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Available at: http://www.pmf.ni.ac.rs/filomat

Measures of Noncompactness in
(
N̄q

∆

)
Summable Difference Sequence Spaces

Ishfaq Ahmad Malika, Tanweer Jalala

aDepartment of Mathematics, National Institute of Technology, Srinagar

Abstract. In this paper we first introduce N̄q
∆

summable difference sequence spaces and prove some
properties of these spaces. We then obtain the necessary and sufficient conditions for infinite matrices A to
map these sequence spaces into the spaces c, c0, and `∞. Finally, the Hausdorff measure of noncompactness
is then used to obtain the necessary and sufficient conditions for the compactness of the linear operators
defined on these spaces.

1. Introduction and Preliminaries

We write ω for the set of all complex sequences x = (xk)∞k=0 and φ, c, c0 and `∞ for the sets of all fi-
nite, convergent sequences, sequences convergent to zero, and bounded sequences respectively. By e we
denote the sequence of 1’s, e = (1, 1, 1, . . .) and by e(n) the sequence with 1 as only nonzero term at the
nth place for each n ∈ N, where N = {0, 1, 2, . . .}. Further by cs and `1 we denote the convergent and ab-
solutely convergent series respectively. If x = (xk)∞k=0 ∈ w then x[m] =

∑m
k=0 xke(k) denotes the m−th section of x.

A sequence space X is a linear subspace of ω, such a subspace is called a BK space if it is a Banach space
with continuous coordinates
Pn : X→ C (n = 0, 1, 2, . . .) where

Pn(x) = xn, x = (xk)∞k=0 ∈ X.

The BK space X is said to have AK if every x = (xk)∞k=0 ∈ X has a unique representation x =
∑
∞

k=0 xke(k), [16,
Definition 1.18]. The spaces c0, c and `∞ are BK spaces with respect to the norm

‖x‖∞ = sup
k
{|xk| : k ∈N}.

every sequence (xk)∞k=0 has a unique representation

x = ξe +

∞∑
k=0

(xk − ξ)e(k), where ξ = lim
k→∞

xk;
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`∞ has no Schauder basis.

For any two sequences x and y in ω the product xy is given by xy = (xkyk)∞k=0.
The β−dual of a subset X of ω is defined by

Xβ = {a ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X}

If A is an infinite matrix with complex entries ank n, k ∈N, we write An = (ank)∞k=0 for the sequence in the
nth row of A. The A−transform of any x = (xk) ∈ w is given by Ax = (Anx)∞n=0, where

Anx =

∞∑
k=0

ankxk n ∈N

provided the series on right must converge for each n ∈N.
If X and Y are subsets of ω, we denote by (X,Y), the class of all infinite matrices that map X into Y. So
A ∈ (X,Y) if and only if An ∈ Xβ , n = 0, 1, 2, . . . and Ax ∈ Y for all x ∈ X. The matrix domain of an infinite
matrix A in X is defined by

XA = {x ∈ w : Ax ∈ X}

The idea of constructing a new sequence space by means of the matrix domain of a particular limitation
method has been studied by several authors see [4, 7, 9, 11].

If X and Y are Banach Spaces, then by B(X,Y) we denote the set of all bounded (continuous) linear
operators L : X → Y , which is itself a Banach space with the operator norm ‖L‖ = supx {‖L(x)‖Y : ‖x‖ = 1}
for all L ∈ B(X,Y). The linear operator L : X→ Y is said to be compact if its domain is all of X and for every
bounded sequence (xn) ∈ X, the sequence (L(xn)) has a subsequence which converges in Y. The operator
L ∈ B(X,Y) is said to be of finite rank if dim R(L) < ∞, where R(L) denotes the range space of L. A finite
rank operator is clearly compact.[6, Chapter 2]

The concept of difference sequence spaces was first introduced by Kizmaz [13] and later several au-
thors studied new sequence spaces defined by using difference operators like Mursaleen and Noman [19],
Mursaleen et al. [18], Jalal [10], Manna et al. [17], Polat et al. [20]. In the past, several authors studied
matrix transformations on sequence spaces that are the matrix domains of the difference operator, or of the
matrices of the classical methods of summability in spaces such as `p, c0, c, `∞ or others. For instance, some
matrix domains of the difference operator were studied in [13, 21], of the Riesz matrices in [1].

In this paper, we first define a new difference sequence space as the matrix domains XT of the product
T of the triangles N̄q and ∆ and obtain bases for two of them, and determine their β duals. We then find
out the necessary and sufficient condition for matrix transformations to map these spaces into c0, c and `∞.
Finally we characterize the classes of compact matrix operators from these spaces into c0, c and `∞.

2. N̄q
∆

Summable Difference Sequence Spaces

The difference operator ∆ is defined on ω as

∆kx = xk − xk−1 , k = 0, 1, 2, . . . (1)

where x−1 = 0, and ∆k is the kth row of the matrix ∆ = (enk)∞n,k=0 given by

enk =


1 k = n
−1 k = n − 1
0 k > n
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The inverse of this matrix is Σ = (σnk) given as

σnk =

{
1 0 ≤ k ≤ n
0 k > n

Let (qk)∞k=0 be a given positive sequences and (Qn)∞n=0 the sequence with Qn =
∑n

i=0 qi.

The (N̄, q) transform of the sequence (xk)∞k=0 is the sequence (tn)∞n=0 defined as

tn =
1

Qn

n∑
i=0

qixi for n = 0, 1, . . . .

The matrix N̄q for this transformation is given by

(N̄q)nk =

{ qk
Qn

0 ≤ k ≤ n
0 k > n.

The inverse of this matrix is [3]

(N̄q)−1
nk =

{
(−1)n−k Qk

qn
n − 1 ≤ k ≤ n

0 0 ≤ k ≤ n − 2, k > n.

We define the spaces (N̄q
∆

)0, (N̄q
∆

) and (N̄q
∆

)∞ that are N̄q
∆

summable to zero, summable and bounded
respectively as

(N̄q
∆

)0 = (c0,∆)N̄q =

x ∈ w : N̄q∆x =

 1
Qn

n∑
k=0

qk∆kx


∞

n=0

∈ c0


(N̄q

∆
) = (c,∆)N̄q =

x ∈ w : N̄q∆x =

 1
Qn

n∑
k=0

qk∆kx


∞

n=0

∈ c


(N̄q

∆
)∞ = (`∞,∆)N̄q =

x ∈ w : N̄q∆x =

 1
Qn

n∑
k=0

qk∆kx


∞

n=0

∈ `∞


For any sequence x = (xk)∞k=0, let τ = τ(x) = (τn(x))∞n=0 denote the sequence with nth term given by

τn =
(
N̄q

∆
x
)

n
=

1
Qn

n∑
k=0

qk∆kx (n = 0, 1, 2, . . .) (2)

2.1. Basis for the new sequence spaces

First we determine Schauder bases for the spaces
(
N̄q

∆

)
0

and
(
N̄q

∆

)
. For the convenience of the reader, we

state the following known results:

Proposition 2.1. [23]
Every triangle T has a unique inverse S = (snk)∞n,k=0 which is also a triangle, and x = T(S(x)) = S(T(x)) for all x ∈ w.

Proposition 2.2. [12, Theorem 2.3]
Let T be a triangle and S be its inverse, if

(
b(n)

)∞
n=0

is a basis of the linear metric space (X, d), then
(
S(b(n))

)∞
n=0

is a
basis of Z = XT with the metric dT defined by dT(z, z̄) = d(T(z),T(z̄)) for all z, z̄ ∈ Z.

It is obvious that (c0,∆)N̄q = (c0)N̄q·∆, So the basis for this space is given by
(
N̄q
· ∆

)−1
(
e(n)

)
= (∆)−1

·
(
N̄q)−1

(
e(n)

)
.
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Theorem 2.3. The sequence spaces
(
N̄q

∆

)
0
,
(
N̄q

∆

)
and

(
N̄q

∆

)
∞

are BK-spaces with norm ‖ · ‖N̄q
∆

given by

‖x‖N̄q
∆

= sup
n

∣∣∣∣∣∣∣ 1
Qn

n∑
k=0

qk∆kx

∣∣∣∣∣∣∣
Let τk(x) =

((
N̄q

∆

)
x
)

k
for all k ∈N. Define the sequences c(n) =

(
c(n)

k

)∞
k=0

for n = −1, 0, 1, . . . by

c(n)
k =


0 0 ≤ k ≤ n − 1

Qn
qn

k = n

Qn

(
1
qn
−

1
qn+1

)
k ≥ n + 1.

, c(−1)
k = k + 1

for every fixed k ∈N. Then

i) The sequence
(
c(n)

)∞
k=0

is a basis for the space
(
N̄q

∆

)
0

and any x ∈
(
N̄q

∆

)
0

can be uniquely represented in the form

x =
∑

k

τkc(k)

.
ii) The set

{
c(−1), c(n)

}
is a basis for the spaces

(
N̄q

∆

)
and any x ∈

(
N̄q

∆

)
has a unique representation in the form

x = lc(−1) +
∑

k

(τk − l)c(k)

where for all k ∈N, l = limk→∞

((
N̄q

∆

)
x
)

k
.

Proof. Since (X,∆)N̄q = XN̄q·∆ for all X = c0, c and the spaces c0, c, `∞ are BK spaces with respect to their
natural norm [14, pp. 217-218] and the matrix N̄q

· ∆ is a triangle so by [23, Theorem 4.3.12], gives
(
N̄q

∆

)
0
,(

N̄q
∆

)
and

(
N̄q

∆

)
∞

are BK spaces
The proof of the remaining part of the theorem is a direct consequence of [23, Corollary 2.5 (a) and (c)],
since (e(n))∞n=0 is the standard basis for c0.
The inverse of the triangle N̄q

· ∆ is the triangle S = (N̄q
· ∆)−1 = Σ · (N̄q)−1 = (snk)∞n,k=0 where

snk =


Qk

(
1
qk
−

1
qk+1

)
0 ≤ k < n

Qn
qn

k = n
0 k > n

(3)

Now, if Sk = (skj)∞j=0 is the kth row of the matrix S then

Ske(n) =

k∑
j=0

skje
(n)
j

=

{
0 k ≤ n − 1

skn k ≥ n

=


0 0 ≤ k ≤ n − 1

Qn
qn

k = n

Qn

(
1
qn
−

1
qn+1

)
k > n.
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and

Ske =

k∑
j=0

skj

=

k−1∑
j=0

Q j

(
1
q j
−

1
q j+1

)
+

Qk

qk

=

 k−1∑
j=0

Q j −Q j−1

q j
−

Qk−1

qk

 +
Qk

qk

=

k∑
j=0

Q j −Q j−1

q j

=

k∑
j=0

q j

q j

= k + 1

Hence,
(
c(n)

)∞
n=0

is a basis for the space (c0,∆)N̄q =
(
N̄q

∆

)
0

and
{
c(−1),

(
c(n)

)∞
n=0

}
is a basis for the space (c,∆)N̄q =(

N̄q
∆

)
.

The representations in Parts (i) and (ii) now are immediate from [12, (2.1) and (2.3)].

2.2. β dual of the new spaces
To obtain the β dual we need the following results:

Lemma 2.4. [13, 22] If A = (ank)∞n,k=0, then A ∈ (c0, c) if and only if

sup
n

∞∑
k=0

|ank| < ∞ (4)

and

αk = lim
n→∞

ank exists for each k. (5)

Lemma 2.5. [13, 22] If A = (ank)∞n,k=0, then A ∈ (c, c) if and only if condition (4) and (5) hold and

α = lim
n→∞

∞∑
k=0

ank exists. (6)

Lemma 2.6. [5] If A = (ank)∞n,k=0, then A ∈ (`∞, c) if and only if condition (5) holds and

lim
n→∞

∞∑
k=0

|ank| =

∞∑
k=0

∣∣∣∣ lim
n→∞

ank

∣∣∣∣ (7)

Theorem 2.7. Let (qk)∞k=0 be a given positive sequences, Qn =
∑n

i=0 qi and a = (ak) ∈ w we define a matrix
C = (cnk)∞n,k=0 as

cnk =

{
Qk

[(
1
qk
−

1
qk+1

)∑n
j=k+1 a j + ak

qk

]
0 ≤ k ≤ n

0 k > n
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and consider the sets

c1 =

a ∈ w : sup
n

∑
k

|cnk| < ∞

 ; c2 =
{
a ∈ w : lim

n→∞
cnk exists for each k ∈N

}
c3 =

a ∈ w : lim
n→∞

∑
k

|cnk| =
∑

k

∣∣∣∣ lim
n→∞

cnk

∣∣∣∣ ; c4 =

a ∈ w : lim
n→∞

∑
k

cnk exists


Then

[(
N̄q

∆

)
0

]β
= c1 ∩ c2 ,

[(
N̄q

∆

)]β
= c1 ∩ c2 ∩ c4 and

[(
N̄q

∆

)
∞

]β
= c2 ∩ c3.

Proof. We prove the result for
[(

N̄q
∆

)
0

]β
. Let x ∈

(
N̄q

∆

)
0

then there exists a y such that y = N̄q
∆

x.
Writing S for the inverse of the matrix N̄q

∆
we obtain

n∑
k=0

akxk =

n∑
k=0

akSky

=

n∑
k=0

ak

 k−1∑
j=0

Q j

(
1
q j
−

1
q j+1

)
y j +

Qk

qk
yk


=

n∑
k=0

Qk


(

1
qk
−

1
qk+1

) n∑
j=k+1

a j +
ak

qk

 yk

=

n∑
k=0

cnkyk

= Cny

(8)

So ax = (anxn) ∈ cs whenever x ∈
(
N̄q

∆

)
0

if and only if Cy ∈ cs whenever y ∈ c0.

Using Lemma 2.4 we get
[(

N̄q
∆

)
0

]β
= c1 ∩ c2.

The other two results can be shown in similar way using Lemma 2.5, Lemma 2.6.

Let X ⊂ ω be a normed space and a ∈ ω. Then we write

‖a‖∗ = sup


∣∣∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣∣∣ : ‖x‖ = 1


provided the term on the right side exists and is finite, which is the case whenever X is a BK space and
a ∈ Xβ [23, Theorem 7.2.9].

Theorem 2.8. For
[(

N̄q
∆

)
0

]β
,
[(

N̄q
∆

)]β
and

[(
N̄q

∆

)
∞

]β
the norm ‖ · ‖∗ is given by

‖a‖∗ = sup
n

 n∑
k=0

Qk

∣∣∣∣∣∣∣∣
(

1
qk
−

1
qk+1

) n∑
j=k+1

a j +
ak

qk

∣∣∣∣∣∣∣∣
 .

Proof. We write N for any of the spaces
(
N̄q

∆

)
0
,
(
N̄q

∆

)
or

(
N̄q

∆

)
∞

. Let a ∈ [N]β and n ∈ N be given. We write
Cn = (cnk)∞k=0 for the sequence in the nth row of the matrix C of Theorem 2.7 and
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‖C‖ = sup
n
‖Cn‖1 = sup

n

n∑
k=0

|cnk|, and note that ‖C‖ < ∞, since a ∈ [N]β. Then we obtain as in (8) for all x ∈ N

with yk replaced by τk = τk(x)∣∣∣∣∣∣∣
n∑

k=0

akxk

∣∣∣∣∣∣∣ ≤
n∑

k=0

|cnkτk|

≤ sup
k
|τk| sup

n
‖Cn‖1

≤ ‖C‖ · ‖x‖(N̄q
∆)
∞

Since n was arbitrary, we obtain∣∣∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣∣∣ ≤ ‖C‖ · ‖x‖(N̄q
∆)
∞

Therefore,
‖a‖∗ ≤ ‖C‖ (2.2a).

Note that since a ∈ [N]β and x ∈ N so
∑
∞

k=0 akxk converges.
Now for the converse consider an arbitrary integer n and let x(n) be a sequence such that

τk

(
x(n)

)
= sign (cnk) (k = 0, 1, . . .)

where τ is defined as in (2).
Then

τk

(
x(n)

)
= 0 for k > n, i.e x(n)

∈

(
N̄q

∆

)
0
, ‖x(n)

‖(N̄q
∆)
∞

= ‖τ
(
x(n)

)
‖∞ ≤ 1

and ∣∣∣∣∣∣∣
∞∑

k=0

akx(n)
k

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

k=0

cnkx(n)
k

∣∣∣∣∣∣∣ =

n∑
k=0

|cnk| ≤ ‖a‖∗

Since n was chosen arbitrarily, we obtain

‖C‖ ≤ ‖a‖∗ (2.2b)

We conclude by (2.2a) and (2.2b).

Some well known results that are required for proving the compactness are:

Proposition 2.9. [15, Theorem 7]
Let X and Y be BK spaces, then (X,Y) ⊂ B(X,Y) that is every matrix A from X into Y defines an element LA of
B(X,Y) where

LA(x) = Ax ∀ x ∈ X

Also A ∈ (X, `∞) if and only if
‖A‖∗ = sup

n
‖An‖

∗ = ‖LA‖ < ∞

If
(
b(k)

)∞
k=0

is a basis of X,Y and Y1 are FK spaces with Y1 a closed subspace of Y, then A ∈ (X,Y1) if and only if

A ∈ (X,Y) and A
(
b(k)

)
∈ Y1 for all k = 0, 1, 2, . . ..
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By Proposition 2.9 and Theorem 2.8 we obtain the following corollary.

Corollary 2.10. Let (qk)∞k=0 be a positive sequence, Qn =
∑n

k=0 qk and ∆ be the difference operator as defined in (1),
then

i) A ∈ (N , `∞) if and only if

sup
m,n

 m∑
k=0

Qk

∣∣∣∣∣∣∣∣
(

1
qk
−

1
qk+1

) m∑
j=k+1

anj +
ank

qk

∣∣∣∣∣∣∣∣
 < ∞ (9)

and

An ∈ [N]β ∀ n = 0, 1, . . . (10)

whereN is any of the spaces
(
N̄q

∆

)
0
,
(
N̄q

∆

)
and

(
N̄q

∆

)
∞

.

ii) A ∈
((

N̄q
∆

)
0
, c0

)
if and only if condition (9) holds and

lim
n→∞

Anc(k) = 0 for all k = 0, 1, 2 . . . (11)

where c(k) is as given in Theorem 2.3.
iii) A ∈

((
N̄q

∆

)
0
, c

)
if and only if condition (9) holds and

lim
n→∞

Anc(k) = αk for all k = 0, 1, 2 . . . (12)

where c(k) is as given in Theorem 2.3.
iv) A ∈

((
N̄q

∆

)
, c0

)
if and only if conditions (9) and (11) holds,

An ∈
[
N̄q

∆

]β
∀ n = 0, 1, . . . and

lim
n→∞

Anc(k) = 0 for all k = −1, 0, 1, 2 . . . (13)

where c(k) is as given in Theorem 2.3.
v) A ∈

((
N̄q

∆

)
, c

)
if and only if conditions (9) and (12) holds,

An ∈
[
N̄q

∆

]β
∀ n = 0, 1, . . . and

lim
n→∞

Anc(k) = αk for all k = −1, 0, 1, 2 . . . (14)

where c(k) is as given in Theorem 2.3.

Proof. First we assume A ∈ (N , `∞).
Then it follows that An ∈ [N]β for all n, hence ‖An‖

∗ is given by the formula in Theorem 2.8 and consequently
(9) holds by Proposition 2.9.
Conversely, we assume that An ∈ [N]β for all n and (9) is satisfied. Then ‖An‖

∗ for each n is given by the
formula in Theorem 2.8, and so A ∈ (N , `∞) by Proposition 2.9.
The proof of the other parts is a direct consequence of second part of Proposition 2.9, where

Anc(k) =

∞∑
j=0

anjc
(k)
j

=

∞∑
j=k

anjc
(k)
j

= ank
Qk

qk
+ Qk

(
1
qk
−

1
qk+1

) ∞∑
j=k+1

anj for n = 0, 1, 2, . . .
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and

Anc(−1) =

∞∑
j=0

ankc(−1)
j

=

∞∑
j=0

( j + 1)anj

Which completes the proof.

3. HausdorffMeasure of Noncompactness

Let S and M be the subsets of a metric space (X, d) and ε > 0. Then S is called an ε−net of M in X if for every
x ∈M there exists s ∈ S such that d(x, s) < ε. Further, if the set S is finite, then the ε−net S of M is called finite
ε−net of M. A subset of a metric space is said to be totally bounded if it has a finite ε−net for every ε > 0.
If MX denotes the collection of all bounded subsets of metric space (X, d). If Q ∈ MX then the Hausdorff
Measure of Noncompactness of the set Q is defined by

χ(Q) = inf {ε > 0 : Q has a finite ε − net in X} .

The function χ :MX → [0,∞) is called Hausdorff Measure of Noncompactness [2]
The basic properties of Hausdorff Measure of Noncompactness can be found in ([3], [16], [2]). Some of those
properties are:
If Q,Q1 and Q2 are bounded subsets of a metric space (X, d), then

χ(Q) = 0⇔ Q is totally bounded set,
χ(Q) = χ(Q̄),

Q1 ⊂ Q2 ⇒ χ(Q1) ≤ χ(Q2),
χ(Q1 ∪Q2) = max {χ(Q1), χ(Q2)} ,
χ(Q1 ∩Q2) = min {χ(Q1), χ(Q2)} .

Further if X is a normed space then χ has the additional properties connected with the linear structure.

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),
χ(ηQ) = |η|χ(Q) ∀ η ∈ C

The most effective way of characterizing compact operators between Banach spaces is by applying Hausdorff
Measure of Noncompactness. If X and Y are Banach spaces, and L ∈ B(X,Y), then the Hausdorff Measure
of Noncompactness of L, denoted by ‖L‖χ is given by

‖L‖χ = χ (L(BX)) ,

where BX = {x ∈ X : ‖x‖ ≤ 1} is the unit ball in X [16, Theorem 2.25].
From [16, Corollary 2.26 (2.58)] we know that

L is compact if and only if ‖L‖χ = 0.

4. Compact Operators on the Spaces
(
N̄q
∆

)
0
,
(
N̄q
∆

)
and
(
N̄q
∆

)
∞

Let R be the transpose of the inverse matrix S defined in (3) then by [8, Lemma 2.5], if X is a BK space
with AK or X = `∞ and Y be an arbitarry subset of ω. Then A ∈ (XT,Y) if and only if Â ∈ (X,Y) and
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W(An)
∈ (X, c0) for all n = 0, 1, . . . where Â is the matrix with rows Ân = RAn for n = 0, 1, . . . and the triangles

W(An) (n = 0, 1, . . .) are defined as

w(An)
mk =

{∑
∞

j=m anjs jk (0 ≤ k ≤ m),
0 (k > m)

(m = 0, 1, . . .)

Hence using (3) we have

ânk = RkAn = Qk

ank

qk
+

(
1
qk
−

1
qk+1

) ∞∑
j=k+1

anj

 for all n, k = 0, 1, . . . (15)

γn = lim
m→∞

m∑
k=0

w(An)
mk = lim

m→∞

 m∑
k=0

Qk

(
1
qk
−

1
qk+1

) ∞∑
j=k+1

anj + anm
Qm

qm

 (16)

Let α̂k = limn→∞ ânk , α̂ = (α̂k)∞k=0, β = limn→∞(
∑
∞

k=0 ânk − γn) and B̂ be the matrix with B̂n = Ân − α̂ for all n.

Theorem 4.1. Let X =
(
N̄q

∆

)
0

or X =
(
N̄q

∆

)
∞

.

(a) If A ∈ (X, c0) then we have

‖LA‖χ = lim
m→∞

‖Â[m]
‖ = lim

m→∞

sup
n≥m

 ∞∑
k=0

|ânk|


 (17)

(b) If A ∈ (X, c) then we have

1
2
· lim

m→∞
‖B̂[m]

‖ = lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk − α̂k|


 ≤ ‖LA‖χ ≤ lim

m→∞
‖B̂[m]

‖. (18)

(c) If A ∈ (X, `∞) then

0 ≤ ‖LA‖χ ≤ lim
m→∞

‖Â[m]
‖. (19)

Proof. Using [8, Corollary 3.6 (a), (c)], the statements in (17) and (18) can be easily shown.
(c) Define Pm : `∞ → `∞ by Pm(x) = x[m] for all x ∈ `∞ and m = 0, 1, . . .. Then using the properties of χ and
[8, Lemma 3.1, (3.1), (3.2)] we get

0 ≤ χ
(
LA(B̂`∞ )

)
≤ χ

(
Pm

(
LA(B̂`∞ )

))
+ χ

(
(I − Pm)

(
LA(B̂`∞ )

))
= χ

(
(I − Pm)

(
LA(B̂`∞ )

))
≤ sup

x∈B̂
‖(I − Pm)(LA(x))‖

= ‖Â[m]
‖ for all m.

Which implies (19).

Theorem 4.2. (a) If A ∈
((

N̄q
∆

)
, c0

)
then we have

‖LA‖χ = lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk| + |γn|


 . (20)
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(b) If A ∈
((

N̄q
∆

)
, c

)
then we have

1
2
· lim

m→∞

sup
n≥m

 ∞∑
k=0

|ânk − α̂k| +

∣∣∣∣∣∣∣
∞∑

k=0

α̂k − β − γn

∣∣∣∣∣∣∣

 ≤ ‖LA‖χ

≤ lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk − α̂k| +

∣∣∣∣∣∣∣
∞∑

k=0

α̂k − β − γn

∣∣∣∣∣∣∣

 .

(21)

(c) If A ∈
((

N̄q
∆

)
, `∞

)
then we have

0 ≤ ‖LA‖χ ≤ lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk| + |γn|


 . (22)

Proof. Using [8, Theorem 3.7 (a), (c)], the statements in (20) and (21) can be easily shown.
The proof of (c) can be obtained using similar arguments as in the proof of Theorem 4.1(c).

Using the notations of Theorem 4.1 and Theorem 4.2, we obtain the following corollaries for the compactness
of an operator on the above spaces.

Corollary 4.3. Let X =
(
N̄q

∆

)
0

or X =
(
N̄q

∆

)
∞

.

(a) If A ∈ (X, c0) then LA is compact if and only if

lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk|


 = 0. (23)

(b) If A ∈ (X, c) then LA is compact if and only if

lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk − α̂k|


 = 0. (24)

(c) If A ∈ (X, `∞) then LA is compact if and only if (23) is satisfied.

Corollary 4.4. (a) If A ∈
((

N̄q
∆

)
, c0

)
then LA is compact if and only if

lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk| + |γn|


 = 0. (25)

(b) If A ∈
((

N̄q
∆

)
, c

)
then LA is compact if and only if

lim
m→∞

sup
n≥m

 ∞∑
k=0

|ânk − α̂k| +

∣∣∣∣∣∣∣
∞∑

k=0

α̂k − β − γn

∣∣∣∣∣∣∣

 = 0. (26)

(c) If A ∈
((

N̄q
∆

)
, `∞

)
then LA is compact if and only if (25) holds.
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[8] Ivana Djolović and Eberhard Malkowsky. A note on compact operators on matrix domains. J. Math. Anal. Appl., 340(1):291–303,

2008.
[9] Tom Jacob. Matrix transformations involving simple sequence spaces. Pacific J. Math., 70(1):179–187, 1977.

[10] Tanweer Jalal. Some New I-Lacunary Generalized Difference Sequence Spaces in n-Normed Space. Springer, 2016.
[11] Tanweer Jalal and Z .U Ahmad. A new sequence space and matrix transformations. Thai J. Math., 8(2):373–381, 2012.
[12] Abdullah M Jarrah and Eberhard Malkowsky. Ordinary, absolute and strong summability and matrix transformations. Filomat,

pages 59–78, 2003.
[13] H Kizmaz. Certain sequence spaces. Can. Math. Bull., 24(2):169–176, 1981.
[14] Ivor John Maddox. Elements of functional analysis. CUP Archive, 1988.
[15] E Malkowsky and V Rakocevic. The measure of noncompactness of linear operators between certain sequence spaces. Acta Sci.

Math. (Szeged), 64(1):151–170, 1998.
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