give our main result, we shall need the following Lemma:

Lemma 4.1. Consider X = X1 ⊕X2 ⊕ ....⊕Xn and A ∈ C(X) such that A = A1 ⊕A2 ⊕ ....⊕An, where Xi is a closed
A-invariant subspace of X, Ai is the restriction of A to Xi and D(Ai) = D(A) ∩ Xi, ∀ 1 ≤ i ≤ n. Then,

σD(A) =

n⋃
i=1

σD(Ai)

Proof. The fact that a(A) < ∞ (resp. d(A) < ∞) if and only if a(Ai) < ∞ (resp. d(Ai) < ∞), ∀1 ≤ i ≤ n, this
conclude the proof. �

Theorem 4.2. Let A ∈ C(X) be an unbounded operator with a non-empty resolvent set and E = {α1, ..., αn} a finite
subset of C. Then, if A ∈ GM(E,∞), we can write A = A1 + ... + An + An+1, such that AsA j = A jAs = 0, for all
1 ≤ s , j ≤ n + 1, As − αsIs is a meromorphic operator, for each 1 ≤ s ≤ n and An+1 ∈ GM(∞).
In this way, we have

Rµ(A) = Rµ(A1) + .. + Rµ(An) + Rµ(An+1) −
2nI
µ

(4.1)

Proof. Let σ1, ..., σn, σn+1 be a pairwise disjoint spectral sets of A such that αs ∈ σs, ∞ < σs, for all 1 ≤ s ≤ n
and σn+1 = σ̃(A)\σ1 ∪ ... ∪ σn, where σ̃(A) = σ(A) ∪ {∞}.
If P1, ..,Pn,Pn+1 are, respectively, the associated spectral projections, then it is clear that P1 + ..+Pn +Pn+1 = I,
PsP j = P jPs = 0, for all 1 ≤ s , j ≤ n + 1.
Define As = APs, 1 ≤ s ≤ n + 1. Then, we have A = A1 + ... + An + An+1 and AsA j = A jAs = 0, for all
1 ≤ s , j ≤ n + 1. Since, for all 1 ≤ s ≤ n, σs does not contain ∞, then it follows from [15, Theorem 5.7-B],
that R(Ps) ⊂ D(A) and the fact that As are closed operators, this implies by the closed-graph theorem, that
As ∈ L(X), for each 1 ≤ s ≤ n. We use the operational calculus for unbounded operators, as discussed in [15,
pp 287-296], to deduce the assertions of this theorem. Let Ω, Ωs, 1 ≤ s ≤ n + 1 be Cauchy domains such that

σ(A) ⊆ Ω, σs ⊆ Ωs, 1 ≤ s ≤ n + 1,
n+1⋂
s=1

Ωs = ∅ and Ω =

n+1⋃
s=1

Ωs.

Define the functions fs(λ), for 1 ≤ s ≤ n + 1 as follows:

fs(λ) =

{
1 if λ ∈ Ωs
0 otherwise

Let µ < Ωs, for each 1 ≤ s ≤ n. Denote by +B(Ω) the positively oriented boundary. Using the above-
mentioned operational calculus, we get for each, 1 ≤ s ≤ n, that

Rµ(As) =
I
µ

+
1

2iΠ

∮
+B(Ω)

1s(λ)Rλ(A)dλ

=
I
µ

+
1

2iΠ

n∑
s=1

∮
+B(Ωs)

1
µ − λ

Rλ(A)dλ +
1

2iΠ

∮
+B(Ωn+1)

1
µ

Rλ(A)dλ

=
I + Pn+1

µ
+

1
2iΠ

n∑
s=1

∮
+B(Ω)

fs(λ)
µ − λ

Rλ(A)dλ

=
2I − Ps

µ
+ PsRµ(A) (4.2)



M. Berkani et al. / Filomat 32:15 (2018), 5421–5431 5430

Where, 1s(λ) =
1

µ − λ fs(λ)
, for 1 ≤ s ≤ n. Similarly, we have

Rµ(An+1) =
1

2iΠ

∮
+B(Ω)

1n+1(λ)Rλ(A)dλ

=
1

2iΠ

n∑
s=1

∮
+B(Ωs)

1
µ

Rλ(A)dλ +
1

2iΠ

∮
+B(Ωn+1)

1
µ − λ

Rλ(A)dλ

=
I − Pn+1

µ
+

1
2iΠ

∮
+B(Ωn+1)

1
µ − λ

Rλ(A)dλ

=
I − Pn+1

µ
+ Pn+1Rµ(A) (4.3)

Where, 1n+1(λ) =
1

µ − λ fn+1(λ)
.

Adding and rearranging the equalities (4.2) and (4.3), we obtain (4.1).
Now, we show that for each, 1 ≤ s ≤ n, that As −αsIs is a meromorphic operator and An+1 ∈ GM(∞). Indeed,
let λ0 ∈ σ(As − αsIs)\{0} an isolated point, for 1 ≤ s ≤ n. Since, λ0 + αs , αs, for each, 1 ≤ s ≤ n, and
the fact that A ∈ GM(E,∞), this entails that λ0 is a pole of the resolvent of As − αsI. Moreover, as all the
operators As, 1 ≤ s ≤ n, are bounded, it is clear that the only possible accumulation point of σ(An+1) is ∞.
Thus An+1 ∈ GM(∞).

Remark 4.3. The above theorem is also true, if we replace GM(E,∞), GM(∞) and meromorphic operators respectively
by GM f (E,∞), GM f (∞) and Riesz operators.

Theorem 4.4. Under the hypothesis of Theorem 4.2, if A ∈ GM(E,∞), then there exists a closed A-invariant
subspaces X1, ...Xn,Xn+1 of X such that:
(a) A(D(A) ∩ Xi) ⊆ Xi, for all 1 ≤ i ≤ n + 1,
(b) X = X1 ⊕ ...Xn ⊕ Xn+1,
(c) A = A1 ⊕ ...An ⊕ An+1, such that Ai − αiIi is a meromorphic operator, for 1 ≤ i ≤ n and An+1 ∈ GM(∞), where
Ai (resp. Ii) is the reduction of A (resp. o f I) on Xi.

Proof. We define Xi = R(Pi), ∀1 ≤ i ≤ n + 1, where Pi is defined in the proof of Theorem 4.2. So that, from
[15, Theorem 5.7-A], we have X = X1 ⊕ ...Xn ⊕Xn+1, I = P1 + ... + Pn + Pn+1, PiP j = 0; for all 1 ≤ i , j ≤ n + 1,
Pi(D(A)) ⊂ D(A), AXi ⊂ Xi, 1 ≤ i ≤ n + 1 and A = A1 ⊕ ...An ⊕An+1, where Ai = A/Xi . Since, σ1, .., σn does not
contain∞, then again by [15, Theorem 5.7-B(e)], we get Ai ∈ L(Xi), 1 ≤ i ≤ n and it follows from [15, p. 300],
that σ(Ai) = σi, 1 ≤ i ≤ n + 1. Now, we must show that σD(Ai) ⊆ {αi}, 1 ≤ i ≤ n and An+1 ∈ GM(∞). Since,
A ∈ GM(E,∞), then by using Theorem 3.6 and Proposition 3.5, we obtain that σD(A) ⊂ E.
Let λ0 ∈ σ(Ai)\{α1, ..., αn}, 1 ≤ i ≤ n + 1. The fact that σD(A) ⊂ E and the use of Lemma 4.1, this implies that
λ0 < σD(Ai), for all 1 ≤ i ≤ n + 1. Since, σD(Ai) ⊂ σ(Ai) and σ(Ai) = σi, for each 1 ≤ i ≤ n, and the fact that
αi ∈ σi, this entails that σD(Ai) ⊆ {αi}, 1 ≤ i ≤ n and so Ai − αiIi is a meromorphic operator, for all 1 ≤ i ≤ n.
On the other hand, αi < σn+1, for each 1 ≤ i ≤ n, which shows that αi cannot be an accumulation points of
σ(An+1). Hence, we conclude that∞ is the only point of accumulation of σ(An+1) and finally we obtain that
An+1 ∈ GM(∞). �
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