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Abstract. Let T be a bounded linear operator on a complex Hilbert space and n,m ∈ N. Then T is said to
be n-normal if T∗Tn = TnT∗ and (n,m)-normal if T∗mTn = TnT∗m. In this paper, we study several properties of
n-normal, (n,m)-normal operators. In particular, we prove that if T is 2-normal with σ(T)

⋂
(−σ(T)) ⊂ {0},

then T is polarloid. Moreover, we study subscalarity of n-normal operators. Also, we prove that if T is
(n,m)-normal, then T is decomposable and Weyl’s theorem holds for f (T), where f is an analytic function
on σ(T) which is not constant on each of the components of its domain.

1. Introduction and Motivation

LetH be a complex Hilbert space with the inner product 〈 , 〉 and L(H) be the set of all bounded linear
operators onH . An operator T ∈ L(H) is said to be normal if T∗T = TT∗, subnormal if there exists a Hilbert
space K containing H and a normal operator N on K such that NH ⊂ H and T = N|H , hyponormal if
T∗T − TT∗ ≥ 0. An operator T is said to be scalar of order m if it admits a spectral distribution of order m,
i.e., if there is a continuous unital morphism Φ : Cm

0 (C) −→ L(H) such that Φ(z) = T, where z stands for
the identity function on C and Cm

0 (C) for the space of compactly supported functions on C, continuously
differentiable of order m (0 ≤ m ≤ ∞). An operator T is said to be subscalar of order m if it is similar to the
restriction of a scalar operator of order m to an invariant subspace. It is known that subnormal operators
are hyponormal and hyponormal operators are subscalar ([8]).

An operator T ∈ L(H) is said to have the single-valued extension property if for every open subset G of C
and anyH-valued analytic function f on G such that (T − λ) f (λ) ≡ 0 on G, we have f (λ) ≡ 0 on G. For an
operator T ∈ L(H) and for x ∈ H , the local resolvent set ρT(x) of T at x is defined as the union of every open
subset G of C on which there is an analytic function f : G −→ H such that (T − λ) f (λ) ≡ x on G. The local
spectrum of T at x is given by σT(x) = C \ ρT(x). We define the local spectral subspace of an operator T ∈ L(H)
by HT(F) = {x ∈ H : σT(x) ⊂ F} for a subset F of C.
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For an operator T ∈ L(H), the quasinilpotent part of T − λ is defined as

H0(T − λ) = {x ∈ H : lim
n→∞
‖(T − λ)nx‖

1
n = 0}.

In general, ker((T − λ)m) ⊂ H0(T − λ) and H0(T − λ) is not closed. However, if λ is an isolated point of σ(T),
then ET({λ})H = H0(T − λ) where

ET({λ}) =
1

2πi

∫
∂D

(z − T)−1 dz

denotes the Riesz idempotent corresponding to λ with D is a closed disk centered at λ which contains no
other points of σ(T). Hence H0(T − λ) is closed in this case.

An operator T ∈ L(H) is said to have Dunford’s property (C) if HT(F) is closed for each closed subset
F of C. An operator T ∈ L(H) is said to have the property (β) if for every open subset G of C and every
sequence fn : G→H ofH-valued analytic functions such that (T−z) fn(z) converges uniformly to 0 in norm
on compact subsets of G, then fn(z) converges uniformly to 0 in norm on compact subsets of G. It is well
known that Property (β) =⇒ Dunford’s property (C) =⇒ SVEP, and the converse implications do not hold
([7, Proposision 1.2.19]). An operator T ∈ L(H) is said to be decomposable if for every open cover {U,V} of C
there are T-invariant subspaces X and Y such thatH = X +Y, σ(T|X) ⊂ U and σ(T|Y) ⊂ V. Remark that T
is decomposable if and only if T and T∗ have the property (β) ([7, Theorem 2.5.19]).

An operator T ∈ L(H) is said to be isoloid if every isolated point of σ(T) belongs to the point spectrum of
T. Hence, hyponormal operators are isoloid ([6, Theorem 2]). Of course, there are many classes of operators
weaker than hyponormal which are isoloid. An operator T ∈ L(H) is called polaroid if every isolated point
of σ(T) is a pole of the resolvent of T. An operator T ∈ L(H) is said to be quasinilpotent if σ(T) = {0}.

In [3], S. A. Alzuraiqi and A. B. Patel introduced n-normal operators.

Definition 1.1. For n ∈N, an operator T ∈ L(H) is said to be n-normal if

T∗Tn = TnT∗ . (1)

This definition seems natural. S. A. Alzraiqi and A. B. Patel proved characterizations of 2-normal, 3-normal
and n-normal operators on C2. Also, they made several examples of n-normal operators and proved that T
is n-normal if and only if Tn is normal. Also, they proved that if T is 2-normal with the following condition

σ(T)
⋂

(−σ(T)) = ∅, (2)

then T is subscalar. If an operator T ∈ L(H) satisfies (2), then T is invertible automatically. Recently, the
authors in [4] have studied spectral properties of an n-normal operator T satisfying the following condition
(3).

σ(T)
⋂

(−σ(T)) ⊂ {0}. (3)

It is a little weaker assumption than this condition (2). We define (n,m)-normality as follows.

Definition 1.2. For n,m ∈N, an operator T ∈ L(H) is said to be (n,m)-normal if

T∗mTn = TnT∗m.

In this paper, we study several properties of n-normal or (m,n)-normal operators. In particular, we prove
that if T is 2-normal with (3), then T is polarloid. We study subscalarity of n-normal operators. Moreover,
we show that if T is (n,m)-normal, then T is decomposable and Weyl’s theorem holds for f (T), where f is
an analytic function on σ(T) which is not constant on each of the components of its domain.

The following proposition is important in this paper.

Proposition 1.3. ([3, Proposition 2.2]) Let T ∈ L(H) and n ∈N. Then T is n-normal if and only if Tn is normal.
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Therefore, we have the following result.

Theorem 1.4. Let T ∈ L(H) be n-normal. Then T has the single-valued extension property.

Proof. Since Tn is normal, it follows that Tn has the single-valued extension property. Hence T has the
single-valued extension property by [1, Theorem 2.40].

2. 2-normal Operators

In this section, we study some properties of 2-normal operators. Let M be a subspace ofH . Then M is
said to be a reducing subspace for T if T(M) ⊂M and T∗(M) ⊂M, that is, M is an invariant subspace for T and
T∗.

Theorem 2.1. ([4]) Let T ∈ L(H) be 2-normal and satisfy (3). Then the following statements hold.
(i) T is isoloid and σ(T) = σa(T).
(ii) If z and w are distinct eigen-values of T and x, y ∈ H are corresponding eigen-vectors, respectively, then 〈 x, y〉 = 0.
(iii) If z,w are distinct values of σa(T) and {xn}, {yn} are the sequences of unit vectors inH such that (T − z)xn → 0
and (T − w)yn → 0 (n → ∞), then lim

n→∞
〈 xn, yn〉 = 0.

(iv) If z and w are distinct eigen-values of T, then ker(T − z)⊥ ker(T − w).
(v) If z is a non-zero eigen-value of T, then ker(T − z) = ker(T2

− z2) = ker(T∗2 − z2) = ker(T∗ − z) and hence
ker(T − z) is a reducing subspace for T.

In 2012, J. T. Yuan and G. X. Ji ([10, Lemma 5.2]) proved the following Lemma.

Lemma 2.2. Let m be a positive integer, λ be an isolated point of σ(T) and E = ET({λ}).
(i) Then the following assertions are equivalent.

(a) EH = ker((T − λ)m).
(b) ker(E) = (T − λ)m

H .
Hence λ is a pole of the resolvent of T and the order of λ is not greater than m.

(ii) If λ is a pole of the resolvent of T and the order of λ is m, then the following assertions are equivalent:
(a) E is self-adjoint.
(b) ker((T − λ)m) ⊂ ker((T − λ)∗m).
(c) ker((T − λ)m) = ker((T − λ)∗m).

Next we show that if T is 2-normal and satisfies (2), then T is polaroid.

Theorem 2.3. Let T ∈ L(H) be 2-normal and satisfy (3), and let λ be an isolated point of spectrum of T. Then λ is
a pole of the resolvent, that is, T is polaroid and the following statements hold.
(i) If λ = 0, then H0(T) = ker(T2) = ker(T∗2), ET({0}) is self-adjoint and the order of 0 is not greater than 2.
(ii) If λ , 0, then H0(T − λ) = ker(T − λ) = ker((T − λ)∗), ET({λ}) is self-adjoint and the order of λ is 1.

Proof. Let λ be an isolated point of spectrum of T.
(i) Assume that λ = 0. Since σ(T2) = {z2 : z ∈ σ(T)}, it follows that 0 is an isolated point of spectrum

of T2. We want to prove that H0(T) = H0(T2). Let x ∈ H0(T). Then ‖Tnx‖
1
n −→ 0 and hence ‖T2nx‖

1
2n =(

‖T2nx‖
1
n

) 1
2
−→ 0 and ‖T2nx‖

1
n −→ 0. Hence x ∈ H0(T2). Conversely, let x ∈ H0(T2). Then ‖T2nx‖

1
n −→ 0 and

so ‖T2nx‖
1

2n =
(
‖T2nx‖

1
n

) 1
2
−→ 0. Since

‖T2n+1x‖
1

2n+1 ≤

(
‖T‖‖T2nx‖

) 1
2n+1
≤ ‖T‖

1
2n+1

(
‖T2nx‖

1
2n

) 2n
2n+1
−→ 0 (n→∞),

it follows that x ∈ H0(T). Hence H0(T) = H0(T2).
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Let x ∈ ET({0}) = H0(T) = H0(T2) = ET2 ({0}). Since T2 is normal, it follows that ET2 ({0}) = ker(T2) =
ker(T∗2). Hence x ∈ ker(T2) and ET({0}) ⊂ ker(T2). Therefore ET({0}) = ker(T2) = ker(T∗2) and 0 is a pole of
the resolvent of T and the order of 0 is not greater than 2 by Lemma 2.2.
(ii) Next we assume λ , 0. Then λ2 is an isolated point of σ(T2) by [4, Lemma 2.1]. We will prove
H0(T − λ) = H0(T2

− λ2). Let x ∈ H0(T − λ). Then ‖(T − λ)nx‖
1
n → 0. Therefore we have

‖(T2
− λ2)nx‖

1
n ≤ ‖(T + λ)n

‖
1
n ‖(T − λ)nx‖

1
n ≤ ‖T + λ‖‖(T − λ)nx‖

1
n −→ 0.

Hence H0(T − λ) ⊂ H0(T2
− λ2). Conversely, let x ∈ H0(T2

− λ2). Since T + λ is invertible by (3), we have

‖(T − λ)nx‖
1
n = ‖(T + λ)−n(T + λ)n(T − λ)nx‖

1
n

≤ ‖

{
(T + λ)−1

}n
‖

1
n ‖(T2

− λ2)nx‖
1
n ≤ ‖(T + λ)−1

‖‖(T2
− λ2)nx‖

1
n −→ 0.

Hence H0(T − λ) ⊃ H0(T2
− λ2) and H0(T − λ) = H0(T2

− λ2).
Let x ∈ ET({λ})H . Since ET({λ})H = H0(T − λ) = H0(T2

− λ2) and T2 is normal, we have H0(T2
− λ2) =

ET2 ({λ2
}) = ker(T2

− λ2). Hence 0 = (T2
− λ2)x = (T + λ)(T − λ)x. Since T + λ is invertible by (3), we have

(T − λ)x = 0. Hence ET({λ})H ⊂ ker(T − λ) and ET({λ})H = ker(T − λ). Hence λ is a pole of the resolvent of
T and the order of λ is 1 by Lemma 2.2. Since ker(T − λ) = ker((T − λ)∗) by [4, Theorem 2.6], it follows that
ET({λ}) is self-adjoint by Lemma 2.2.

Let D be a bounded open subset ofC and L2(D,H) be the Hilbert space of measurable function f : D −→ H
such that

‖ f ‖2,D =
( ∫

D
‖ f (z)‖2 dµ(z)

) 1
2

< ∞,

where dµ is the planar Lebesgue measure. Let W2(D,H) be the Sobolev space with respect to ∂ and of order

2 whose derivatives ∂ f and ∂
2

f in the sense of distributions belong to L2(D,H). The norm ‖ f ‖W2 is given by

‖ f ‖W2 =
(
‖ f ‖22,D + ‖∂ f ‖22,D + ‖∂

2
f ‖22,D

) 1
2

for f ∈W2(D,H).

Then in [3], S. A. Alzuraiqi and A. B. Patel proved the following result.

Proposition 2.4. ([3, Theorem 2.37]) Let D be an arbitrary bounded disk in C. If T ∈ B(H) is 2-normal with (1),
that is, σ(T)

⋂
(−σ(T)) = ∅, then the operator

S = z − T : W2(D,H) −→ W2(D,H)

is one to one.

We will revise this result as follows.

Theorem 2.5. Let D be an arbitrary bounded open disk in C. If T ∈ B(H) is 2-normal and the planar Lebesgue
measure of σ(T)

⋂
(−σ(T)) is 0, then the operator

S = z − T : W2(D,H) −→ W2(D,H)

is one to one.
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Proof. Let f ∈W2(D,H) and S f = 0. We show f = 0. Then

‖ f ‖2W2 = ‖ f ‖22,D + ‖∂ f ‖22,D + ‖∂
2

f ‖22,D

=

∫
D
‖ f (z)‖2dµ(z) +

∫
D
‖∂ f (z)‖2dµ(z) +

∫
D
‖∂

2
f (z)‖2dµ(z) < ∞,

and

‖S f ‖2W2 = ‖(z − T) f ‖2W2 = ‖(z − T) f ‖22,D + ‖∂((z − T) f )‖22,D + ‖∂
2
((z − T) f )‖22,D

= ‖(z − T) f ‖22,D + ‖(z − T)∂ f ‖22,D + ‖(z − T)∂
2

f ‖22,D = 0.

Hence

‖(z − T) ∂
i
f ‖22,D =

∫
D
‖(z − T) ∂

i
f (z)‖2dµ(z) = 0 (i = 0, 1, 2).

Let i be i = 0, 1, 2. Since (z− T) ∂
i
f (z) = 0 for z ∈ D, if z ∈ D \ σ(T), then ∂

i
f (z) = 0 because z− T is invertible.

This implies

‖(z − T)∗∂
i
f ‖22,D\σ(T) =

∫
D\σ(T)

‖(z − T)∗∂
i
f (z)‖2dµ(z) = 0.

Since

‖(z2
− T2)∂

i
f ‖22,D =

∫
D
‖(z2
− T2)∂

i
f (z)‖2dµ(z)

≤

(
sup
z∈D
‖z + T‖

)2 ∫
D
‖(z − T)∂

i
f (z)‖2dµ(z) =

(
sup
z∈D
‖z + T‖

)2

‖(z − T)∂
i
f ‖22,D = 0,

we have (z2
− T2) ∂

i
f (z) = 0 for z ∈ D. Moreover, since T2 is normal, this implies

‖(z2
− T2)∗∂

i
f ‖22,D =

∫
D
‖(z2
− T2)∗∂

i
f (z)‖2dµ(z) = 0.

Hence
0 = (z2

− T2)∗∂
i
f (z) = (z + T)∗(z − T)∗∂

i
f (z) for z ∈ D.

If z ∈ D ∩ (σ(T) \ (−σ(T))), then z + T and (z + T)∗ are invertible. Hence we obtain (z − T)∗∂
i
f (z) = 0 for

z ∈ D∩(σ(T) \ (−σ(T))). Since D is bounded, ‖∂
i
f ‖22,D < ∞ and the planar Lebesgue measure ofσ(T)

⋂
(−σ(T))

is 0, we have

‖(z − T)∗∂
i
f ‖22,D =

∫
D\σ(T)

‖(z − T)∗∂
i
f (z)‖2dµ(z)

+

∫
D∩(σ(T)\(−σ(T)))

‖(z − T)∗∂
i
f (z)‖2dµ(z) +

∫
D∩σ(T)∩(−σ(T))

‖(z − T)∗∂
i
f (z)‖2dµ(z)

≤ 0 + 0 + max
z∈D
‖(z − T)∗‖2

∫
D∩σ(T)∩(−σ(T))

‖∂
i
f (z)‖2dµ(z) = 0.

By [8, Proposition 2.1], we obtain ‖(I − P) f ‖2,D = 0. Hence f (z) = (P f )(z) for z ∈ D. Since S f = 0, we have
(S f )(z) = (z − T) f (z) = (z − T)(P f )(z) = 0 for z ∈ D. Since T has the single-valued extension property by
Theorem 1.4 and P f is analytic, it follows that 0 = (P f )(z) = f (z) for z ∈ D. Hence f = 0 and S is one to
one.
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3. n-normal Operators

Theorem 3.1. Let T ∈ L(H) be n-normal. Let σ(T) be contained in an angle < 2π/n with vertex in the origin, i.e.,
there exists θ1 ∈ [0, 2π) such that

σ(T) ⊂W =
{
reiθ : 0 < r, θ1 < θ < θ1 +

2π
n

}
.

Then T is subscalar of order 2.

Proof. Let D be an open bounded disk such that σ(T) ⊂ D. Take an open set U such that σ(T) ⊂ U ⊂
U ⊂ D ∩W. Let M : W2(D,H) → W2(D,H) be a multiplication operator such that (M f )(z) = z f (z) for
f ∈ W2(D,H) and z ∈ D. Then M is scalar of order 2 with a spectral distribution defined by Φ(φ) f = φ f
for φ ∈ C2

0(C) and f ∈ W2(D,H). Since (z − T)W2(D,H) is M-invariant, it follows that S : H(D) =

W2(D,H)/(z − T)W2(D,H)→H(D) as

S
(

f + (z − T)W2(D,H)
)
→M f + (z − T)W2(D,H)

for f ∈W2(D,H) is well defined and S is still scalar of order 2 with a spectral distribution

Φ̃(φ)
(

f + (z − T)W2(D,H)
)

= φ f + (z − T)W2(D,H)

for φ ∈ C2
0(C) and f + (z − T)W2(D,H) ∈ H(D). Let V : H →H(D) be as

Vh = 1 ⊗ h + (z − T)W2(D,H)

for h ∈ H where (1 ⊗ h)(z) = h for z ∈ D. Then

VT = SV.

We prove that V is one to one and has dense range. Then VH is an invariant subspace of S and T = S|VH .
Hence T is subscalar of order 2.

Claim. If Vhn → 0, then hn → 0.

Let Vhn → 0. Then there exists fn ∈W2(D,H) such that

‖(z − T) fn + 1 ⊗ hn‖
2
W2 = ‖(z − T) fn + 1 ⊗ hn‖

2
2,D + ‖(z − T)∂ f ‖22,D + ‖(z − T)∂

2
f ‖22,D → 0.

Let ζ = exp(2πi/n). Then

‖(zn
− Tn)∂

i
f ‖22,D =

∫
D
‖(zn
− Tn)∂

i
fn(z)‖2dµ(z) =

∫
D

∥∥∥∥∥∥∥
n∏

k=1

(ζkz − T)∂
i
fn(z)

∥∥∥∥∥∥∥
2

dµ(z)

≤ sup
z∈D

∥∥∥∥∥∥∥
n−1∏
k=1

(ζkz − T)

∥∥∥∥∥∥∥
2 ∫

D
‖(z − T)∂

i
fn(z)‖2dµ(z)→ 0.

Since Tn is normal, we have

‖(zn
− Tn)∗∂

i
f ‖22,D → 0.
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If z ∈ U, then ζkz < σ(T) for k = 1, 2, · · · ,n − 1 by the assumption. Hence

‖(z − T)∗∂
i
fn‖22,U =

∫
U
‖(z − T)∗∂

i
fn(z)‖2dµ(z)

=

∫
U

n−1∏
k=1

(
(ζkz − T)−1

)∗ n−1∏
k=1

(ζkz − T)∗
 (z − T)∗∂

i
fn(z)dµ(z)

≤

n−1∏
k=1

sup
z∈U

∥∥∥∥((ζkz − T)−1
)∗∥∥∥∥2

∥∥∥∥∥(zn
− Tn)∗∂

i
fn

∥∥∥∥∥2

2,D
→ 0.

Since ∫
D\U
‖∂

i
fn(z)‖2dµ(z) =

∫
D\U
‖(z − T)−1(z − T)∂

i
fn(z)‖2dµ(z)

≤ sup
z∈D\U

‖(z − T)−1
‖

2
∫

D\U
‖(z − T)∂

i
fn(z)‖2dµ(z)

≤ sup
z∈D\U

‖(z − T)−1
‖

2
‖(z − T)∂

i
fn‖22,D → 0,

we have

‖(z − T)∗∂
i
fn‖22,D =

∫
D\U
‖(z − T)∗∂

i
fn(z)‖2dµ(z) +

∫
U
‖(z − T)∗∂

i
fn(z)‖2dµ(z)

≤ sup
z∈D\U

‖(z − T)∗‖2
∫

D\U
‖∂

i
fn(z)‖2dµ(z) + ‖(z − T)∗∂

i
fn‖22,U → 0.

Let P be the orthogonal projection of L2(D,H) onto A2(D,H). Then there exists a constant 0 < CD such that

‖(1 − P) fn‖2,D ≤ CD

(
‖(z − T)∗∂ fn‖2,D + ‖(z − T)∗∂

2
fn‖2,D

)
→ 0

by Proposition 2.1 of [8]. Hence

‖(z − T)P fn + 1 ⊗ hn‖2,D ≤ ‖(z − T) fn + 1 ⊗ hn‖2,D + ‖(z − T)(1 − P) fn‖2,D
≤ ‖(z − T) fn + 1 ⊗ hn‖2,D + sup

z∈D
‖z − T‖‖(1 − P) fn‖2,D → 0.

Hence
‖(z − T)P fn + 1 ⊗ hn‖∞,U = sup

z∈U
‖(z − T)P fn(z) + hn‖ → 0

by [8, Lemma 1.1]. Define Ψ : A2(U,H)→H as

Ψ(1) =
1

2πi

∫
∂G

(z − T)−11(z)dz

for 1 ∈ A2(U,H) where G is an open set such that σ(T) ⊂ G ⊂ G ⊂ U and ∂G is a Jordan curve. Since

‖Ψ(1)‖ ≤
1

2π
max
z∈∂G
‖(z − T)−1

‖‖1‖∞,U`(∂G)

for 1 ∈ A2(U,H) where `(∂G) denotes the length of ∂G and

(z − T)P fn + 1 ⊗ hn ∈ A2(U,H),
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we have

Ψ((z − T)P fn + 1 ⊗ hn) =
1

2πi

∫
∂G

(z − T)−1 (
(z − T)P fn(z) + hn

)
dz

=
1

2πi

∫
∂G

(
P fn(z) + (z − T)−1hn

)
dz = 0 + hn → 0.

Corollary 3.2. Under the same hypothesis as in Theorem 3.1, if σ(T) has nonempty interior, then T has a nontrivial
invariant subspace.

Proof. By the hypothesis, T is subscalar of order 2 from Theorem 3.1. Since σ(T) has nonempty interior, we
get this result from [5, Theorem 2.1].

In [9], C.R. Putnam proved that if T is hyponormal, then

π‖T∗T − TT∗‖ ≤ m(σ(T))

where m is the Lebesque measure in the complex plane. This is well known as Putnam’s inequality.

Lemma 3.3. Let T ∈ L(H) be n-normal and let M ⊂ H be an invariant subspace for T. Then the following
assertions hold.

(i) (T|M)n is subnormal.
(ii) Let σ(T|M) = {λ}. Then T|M = λ if λ , 0 and (T|M)n = 0 if λ = 0.

Proof. (i) Since (T|M)n = Tn
|M and Tn is normal, (T|M)n is subnormal.

(ii) Suppose λ = 0. Then (T|M)n is subnormal by (1) and

σ ((T|M)n) = {zn
|z ∈ σ(T|M)} = {0}.

It follows that (T|M)n = 0 by Putnam’s inequality.
Suppose λ , 0. Then (T|M)n is subnormal and σ ((T|M)n) = {λn

}. It follows that (T|M)n = λn by Putnam’s
inequality. Since σ(T|M) = {λ} and

0 = (T|M)n
− λn =

n−1∏
k=1

(T|M − λζk)

 (T|M − λ),

we have

T|M − λ =

n−1∏
k=1

(T|M − λζk)


−1

· 0 = 0,

where ζ = exp(2πi/n).

Definition 3.4. Let λ ∈ σ(T) be arbitrary, n ∈N and ζ := exp(2πi/n). We say that T has property (n) at λ if

λζk < σ(T) for k = 1, · · · ,n − 1.

Remark. We do not need the assumption that λ is an isolated point of σ(T) in the following theorem.
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Theorem 3.5. Let T ∈ L(H) be n-normal. Then the following assertions hold.
(i) H0(T) = H0(Tn) = ker(Tn) = ker(T∗n).
(ii-1) If λ , 0, then H0(T − λ) = ker(T − λ).
(ii-2) If λ , 0 and T has property (n) at λ, then H0(T − λ) = ker(T − λ) = ker((T − λ)∗).

Proof. (i) Since Tn is normal, we have H0(T) ⊂ H0(Tn) = ker(Tn) = ker(T∗n). It is known that ker(Tn) ⊂ H0(T).
Hence H0(T) = H0(Tn) = ker(Tn) = ker(T∗n).

(ii-1) We claim H0(T − λ) ⊂ H0(Tn
− λn).

Let x ∈ H0(T − λ) and ζ = exp(2πi/n). Then

‖(Tn
− λn)mx‖

1
m = ‖(T − λζ)m(T − λζ2)m

· · · (T − λζm−1)m(T − λ)mx‖
1
m

≤ ‖T − λζ‖‖T − λζ2
‖ · · · ‖T − λζm−1

‖‖(T − λ)mx‖
1
m −→ 0 (m→∞).

Hence x ∈ H0(Tn
− λn).

Since Tn is normal, H0(Tn
− λn) = ker(Tn

− λn). PutM = ker(Tn
− λn). ThenM is an invariant subspace

of T and σ ((T|M)n) = σ(Tn
|M) = {λn

}. Hence σ(T|M) ⊂ {λ, λζ, · · · , λζn−1
}. Put σ(T|M) = {µ1, · · · , µr} with

µi , µ j (i , j) and µn
i = λn for i = 1, 2, · · · , r. Let Fi be the Riesz idempotent corresponding to µi ∈ σ(T|M).

Then FiF j = 0 (i , j), F1 + · · ·+Fr = IM, σ
(
(T|M)|FiM

)
= σ

(
T|FiM

)
= {µi} and σ

(
T|(IM−Fi)M

)
= σ(T|M)\ {µi} for i =

1, 2, · · · , r. This shows that T|FiM = µi for i = 1, 2, · · · , r by Lemma 3.3. Put C = (‖F1‖+‖F2‖+ · · ·+‖Fr‖)−1 > 0.
Since

‖x‖ = ‖F1x + F2x + · · · + Frx‖ ≤ ‖F1x‖ + ‖F2x‖ + · · · + ‖Frx‖
≤ (‖F1‖ + ‖F2‖ + · · · + ‖Fr‖) ‖x‖,

we have
‖x‖ ≥ C(‖F1x‖ + ‖F2x‖ + · · · + ‖Frx‖) for all x ∈ M.

Let 0 , x ∈ H0(T − λ) ⊂ M. Then

‖(T − λ)nx‖
1
n = ‖(T|M − λ)nx‖

1
n ≥

C
r∑

k=1

‖Fk(T|M − λ)nx‖


1
n

=

C
r∑

k=1

‖(T|M − λ)nFkx‖


1
n

=

C
r∑

k=1

‖(T|FkM − λ)nFkx‖


1
n

= C
1
n

 r∑
k=1

|µk − λ|
n
‖Fkx‖


1
n

≥ |µk − λ|C
1
n ‖Fkx‖

1
n .

By letting n → ∞, it follows that Fkx = 0 for all k such as µk , λ. Hence if there does not exist k such that
µk = λ, then x = F1x + F2x + · · · + Frx = 0 which is a contradiction. Hence there exists a unique number
k′ ∈ {1, · · · , r} such that µk′ = λ and Fk′x = x. Hence x ∈ Fk′M = ker(T|Fk′M − λ) ⊂ ker(T − λ). Hence
H0(T − λ) ⊂ ker(T − λ). Since the converse inclusion is clear, we have H0(T − λ) = ker(T − λ).

(ii-2) Let T have property (n) at λ. Since Tn is normal, we have

H0(T − λ) = ker(T − λ) ⊂ H0(Tn
− λn) = ker(Tn

− λn) = ker((Tn
− λn)∗).

Conversely, let y ∈ H0(Tn
− λn) = ker(Tn

− λn) = ker((Tn
− λn)∗). Then (Tn

− λn)y = 0 and (Tn
− λn)∗y = 0.

Since λζk < σ(T) for k = 1, · · · ,n − 1, it follows that

(T − λ)y =

n−1∏
k=1

(T|M − λζk)


−1

(Tn
− λn)y = 0
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and

(T − λ)∗y =

n−1∏
k=1

(T|M − λζk)∗

−1

(Tn
− λn)∗y = 0.

Hence H0(T−λ) = ker(T−λ) = ker(Tn
−λn) = ker((Tn

−λn)∗) ⊂ ker((T−λ)∗). Since ker((T−λ)∗) ⊂ ker((Tn
−λn)∗)

is clear, we have

H0(T − λ) = ker(T − λ) = ker((T − λ)∗) = ker(Tn
− λn) = ker((Tn

− λn)∗).

Theorem 3.6. Let T ∈ L(H) be n-normal. Then T is isoloid and polaroid.
Moreover, let λ be an isolated point of the spectrum of T. Then λ is a pole of the resolvent and following statements
hold.
(i) If λ = 0, then ET({0})H = H0(T) = H0(Tn) = ker(Tn) = ker(T∗n), ET({0}) is self-adjoint and the order of 0 is not
greater than n.
(ii) If λ , 0, then ET({λ})H = H0(T − λ) = ker(T − λ) and the order of λ is 1.

Proof. (i) Assume that 0 is an isolated point of σ(T). Since H0(T) = H0(Tn) = ker(Tn) = ker(T∗n) by Theorem
3.5, we have ET({0})H = H0(T) = H0(Tn) = ker(Tn) = ker(T∗n). Hence 0 is a pole of the resolvent of T,ET({0})
is self-adjoint and the order of pole is not greater than n by Lemma 2.2.
(ii) Next we assume λ is a nonzero isolated point of σ(T). Since H0(T − λ) = ker(T − λ) by Theorem 3.5, we
have ET({λ})H = H0(T − λ) = ker(T − λ). Hence λ is a pole of the resolvent of T and the order of pole is 1
by Lemma 2.2.

4. (n,m)-normal Operators

Definition 4.1. For n,m ∈N, an operator T ∈ L(H) is said to be (n,m)-normal if

T∗mTn = TnT∗m.

From the definition, it is clear that T is (n,m)-normal if and only if T∗ is (m,n)-normal. Moreover, if Tn is
normal, then T is (n,m)-normal for every m. Indeed, since Tn is normal and Tm

·Tn = Tn
·Tm, it follows from

Fuglede theorem that T∗m · Tn = Tn
· T∗m. Hence T is (n,m)-normal. From [4], we restate the properties of

(m,n)-normal operators.

Lemma 4.2. Let T ∈ L(H) be (n,m)-normal. Then the following statements hold.
(i) T∗ is (m,n)-normal.
(ii) If T−1 exists, then T−1 is (n,m)-normal.
(iii) If S ∈ L(H) is unitary equivalent to T, then S is (n,m)-normal.
(iv) IfM is a closed subspace ofH which reduces T, then T|M is (n,m)-normal onM.
(v) If T is (n,m)-normal, then Tk is normal where k is the least common multiple of n and m.
(vi) If T is quasi-nilpotent, then T is nilpotent.

Proof. The proofs of the statements of (i), (ii), (iii), and (iv) are clearly holds by the definition.
(v) Let k := n · j and k := m · `. Since T is (n,m)-normal, it follows that

T∗kTk =

`︷      ︸︸      ︷
T∗m · · ·T∗m ·

j︷   ︸︸   ︷
Tn
· · ·Tn = Tn

· · ·Tn
· T∗m · · ·T∗m = TkT∗k,

which means that Tk is normal.
(vi) If T is quasi-nilpotent, i.e., σ(T) = {0}, then σ(Tk) = {0} for every k ∈ N. Let k0 be the least common
multiple of n and m. Then Tk0 is normal by Lemma 4.2 (v). Hence Tk0 = 0.
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Corollary 4.3. Let T ∈ L(H) be (n,m)-normal. Then T is isoloid and polaroid.
Moreover, let λ be an isolated point of the spectrum of T. Then λ is a pole of the resolvent and following statements
hold.
(i) If λ = 0, then H0(T) = ET({0})H = ker(Tnm) = ker(T∗nm), ET({0}) is self-adjoint and the order of 0 is not greater
than n.
(ii) If λ , 0, then H0(T − λ) = ET({λ})H = ker(T − λ) and the order of λ is 1.

Proof. Since Tnm is normal by Lemma 4.2, we have these results from Theorem 3.6.

We say that Weyl’s theorem holds for T if

σ(T) \ π00(T) = σw(T), or equivalently, σ(T) \ σw(T) = π00(T),

where σw(T) = {λ ∈ C : T − λ is not Weyl}, π00(T) = {λ ∈ iso (σ(T)) : 0 < dim ker(T − λ) < ∞}, and iso (σ(T))
denotes the set of all isolated points of σ(T).

Theorem 4.4. Let T ∈ L(H) be (n,m)-normal. Then the following statements hold.
(i) T is decomposable.
(ii) If f is an analytic function on σ(T) which is not constant on each of the components of its domain, then Weyl’s
theorem holds for f (T).

Proof. (i) Since Tnm,T∗nm are normal by Lemma 4.2, it follows Tnm is decomposable. Hence T is decomposable
by [7, Theorem 3.3.9].

(ii) Since T is polaroid by Theorem 3.6 or Corollary 4.3 and T has the single-valued extension property
by Theorem 1.4, it follows that Weyl’s theorem holds for f (T) by [2, Theorem 3.14].
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