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Abstract. As proved in [16], there exists a duality Λt between the category HLC of locally compact
Hausdorff spaces and continuous maps, and the category DHLC of complete local contact algebras and
appropriate morphisms between them. In this paper, we introduce the notions of weight wa and of
dimension dima of a local contact algebra, and we prove that if X is a locally compact Hausdorff space then
w(X) = wa(Λt(X)), and if, in addition, X is normal, then dim(X) = dima(Λt(X)).

1. Introduction

According to Stone’s famous duality theorem [43], the Boolean algebra CO(X) of all clopen (= closed
and open) subsets of a zero-dimensional compact Hausdorff space X carries the whole information about
the space X, i.e. the space X can be reconstructed from CO(X), up to homeomorphism. It is natural to ask
whether the Boolean algebra RC(X) of all regular closed subsets of a compact Hausdorff space X carries
the full information about the space X (see Example 2.5 below for RC(X)). It is well known that the answer
is “No”. For example, the Boolean algebras of all regular closed subsets of the unit interval I (with its
natural topology) and the absolute aI of I (i.e. the Stone dual of RC(I)) are isomorphic but I and aI are not
homeomorphic because I is connected and aI is not (see, e.g., [38] for absolutes). Suppose that HC is the
category of compact Hausdorff spaces and continuous maps, and that X is a compact Hausdorff space. As
shown by H. de Vries [14], all information about the space X is contained in the pair 〈RC(X), ρX〉, where ρX
is a binary relation on RC(X) such that for all F,G ∈ RC(X),

FρXG if and only if F ∩ G , ∅.

In order to describe abstractly the pairs 〈RC(X), ρX〉, he introduced the notion of compingent Boolean algebra,
and he proved that there exists a duality between the category HC and the category DHC of complete
compingent Boolean algebras and appropriate morphisms between them.

Subsequently, Dimov [16] extended de Vries’ duality from the category HC to the category HLC of
locally compact Hausdorff spaces and continuous maps, and, on the base of this result, he also obtained
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an extension of Stone’s duality from the category Stone of compact zero-dimensional Hausdorff spaces
and continuous maps to the category ZHLC of zero-dimensional locally compact Hausdorff spaces and
continuous maps (see [15, 18]).

The paper [16] has its precursor in results by P. Roeper [40], who showed that all information about a
locally compact Hausdorff space X is contained in the triple

〈RC(X), ρX,CR(X)〉,

where CR(X) is the set of all compact regular closed subsets of X. In order to describe abstractly the
triples 〈RC(X), ρX,CR(X)〉, he introduced the notion of region-based topology, and he proved that – up to
homeomorphisms, respectively, isomorphisms – there exists a bijection between the class of all locally
compact Hausdorff spaces and the class of all complete region-based topologies. The duality theorem
proved in [16] says that there exists a duality Λt between the category HLC and the category DHLC of all
complete region-based topologies and appropriate morphisms between them. Note that

Λt(X) df
= 〈RC(X), ρX,CR(X)〉,

for every locally compact Hausdorff space X. In [19], the dual objects (under the contravariant functor
Λt) of Euclidean spaces, spheres, tori and Tychonoff cubes are constructed directly (i.e. without the help
of the corresponding topological spaces); these algebraical objects completely characterize the mentioned
topological spaces.

In [21], the general notion of Boolean contact algebra was introduced and, accordingly, “compingent
Boolean algebras” were called “normal Boolean contact algebras” (abbreviated as NCAs), and “region-
based topologies” were called “local contact Boolean algebras” (abbreviated as LCAs). Typical examples of
Boolean contact algebras are the pairs

〈RC(X), ρX〉,

where X is an arbitrary topological space. We will even use a more general notion, namely, the notion of a
Boolean precontact algebra, introduced by Düntsch and Vakarelov in [25].

The theory of (local) (pre)contact algebras is a part of region-based theory of space which is a kind of
point-free geometry and can be considered as an alternative to the well known Euclidean point-based
theory of space. Its main idea goes back to Whitehead [47] (see also [46]) and de Laguna [13]. Survey
papers describing various aspects and historical remarks on region-based theory of space are [6, 30, 39, 44].
From a Computer Science perspective, (local) (pre)contact algebras are part of qualitative spatial and temporal
reasoning (which, in turn, is a part of region-based theory of space), an area of artificial intelligence, with
applications in geographic information systems, robot navigation, computer aided design, and more. We
invite the reader to consult [12], [31] or [48] for details. Let us also mention that region-based theory of space
stimulated the appearance of a new area in logic, namely “Spatial Logics” [2], sometimes called “Logics of
Space”. It could be said that point-free topology [32, 37] is also part of the region-based theory of space.

Having a duality Λt between the categories HLC and DHLC, it is natural to look for the algebraic
expressions dual to topological properties of locally compact Hausdorff spaces. It is easy to find such an
expression for the property of “connectedness” even for arbitrary topological spaces, see [7]. Namely, a
Boolean contact algebra 〈B,C〉 is said to be connected if a , 0, 1 implies that aCa∗; here, a∗ is the Boolean
complement of a. It was proved in [7] that for a topological space X, the Boolean contact algebra 〈RC(X), ρX〉

is connected if and only if the space X is connected.
In this paper we introduce the notions of dimension of a precontact algebra and weight of a local contact

algebra, and prove that

1. The weight of a locally compact Hausdorff space X is equal to the weight of the local contact algebra
Λt(X) (Theorem 4.4), and

2. The Čech–Lebesgue dimension of a normal T1-space X is equal to the dimension of the Boolean contact
algebra 〈RC(X), ρX〉 (Theorem 3.4). In particular, the Čech–Lebesgue dimension of a normal locally
compact Hausdorff space X is equal to the dimension of the local contact algebra Λt(X) (Corollary
3.5).
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One cannot define a notion of dimension for Boolean algebras corresponding to the topological notion of
dimension via de Vries’ or Dimov’s dualities because for all positive natural numbers n and m, the Boolean
algebras RC(Rn) and RC(Rm) are isomorphic (see Birkhoff [8, p.177]) but, clearly, for n , m, dim(Rn) ,
dim(Rm). Also, one cannot define an adequate (in the same sense) notion of weight for Boolean algebras
because, for example, the Boolean algebras RC(I) and RC(aI) are isomorphic but w(I) = ℵ0 < 2ℵ0 = w(aI)
(see [5, Chapter VI, Problem 234(a)]).

The paper is organized as follows. Section 2 contains all preliminary facts and definitions which are
used in this paper. In Section 3, we introduce and study the notion of dimension of a precontact algebra.
Here we prove Theorem 3.4 and Corollary 3.5, mentioned above. It is shown as well that the dimension of
a normal contact algebra is equal to the dimension of its NCA-completion (see [15, 17] for this notion), that
the dimension of any NCA of the form 〈B, ρs〉 (where ρs is the smallest contact relation on B) is equal to
zero (as it should be), and that the dimension of every relative LCA of an LCA 〈B, ρ,B〉 is smaller or equal
to dima(〈B, ρ,B〉). Recall that L. Heindorf (cited in [36]) introduced the notion ofA-dimension for Boolean
algebras, where A is an arbitrary non-empty class of Boolean algebras. There is, however, no connection
between the topological notion of dimension and the notion ofA-dimension, so that his investigations are
in a different direction from those carried out here. Recall also that M. G. Charalambous [11] introduced
and studied a notion of dimension for the (σ-)frames. It corresponds to the so called localic duality (see,
e.g., [32, Corollary II.1.7]), which is a duality between the category of all spatial frames and all functions
between them which preserve finite meets and arbitrary joins and the category of all sober spaces and all
continuous maps between them. The dimension of a spatial frame, which is introduced in [11], is equal
to the Čech–Lebesgue dimension of its dual sober topological space. Note that the dual object of a sober
topological space is its topology regarded as a frame. That is why, the investigations made in [11] and in
this paper are completely different.

In Section 4, we introduce and study the notion of weight of a local contact algebra. Here we prove
Theorem 4.4, mentioned above. We show as well that the weight of a local contact algebra is equal to
the weight of its LCA-completion (see [15, 17] for this notion), find an algebraic analogue of Alexandroff-
Urysohn theorem for bases ([27, Theorem 1.1.15]), describe the LCAs whose dual spaces are metrizable,
and characterize the LCAs whose dual spaces are zero-dimensional. Furthermore, for a dense Boolean
subalgebra A0 of a Boolean algebra A, we construct an NCA 〈A, ρ〉 such that wa(〈A, ρ〉) = |A0|, and if A is
complete, then its dual space is homeomorphic to the Stone dual of A0.

In Section 5, we discuss the relationship between algebraic density and algebraic weight, introduce the
notion of a π-semiregular space, and show that if X is π-semiregular then πw(X) is equal to the density of
the Boolean algebra RC(X). Finally, for every π-semiregular space X with πw(X) ≥ ℵ0, we prove that there
exists a zero-dimensional compact Hausdorff space Y with w(Y) = πw(X) such that the Boolean algebras
RC(X) and RC(Y) are isomorphic.

The results from Sections 4 and 5 are from the arXiv-paper [15].

2. Preliminaries

2.1. Notation and first definitions

Suppose that 〈P,≤, 0〉 is a partially ordered set with smallest element 0. If M ⊆ P, then M+ df
= M \ {0}. M

is called dense in P, if for all a ∈ P+ there is some b ∈M+ such that b ≤ a.
A join-semilattice is a partially ordered set having all finite non-empty joins.
We denote by N the set of all non-negative integers, by N− the set N∪ {−1}, by N+ the set N \ {0}, by R

the real line (with its natural topology), and by I the subspace [0, 1] (df
= {x ∈ R | 0 ≤ x ≤ 1}) of R.

The power set of a set X is denoted by 2X; we implicitly suppose that 2X is a Boolean algebra under the
set operations. The cardinality of a set X is denoted, as usual, by |X|.

Throughout, 〈B,∧,∨, ∗, 0, 1〉will denote a Boolean algebra unless indicated otherwise; we do not assume
that 0 , 1. With some abuse of language, we shall usually identify algebras with their universe, if no
confusion can arise.
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If B is a Boolean algebra and b ∈ B+, we let Bb be the relative algebra of B with respect to b [33, Lemma
3.1.].

If a, b ∈ B, then a4b denotes the symmetric difference of a and b, i.e. a4b df
= (a ∧ b∗) ∨ (b ∧ a∗). It is well

known that a4b = 0 if and only if a = b.
Throughout, (X,T ) will be a topological space. If no confusion can arise, we shall just speak of X.

We denote by CO(X) the set of all clopen (= closed and open) subsets of X; clearly, 〈CO(X),∪,∩, \, ∅,X〉
is a Boolean algebra. A subset F of X is called regular closed (resp., regular open) if F = cl(int(F)) (resp.,
F = int(cl(F))). We let RC(X) (resp., RO(X)) be the set of all regular closed (resp., regular open) subsets of X.
The space X is called semiregular if RO(X) is an open base for X, or, equivalently, if RC(X) is a closed base
for X.

If C is a category, we denote by |C| the class of all objects of the category C, and by C(A,B) the set of all
C-morphisms between the C-objects A and B.

For unexplained notation we invite the reader to consult [33] for Boolean algebras, [1] for category
theory, and [27] for topology.

2.2. Boolean (pre)contact algebras

In this paper we work mainly with Boolean algebras with supplementary structures on them. In all
cases, we will say that the corresponding structured Boolean algebra is complete if the underlying Boolean
algebra is complete.

Definition 2.1. ([25]) A Boolean precontact algebra, or, simply, precontact algebra (PCA) (originally, Boolean
proximity algebra [25]), is a structure 〈B,C〉, where B is a Boolean algebra, and C a binary relation on B, called
a precontact relation, which satisfies the following axioms:

(C1). If aCb then a , 0 and b , 0.
(C2). aC(b ∨ c) if and only if aCb or aCc; (a ∨ b)Cc if and only if aCc or bCc.

Two precontact algebras 〈B,C〉 and 〈B1,C1〉 are said to be PCA-isomorphic (or, simply, isomorphic) if there
exists a PCA-isomorphism between them, i.e., a Boolean isomorphism ϕ : B −→ B1 such that, for every
a, b ∈ B, aCb iff ϕ(a)C1ϕ(b).

The notion of a precontact algebra was defined independently (and in a completely different form) by
S. Celani [10]. A duality theorem for precontact algebras was obtained in [20] (see also [22, 23]).

Definition 2.2. A PCA 〈B,C〉 is called a Boolean contact algebra [21] or, briefly, a contact algebra (CA), if it
satisfies the following additional axioms for all a, b ∈ B:

(C3). If a , 0 then aCa.
(C4). aCb implies bCa.

The relation C is called a contact relation. As usual, if a ∈ B, we set

C(a) df
= {b ∈ B | aCb}.

We shall consider two more properties of contact algebras:

(C5). If a(−C)b then a(−C)c and b(−C)c∗ for some c ∈ B.
(C6). If a , 1 then there exists b , 0 such that b(−C)a.

A contact algebra 〈B,C〉 is called a Boolean normal contact algebra or, briefly, normal contact algebra (abbre-
viated as NCA) [14, 29] if it satisfies (C5) and (C6). The notion of normal contact algebra was introduced by
Fedorchuk [29] under the name of Boolean δ-algebra as an equivalent expression of the notion of compingent
Boolean algebra of de Vries (see the definition below). We call such algebras “normal contact algebras”
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because they form a subclass of the class of contact algebras which naturally arise as canonical algebras in
normal Hausdorff spaces (see [21]).

Axiom (C6) is an extensionality axiom since a CA 〈B,C〉 satisfies (C6) if and only if (∀a, b ∈ B)[C(a) =
C(b) implies a = b] (see [21, Lemma 2.2]). Keeping this in mind, we call a CA 〈B,C〉 an extensional contact
algebra (abbreviated as ECA) if it satisfies (C6). This notion was introduced in [26] under the name of Boolean
contact algebra, and a representation theorem for ECAs was proved there.

Note that if 0 , 1, then (C1) follows from the axioms (C2), (C4), and (C6).

Definition 2.3. For a PCA 〈B,C〉, we define a binary relation “�C” on B, called non-tangential inclusion, by

a�C b if and only if a(−C)b∗.

Here, −C is the set complement of C in B × B. If C is understood, we shall simply write “�” instead of
“�C”.

The relations C and � are inter-definable. For example, normal contact algebras may be equivalently
defined – and exactly in this way they were introduced under the name of compingent Boolean algebras by
de Vries in [14] – as a pair consisting of a Boolean algebra B and a binary relation � on B satisfying the
following axioms:

(�1). a� b implies a ≤ b.
(�2). 0� 0.
(�3). a ≤ b� c ≤ t implies a� t.
(�4). a� c and b� c implies a ∨ b� c.
(�5). If a� c then a� b� c for some b ∈ B.
(�6). If a , 0 then there exists b , 0 such that b� a.
(�7). a� b implies b∗ � a∗.

Indeed, if 〈B,C〉 is an NCA, then the relation�C satisfies the axioms (�1) – (�7). Conversely, having a pair
〈B,�〉, where B is a Boolean algebra and� is a binary relation on B which satisfies (�1) – (�7), we define
a relation C� by aC�b if and only if a(− �)b∗ (here, − � is the set complement of the relation� in B × B);
then 〈B,C�〉 is an NCA. Note that the axioms (C5) and (C6) correspond to (�5) and to (�6), respectively.

It is easy to see that contact algebras could be equivalently defined as a pair of a Boolean algebra B and a
binary relation� on B subject to the axioms (�1) – (�4) and (�7); then, clearly, the relation� also satisfies
the axioms

(�2’) 1� 1;
(�4’) (a� c and b� c) implies (a ∨ b)� c.

It is not difficult to see that precontact algebras could be equivalently defined as a pair of a Boolean
algebra B and a binary relation� on B subject to the axioms (�2), (�2’), (�3), (�4) and (�4’).

A mapping ϕ between two contact algebras 〈B1,C1〉 and 〈B2,C2〉 is called a CA-morphism ([20]), if
ϕ : B1 −→ B2 is a Boolean homomorphism, and ϕ(a)C2ϕ(b) implies aC1b, for any a, b ∈ B1. Note that
ϕ : 〈B1,C1〉 −→ 〈B2,C2〉 is a CA-morphism if and only if a �C1 b implies ϕ(a) �C2 ϕ(b), for any a, b ∈ B1.
(Thus, a CA-morphism is a structure preserving morphism between 〈B1,�1〉 and 〈B2,�2〉 in the sense of
first order logic.) Two CAs 〈B1,C1〉 and 〈B2,C2〉 are CA-isomorphic if and only if there exists a bijection
ϕ : B1 −→ B2 such that ϕ and ϕ−1 are CA-morphisms.

The following assertion may be worthy of mention:

Proposition 2.4. If 〈B1,C1〉 and 〈B2,C2〉 are CAs, ϕ : B1 −→ B2 is a Boolean homomorphism and ϕ preserves the
contact relation C1 (i.e., aC1b implies ϕ(a)C2ϕ(b), for all a, b ∈ B1), then ϕ is an injection.

Proof. Assume that ϕ is not injective. Then, there are a, b ∈ B1 such that a , b and ϕ(a) = ϕ(b); hence,

c df
= a4b , 0, and ϕ(c) = 0. By (C3), cC1c, and the fact that ϕ preserves C1 implies that ϕ(c)C2ϕ(c), i.e. 0C20.

This contradicts (C1).
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The most important “concrete” example of a CA is given by the regular closed sets of an arbitrary
topological space.

Example 2.5. Let (X,T ) be a topological space. The collection RC(X,T ) becomes a complete Boolean algebra
〈RC(X,T ), 0, 1,∧,∨, ∗〉 under the following operations:

F ∨ G df
= F ∪ G, F ∧ G df

= cl(int(F ∩ G)), F∗ df
= cl(X \ F), 0 df

= ∅, 1 df
= X.

The infinite operations are given by the formulas∨
{Fγ | γ ∈ Γ}

df
= cl(

⋃
γ∈Γ

Fγ) (= cl(
⋃
γ∈Γ

int(Fγ)) = cl(int(
⋃
γ∈Γ

Fγ))),
∧
{Fγ | γ ∈ Γ}

df
= cl(int(

⋂
{Fγ | γ ∈ Γ})),

Define a relation ρ(X,T ) on RC(X,T ) by setting, for each F,G ∈ RC(X,T ),

Fρ(X,T )G if and only if F ∩ G , ∅.

Clearly, ρ(X,T ) is a contact relation, called the standard contact relation of (X,T ). The complete contact algebra
〈RC(X,T ), ρ(X,T )〉 is called a standard contact algebra. If no confusion can arise, we shall usually write simply
RC(X) instead of RC(X,T ), and ρX instead of ρ(X,T ). Note that, for F,G ∈ RC(X),

F�ρX G if and only if F ⊆ intX(G).

Thus, if (X,T ) is a normal Hausdorff space then the standard contact algebra 〈RC(X,T ), ρ(X,T )〉 is a complete
NCA.

Instead of looking at regular closed sets, we may, equivalently, consider regular open sets. The collection
RO(X) of regular open sets becomes a complete Boolean algebra by setting

U ∨ V df
= int(cl(U ∪ V)), U ∧ V df

= U ∩ V, U∗ df
= int(X \U), 0 df

= ∅, 1 df
= X,

and ∧
i∈I

Ui
df
= int(cl(

⋂
i∈I

Ui)) (= int(
⋂
i∈I

Ui)),
∨
i∈I

Ui
df
= int(cl(

⋃
i∈I

Ui)),

see [33, Theorem 1.37]. We define a contact relation DX on RO(X) as follows:

UDXV if and only if cl(U) ∩ cl(V) , ∅.

Then 〈RO(X),DX〉 is a complete CA.
The contact algebras 〈RO(X),DX〉 and 〈RC(X), ρX〉 are CA-isomorphic via the mapping ν : RO(X) −→

RC(X) defined by the formula ν(U) df
= cl(U), for every U ∈ RO(X).

Example 2.6. Let B be a Boolean algebra. Then there exist a largest and a smallest contact relations on B;
the largest one, ρB

l , is defined by
aρB

l b ⇐⇒ (a , 0 and b , 0),

and the smallest one, ρB
s , by

aρB
s b ⇐⇒ a ∧ b , 0.

When there is no ambiguity, we will simply write ρs instead of ρB
s , and ρl instead of ρB

l .
Note that, for a, b ∈ B,

a�ρs b ⇐⇒ a ≤ b;

hence a�ρs a, for any a ∈ B. Thus (B, ρs) is a normal contact algebra.
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2.3. Local contact algebras
Local contact algebras were introduced by Roeper [40] under the somewhat misleading name region-based

topologies. Since every region-based topology is a contact algebra and also a lattice-theoretical counterpart
of Leader’s notion of local proximity [34], it was suggested in [21] to rename them to Boolean local contact
algebras.

Definition 2.7. [40] A system 〈B, ρ,B〉 is called a Boolean local contact algebra or, briefly, local contact algebra
(abbreviated as LCA or as LC-algebra) if B is a Boolean algebra, ρ is a contact relation on B, and B is a not
necessarily proper ideal of B satisfying the following axioms:

(LC1). If a ∈ B, c ∈ B and a�ρ c then a�ρ b�ρ c for some b ∈ B.
(LC2). If aρb then there exists an element c of B such that aρ(c ∧ b).
(LC3). If a , 0 then there exists some b ∈ B+ such that b�ρ a.

The elements of B are called bounded, and the elements of B \ B are called unbounded.

It may be worthy to note that it follows from a result by M. Rubin [41], that the first order theory of LCAs
is undecidable.

Two local contact algebras 〈B, ρ,B〉 and 〈B1, ρ1,B1〉) are LCA-isomorphic if there exists a CA-isomorphism
ϕ : 〈B, ρ〉 −→ 〈B1, ρ1〉 such that, for any a ∈ B, ϕ(a) ∈ B1 if and only if a ∈ B.

A mapϕ : 〈B, ρ,B〉 −→ 〈B1, ρ1,B1〉 is called an LCA-embedding ifϕ : 〈B, ρ〉 −→ 〈B1, ρ1〉 is a CA–morphism
such that for any a, b ∈ B, aρb implies ϕ(a)ρ1ϕ(b), and ϕ(a) ∈ B1 if and only if a ∈ B. Note that the name is
justified, since, as it follows from Proposition 2.4, any LCA–embedding is an injection.

If 〈B, ρ,B〉 is a local contact algebra andB = B, i.e.,B is an improper ideal, then 〈B, ρ〉 is a normal contact
algebra. Conversely, any normal contact algebra 〈B,C〉 can be regarded as a local contact algebra of the
form 〈B,C,B〉.

Proposition 2.8. [40, 45] Let X be a locally compact Hausdorff space. Then the triple 〈RC(X), ρX,CR(X)〉, where
CR(X) is the set of all compact regular closed subsets of X, is a complete local contact algebra.

The complete LCA 〈RC(X), ρX,CR(X)〉 is called the standard local contact algebra of X.
We will need the following notation: for every function ψ : 〈B, ρ,B〉 −→ 〈B′, η,B′〉 between two LCAs,

the function ψˇ : 〈B, ρ,B〉 −→ 〈B′, η,B′〉 is defined by

ψˇ(a) df
=
∨
{ψ(b) | b ∈ B, b�ρ a},

for every a ∈ B.

Definition 2.9. ([16]) Let DHLC be the category whose objects are all complete LC-algebras and whose
morphisms are all functionsϕ : 〈B, ρ,B〉 −→ 〈B′, η,B′〉 between the objects of DHLC satisfying the following
conditions:
(DLC1) ϕ(0) = 0;
(DLC2) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), for all a, b ∈ B;
(DLC3) If a ∈ B, b ∈ B and a�ρ b, then (ϕ(a∗))∗ �η ϕ(b);
(DLC4) For every b ∈ B′ there exists a ∈ B such that b ≤ ϕ(a);
(DLC5) ϕ(a) =

∨
{ϕ(b) | b ∈ B, b�ρ a}, for every a ∈ B;

the composition “�” of two morphisms ϕ1 : 〈B1, ρ1,B1〉 −→ 〈B2, ρ2,B2〉 and ϕ2 : 〈B2, ρ2,B2〉 −→ 〈B3, ρ3,B3〉

of DHLC is defined by the formula ϕ2 � ϕ1
df
= (ϕ2 ◦ ϕ1)ˇ.

Note that two complete LCAs are LCA-isomorphic if and only if they are DHLC-isomorphic.
Let HLC (resp., HC) be the category of all locally compact (resp., compact) Hausdorff spaces and all

continuous maps between them. The following duality theorem for the category HLC was proved in [16].
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Theorem 2.10. ([16]) The categories HLC and DHLC are dually equivalent. The contravariant functors which
realize this duality are denoted by

Λt : HLC −→ DHLC and Λa : DHLC −→ HLC.

The contravariant functor Λt is defined as follows:

Λt(X) df
= 〈RC(X), ρX,CR(X)〉,

for every HLC-object X, and

Λt( f )(G) df
= cl( f−1(int(G))),

for every f ∈ HLC(X,Y) and every G ∈ RC(Y).

In particular, for every complete LCA B df
= 〈B, ρ,B〉 and every X ∈ |HLC|, B is LCA-isomorphic to

Λt(Λa(B)) and X is homeomorphic to Λa(Λt(X)). (We do not give here the explicit definition of the con-
travariant functor Λa because we will not use it. (It is given in [16].) For our purposes here, it is enough
to know that the compositions Λa

◦ Λt and Λt
◦ Λa are naturally equivalent to the corresponding identity

functors (see, e.g., [1]).)
Also, the restriction of Λt to the subcategory HC of the category HLC coincides with the de Vries duality

functor between the category HC and the full subcategory DHC of the category DHLC, having as objects
all NCAs.

The next theorem shows how one can construct the dual object Λt(F) of a regular closed subset F of a
locally compact Hausdorff space X using only F and the dual object Λt(X) of X.

Theorem 2.11. ([17]) Let X be a locally compact Hausdorff space and F ∈ RC(X). Let B df
= RC(X)F be the relative

algebra of RC(X) with respect to F,

B′
df
= {G ∧ F | G ∈ CR(X)}

and, for every a, b ∈ B, aηb⇔ aρXb (i.e., aηb⇔ a ∩ b , ∅). Then 〈B, η,B′〉 is LCA-isomorphic to Λt(F), where F is
regarded as a subspace of X.

We will also need the following definitions and assertions. Note that for γ ∈ Γ and a ∈
∏
{Aγ | γ ∈ Γ}, aγ

will denote the γ-th coordinate of a.

Definition 2.12. ([17]) Let {〈Bγ, ργ,Bγ〉 | γ ∈ Γ} be a family of LC-algebras and

B df
=
∏
{Bγ | γ ∈ Γ}

be the product of the Boolean algebras {Bγ | γ ∈ Γ} in the category Bool of Boolean algebras and Boolean
homomorphisms. Let

B
df
= {b ∈

∏
{Bγ | γ ∈ Γ} | |{γ ∈ Γ | bγ , 0}| < ℵ0}.

For any two points a, b ∈ B, set

aρb⇐⇒ there exists γ ∈ Γ such that aγργbγ.

Then the triple 〈B, ρ,B〉 is called a product of the family {〈Bγ, ργ,Bγ〉 | γ ∈ Γ} of LC-algebras; we will denote it
by ∏

{〈Bγ, ργ,Bγ〉 | γ ∈ Γ}.

Theorem 2.13. ([17]) Let B df
= {〈Bγ, ργ,Bγ〉 | γ ∈ Γ} be a family of complete LC-algebras, 〈B, ρ,B〉 be the product∏

{〈Bγ, ργ,Bγ〉 | γ ∈ Γ} of the family B and πγ(a) df
= aγ, for every a ∈ B and every γ ∈ Γ. Then the source

{πγ : 〈B, ρ,B〉 −→ 〈Bγ, ργ,Bγ〉 | γ ∈ Γ} is a product of the family B in the category DHLC.
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Definition 2.14. ([15, 17]) Let 〈B, ρ,B〉 be an LCA and D be a subset of B. Then we say that D is dV-dense in
〈B, ρ,B〉 if for each a, c ∈ B such that a�ρ c, there exists d ∈ D with a ≤ d ≤ c.

Fact 2.15. ([15, 17]) If 〈B, ρ,B〉 is an LCA and D is a subset of B, then D is dV-dense in 〈B, ρ,B〉 if and only if for
each a, c ∈ B such that a�ρ c, there exists d ∈ D with a�ρ d�ρ c.

Definition 2.16. ([15, 17]) Let 〈B, ρ,B〉 be an LCA. A pair (ϕ, 〈B′, ρ′,B′〉) is called an LCA-completion of the
LCA 〈B, ρ,B〉 if 〈B′, ρ′,B′〉 is a complete LCA, ϕ : 〈B, ρ,B〉 −→ 〈B′, ρ′,B′〉 is an LCA-embedding and ϕ(B) is
dV-dense in 〈B′, ρ′,B′〉.

Two LCA-completions (ϕ, 〈B′, ρ′,B′〉) and (ψ, 〈B′′, ρ′′,B′′〉) of a local contact algebra 〈B, ρ,B〉 are said to
be equivalent if there exists an LCA-isomorphism η : 〈B′, ρ′,B′〉 −→ 〈B′′, ρ′′,B′′〉 such that ψ = η ◦ ϕ.

We define analogously the notions of NCA-completion and equivalent NCA-completions.

Note that condition (LC3) implies that if a set D is dV-dense in an LCA 〈B, ρ,B〉, then it is a dense subset
of B. Hence, if (ϕ, 〈B′, ρ′,B′〉) is an LCA-completion of the LCA 〈B, ρ,B〉, then (ϕ,B′) is a completion of the
Boolean algebra B.

Theorem 2.17. ([15, 17]) Every local contact algebra 〈B, ρ,B〉 has a unique (up to equivalence) LCA-completion
(ϕ, 〈B′, ρ′,B′〉). Every normal contact algebra 〈B,C〉 has a unique (up to equivalence) NCA-completion.

2.4. The Čech–Lebesgue dimension and the weight of a topological space
A cover of a set X is a family A of subsets of X for which

⋃
A = X. If A,B are covers of X, then B is a

refinement ofA, if for every B ∈ B there is some A ∈ A such that B ⊆ A. A cover B df
= {Bi | i ∈ I} is a shrinking

ofA df
= {Ai | i ∈ I} if Bi ⊆ Ai for all i ∈ I. IfA df

= {Ai | i ∈ I} ⊆ 2X, a family B df
= {Bi | i ∈ I} ⊆ 2X is called a swelling

ofA, if Ai ⊆ Bi for all i ∈ I, and for all k ∈N+ and i1, . . . , ik ∈ I,

Ai1 ∩ . . . ∩ Aik = ∅ ⇐⇒ Bi1 ∩ . . . ∩ Bik = ∅.

A cover (refinement, shrinking, swelling) of a topological space X is called open (regular open, closed,
regular closed) if all of its members are open (regular open, closed, regular closed) subsets of X.

If X is a set andA ⊆ 2X, the order ofA is defined as

ordA df
=

n, if n = max{m ∈N− | (∃A1, . . . ,Am+1 ∈ A)(
⋂m+1

i=1 Ai , ∅)},
∞, if such n does not exist.

It follows that if ordA = n, then the intersection of every n + 2 distinct elements of A is empty. Also,
ordA = −1 if and only if A = {∅}, and ordA = 0 if and only if A is a disjoint family of subsets of X which
are not all empty.

The Čech–Lebesgue dimension of a topological space X, denoted by dim(X), is defined in layers (see, e.g.,
[28]). Suppose that n ∈N−.

(CL1). If every finite open cover of X has a finite open refinement of order at most n, then
dim(X) ≤ n.

(CL2). If dim(X) ≤ n and dim(X) � n − 1, then dim(X) = n.
(CL3). If n � dim(X) for all n ∈N−, then dim(X) = ∞.

Observe that dim(X) = −1 if and only if X = ∅.
The above definition was introduced and discussed by E. Čech in [9]. It is related to the following

property of covers of the n-cube In discovered by Lebesgue in [35]: for every ε > 0, In can be covered by
a finite family of closed sets with diameters less than ε such that all intersections of n + 2 members of the
family are empty, but In cannot be covered by a finite family of closed sets with diameters less than 1 such
that all intersections of n + 1 members of the family are empty.

Obviously, if X and Y are two homeomorphic topological spaces, then dim(X) = dim(Y).
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Let us recall that dim(Rn) = dim(In) = n, for every n ∈N+ (see, e.g., [28, Theorem 1.8.2, Corollary 1.8.3]
or [27, Theorem 7.3.19, Corollary 7.3.20]).

In what follows, we will often use the following three theorems (see, e.g., [28, Theorems 1.6.10, 1.7.8,
3.1.2]):

Theorem 2.18. A normal T1-space X satisfies the inequality dim(X) ≤ n if and only if every (n + 2)-element open
cover {Ui | i = 1, . . . ,n + 2} of the space X has an open shrinking {Wi | i = 1, . . . ,n + 2} of order ≤ n, i.e., such that⋂
{Wi | i = 1, . . . ,n + 2} = ∅.

Theorem 2.19. Every finite open cover {Ui | i = 1, . . . , k} of a normal T1-space X has a closed shrinking {Fi | i =
1, . . . , k}.

Theorem 2.20. Every finite family {Fi | i = 1, . . . , k} of closed subsets of a normal T1-space X has an open swelling
{Ui | i = 1, . . . , k}. If, moreover, a family {Vi | i = 1, . . . , k} of open subsets of X satisfying Fi ⊆ Vi, for i = 1, . . . , k is
given, then the swelling can be defined in such a way that cl(Ui) ⊆ Vi for i = 1, . . . , k.

Recall that if (X,T ) is a topological space, then a subfamily B of T is called a base for (X,T ) (or, simply,
for X) if every non-empty open subset of X can be represented as the union of a subfamily of B. It is easy to
see that a subfamily B of T is a base for (X,T ) if and only if for every point x ∈ X and any neighbourhood
V of x there exists U ∈ B such that x ∈ U ⊆ V. Obviously, a topological space (X,T ) can have many bases.
The cardinal number

w(X) df
= min{|B| | B is a base for X}

is called the weight of the topological space (X,T ). As in the case of dim, if X and Y are two homeomorphic
topological spaces, then w(X) = w(Y). It is easy to see that w(Rn) = ℵ0, for every n ∈ N+. Indeed, for every
n ∈ N+, the family of all open balls in Rn having as centres all points of Rn with rational coordinates and
radii equal to 1

m , for every m ∈N+, is a base for Rn.
The next theorem of Alexandroff and Urysohn [4] (see also [27, Theorem 1.1.15]) will be often used in

this paper:

Theorem 2.21. Let X be a topological space andB be a base for X. Then there exists a baseB0 for X such thatB0 ⊆ B

and |B0| = w(X).

3. Dimension of a precontact algebra

The following assertion might be known.

Proposition 3.1. Let X be a normal T1-space, and n ∈N−. Then, dim(X) ≤ n if and only if for every finite regular

open cover U df
= {U1, . . . ,Un+2} of X there exists a regular closed shrinking F df

= {F1, . . . ,Fn+2} of U such that⋂
F = ∅ (i.e., ord(F ) ≤ n).

Proof. (⇒) Let dim(X) ≤ n and U df
= {U1, . . . ,Un+2} be a regular open cover of X. Then, by Theorem 2.18,

U has an open shrinkingW df
= {W1, . . . ,Wn+2} such that

⋂
W = ∅. Using Theorem 2.19, we find a closed

shrinking F ′ df
= {F1, . . . ,Fn+2} ofW. Now, Theorem 2.20 gives us an open swellingV df

= {V1, . . . ,Vn+2} of F ′

such that cl(Vi) ⊆ Wi, for every i = 1, . . . ,n + 2. Set F df
= {cl(V1), . . . , cl(Vn+2)}. Then F is a regular closed

shrinking ofU and
⋂
F = ∅.

(⇐) Let U′ df
= {U1, . . . ,Un+2} be an open cover of X. Then, by Theorem 2.19, U′ has a closed shrinking

F
′ df

= {F′1, . . . ,F
′

n+2}. Using Theorem 2.20, we obtain an open swelling V df
= {V1, . . . ,Vn+2} of F ′ such that

cl(Vi) ⊆ Ui, for every i = 1, . . . ,n + 2. Then U df
= {int(cl(V1)), . . . , int(cl(Vn+2))} is a regular open shrinking

of U′. By our hypothesis, U has a regular closed shrinking F df
= {F1, . . . ,Fn+2} such that

⋂
F = ∅. Then
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F is a closed shrinking of U′. By Theorem 2.20, F has an open swelling W df
= {W1, . . . ,Wn+2} such that

cl(Wi) ⊆ Ui for every i = 1, . . . ,n + 2; thus,W is an open shrinking ofU′ and
⋂
W = ∅. Thus, by Theorem

2.18, dim(X) ≤ n.

Corollary 3.2. Let X be a normal T1-space, and n ∈ N−. Then, dim(X) ≤ n if and only if for every finite regular

open cover U df
= {U1, . . . ,Un+2} of X there exists a regular closed shrinking F df

= {F1, . . . ,Fn+2} of U such that⋂
F = ∅ and

⋃n+2
i=1 int(Fi) = X.

Proof. (⇒) Repeat the proof of the “if” part of Proposition 3.1 rewriting only the last sentence of it as follows:
Then F is a regular closed shrinking ofU,

⋂
F = ∅ and

⋃n+2
i=1 int(cl(Vi)) = X.

(⇐) This follows from Proposition 3.1.

Having in mind the proposition above, we introduce the notion of dimension of a precontact algebra 〈B, ρ〉,
denoted by dima(〈B, ρ〉).

Definition 3.3. For a precontact algebra 〈B, ρ〉 and n ∈N− set

dima(〈B, ρ〉) ≤ n,

if for all a1, . . . , an+2, b1, . . . , bn+2 ∈ B such that
∨n+2

i=1 bi = 1 and bi � ai for all i = 1, . . . ,n + 2, there exist
c1, . . . , cn+2, d1, . . . , dn+2 ∈ B which satisfy the following conditions:

(D1). ci � di � ai for every i = 1, . . . ,n + 2.
(D2).

∨n+2
i=1 ci = 1 and

∧n+2
i=1 di = 0.

Furthermore, set dima(〈B, ρ〉) df
= −1 if and only if |B| = 1 (i.e., 0 = 1 in B). Finally, for all n ∈N, set

dima(〈B, ρ〉) df
=

n, if n − 1 < dima(〈B, ρ〉) ≤ n,
∞, if n < dima(〈B, ρ〉) for all n ∈N−.

If 〈B, ρ,B〉 is an LCA, then we replace 〈B, ρ〉 in above notation with 〈B, ρ,B〉.

Theorem 3.4. Let (X,T ) be a normal T1-space and n ∈N−. Then, dim(X) ≤ n if and only if dima(〈RC(X), ρX〉) ≤
n.

Proof. Set B df
= RC(X).

(⇒) Let dim(X) ≤ n. Let a1, . . . , an+2, b1, . . . , bn+2 ∈ B, bi � ai for every i = 1, . . . ,n + 2, and
∨n+2

i=1 bi = 1.

Then bi ⊆ int(ai) for every i = 1, . . . ,n + 2. Since
⋃n+2

i=1 bi = X, we obtain that A df
= {int(ai) | i = 1, . . . ,n + 2}

is a regular open cover of X. Then, by Corollary 3.2, A has a regular closed shrinking D df
= {d1, . . . , dn+2}

such that
⋂
D = ∅ and

⋃n+2
i=1 int(di) = X. Now, using Proposition 3.1, we obtain a regular closed shrinking

C
df
= {c1, . . . , cn+2} of the regular open cover {int(di) | i = 1, . . . ,n + 2} of X. Then ci � di � ai for every

i = 1, . . . ,n + 2,
∨n+2

i=1 ci = 1 and
∧n+2

i=1 di = cl(int(
⋂n+2

i=1 di)) = 0.

(⇐) LetU df
= {U1, . . . ,Un+2} be a regular open cover of X. Then, by Theorem 2.19,U has a closed shrinking

F
df
= {F1, . . . ,Fn+2}. By Theorem 2.20, F has an open swelling V df

= {V1, . . . ,Vn+2} such that cl(Vi) ⊆ Ui, for

every i = 1, . . . ,n + 2. Set ai
df
= cl(Ui) and bi

df
= cl(Vi), for every i = 1, . . . ,n + 2. Then bi ⊆ int(ai), i.e. bi � ai

for every i = 1, . . . ,n + 2. Since
⋃
{cl(Vi) | i = 1, . . . ,n + 2} = X, we obtain that

∨n+2
i=1 bi = 1. Thus, by our

hypothesis, there exist c1, . . . , cn+2, d1, . . . , dn+2 ∈ B such that ci � di � ai for every i = 1, . . . ,n + 2,
∨n+2

i=1 ci = 1
and

∧n+2
i=1 di = 0. Then ci ⊆ int(di), for every i = 1, . . . ,n + 2. Furthermore, we have that cl(

⋂n+2
i=1 int(di)) =

cl(int(
⋂n+2

i=1 di)) =
∧n+2

i=1 di = ∅. Thus
⋂n+2

i=1 int(di) = ∅. Now we obtain that
⋂n+2

i=1 ci ⊆
⋂n+2

i=1 int(di) = ∅, and
hence

⋂n+2
i=1 ci = ∅. Therefore, Proposition 3.1 implies that dim(X) ≤ n.
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Corollary 3.5. (a) If 〈B, ρ,B〉 is an LCA such that Λa(〈B, ρ,B〉) is a normal space, then dima(〈B, ρ,B〉) =
dim(Λa(〈B, ρ,B〉)). In particular, for every NCA 〈B, ρ〉, we have that dima(〈B, ρ〉) = dim(Λa(〈B, ρ〉)).
(b) If X is a normal locally compact T1-space, then dim(X) = dima(Λt(X)). In particular, for every compact Hausdorff
space X, dim(X) = dima(Λt(X)).

Proof. This follows from Theorems 3.4 and 2.10.

The next notion is analogous to the notions of “dense subset” and “dV-dense subset” regarded, respec-
tively, in [14] and [15, 17].

Definition 3.6. Let 〈B, ρ〉 be a precontact algebra. A subset D of B is said to be DV-dense in 〈B, ρ〉 if it satisfies
the following condition:

(DV) If a, b ∈ B and a� b then there exists c ∈ D such that a� c� b.

Lemma 3.7. Let 〈B, ρ〉 be a precontact algebra, D be a Boolean subalgebra of B which is DV-dense in 〈B, ρ〉 and ρ′

be the restriction of the relation ρ on D ×D. Then 〈D, ρ′〉 is a precontact algebra and dima(〈B, ρ〉) = dima(〈D, ρ′〉).

Proof. Clearly, 〈D, ρ′〉 is a precontact algebra.
If dima(〈D, ρ′〉) = ∞ then dima(〈B, ρ〉) ≤ dima(〈D, ρ′〉). Suppose that dima(〈D, ρ′〉) = n, where n ∈ N−,

and let a1, . . . , an+2, b1, . . . , bn+2 ∈ B be such that
∨n+2

i=1 bi = 1 and bi � ai for all i = 1, . . . ,n + 2. Then, by
(DV), there exist c1, . . . , cn+2, d1, . . . , dn+2 ∈ D such that bi � ci � di � ai for all i = 1, . . . ,n + 2. Obviously,
we have that

∨n+2
i=1 ci = 1. Thus there exist c′1, . . . , c

′

n+2, d
′

1, . . . , d
′

n+2 ∈ D such that c′i � d′i � di for all
i = 1, . . . ,n + 2,

∨n+2
i=1 c′i = 1 and

∧n+2
i=1 d′i = 0. Since c′i � d′i � ai for all i = 1, . . . ,n + 2 and D ⊆ B, we obtain

that dima(〈B, ρ〉) ≤ n. So, we have proved that dima(〈B, ρ〉) ≤ dima(〈D, ρ′〉).
For the other direction, let us prove that dima(〈B, ρ〉) ≥ dima(〈D, ρ′〉). Obviously, if dima(〈B, ρ〉) =

∞ then dima(〈D, ρ′〉) ≤ dima(〈B, ρ〉). Now, suppose that dima(〈B, ρ〉) = n, where n ∈ N−, and let
a1, . . . , an+2, b1, . . . , bn+2 ∈ D be such that

∨n+2
i=1 bi = 1 and bi � ai for all i = 1, . . . ,n + 2. Then there ex-

ist c′1, . . . , c
′

n+2, d
′

1, . . . , d
′

n+2 ∈ B such that c′i � d′i � ai for all i = 1, . . . ,n + 2,
∨n+2

i=1 c′i = 1 and
∧n+2

i=1 d′i = 0. Now,
by (DV), there exist c1, . . . , cn+2, d1, . . . , dn+2 ∈ D such that c′i � ci � di � d′i for all i = 1, . . . ,n + 2. Obviously,
we have

∨n+2
i=1 ci = 1 and

∧n+2
i=1 di = 0. Since ci � di � ai for all i = 1, . . . ,n + 2, we obtain dima(〈D, ρ′〉) ≤ n.

So, we have proved that dima(〈D, ρ′〉) ≤ dima(〈B, ρ〉), and therefore, dima(〈B, ρ〉) = dima(〈D, ρ′〉).

Theorem 3.8. Let 〈B,C〉 be an normal contact algebra and (ϕ, 〈B′,C′〉) be the NCA-completion of it. Then
dima(〈B,C〉) = dima(〈B′,C′〉).

Proof. By Definition 2.16 and Fact 2.15,ϕ(B) is a DV-dense subset of B′. Thus, by Lemma 3.7, dima(〈B′,C′〉) =
dima(〈ϕ(B),C′′〉), where C′′ is the restriction of the relation C′ to ϕ(B) × ϕ(B). Hence, our assertion follows
from the fact that dima(〈B,C〉) = dima(〈ϕ(B),C′′〉).

Proposition 3.9. Let B be a non-degenerate Boolean algebra (i.e., |B| > 1). Then dima(〈B, ρs〉) = 0 = dima(〈B, ρl〉)
(see Example 2.6 for ρs and ρl).

Proof. Since |B| > 1, we have dima(〈B, ρs〉) > −1 and dima(〈B, ρl〉) > −1. So, we need to show that
dima(〈B, ρs〉) ≤ 0 and dima(〈B, ρl〉) ≤ 0.

We will first prove that dima(〈B, ρs〉) ≤ 0. Recall that in 〈B, ρs〉, a � b if and only if a ≤ b. So, let

a1, a2, b1, b2 ∈ B, b1 ∨ b2 = 1 and bi ≤ ai for i = 1, 2. Then a1 ∨ a2 = 1. Set a df
= a1 ∧ a2, c1 = d1

df
= a∗ ∧ a1 and

c2 = d2
df
= a2. Then c1 ≤ d1 ≤ a1, c2 ≤ d2 ≤ a2, c1 ∨ c2 = (a∗ ∧ a1) ∨ a2 = ((a∗1 ∨ a∗2) ∧ a1) ∨ a2 = (a∗2 ∧ a1) ∨ a2 =

(a1 ∨ a2) ∧ (a2 ∨ a∗2) = 1 and d1 ∧ d2 = (a∗ ∧ a1) ∧ a2 = (a1 ∧ a2)∗ ∧ (a1 ∧ a2) = 0. Thus, dima(〈B, ρs〉) ≤ 0, and
altogether dima(〈B, ρs〉) = 0.

Next, we will prove that dima(〈B, ρl〉) ≤ 0. It is easy to see that in 〈B, ρl〉, a � b if and only if a = 0 or
b = 1. So, let a1, a2, b1, b2 ∈ B, b1 ∨ b2 = 1 and bi � ai for i = 1, 2. Then bi = 0 or ai = 1, for i = 1, 2. We will
consider all possible cases.
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Case 1. Let b1 = 0. Then b2 = 1 and hence a2 = 1. However, a1 could be equal to 0 or to 1. In both cases,

setting c1 = d1
df
= 0 and c2 = d2

df
= 1, we obtain dima(〈B, ρl〉) ≤ 0.

Case 2. Let b2 = 0. Then we argue analogously (just interchange the indices).
Case 3. Let a1 = 1. Since a1 ∨ a2 = 1, a2 could be equal to 0 or to 1.

Case 3a. Let a2 = 0. Setting c1 = d1
df
= 1 and c2 = d2

df
= 0, we obtain dima(〈B, ρl〉) ≤ 0.

Case 3b. Let a2 = 1. Setting c1 = d1
df
= 0 and c2 = d2

df
= 1, we obtain dima(〈B, ρl〉) ≤ 0.

Case 4. Let a2 = 1. Then we argue analogously to Case 3 (just interchange the indices).
Thus, we have shown that dima(〈B, ρl〉) = 0.

It is well known that for a normal T1-space X and a regular closed subset M of X, dim(M) ≤ dim(X)
holds (this is true even for closed subsets M of X, see e.g. [28]). According to Theorems 2.10 and 3.4, the
dual of this assertion is the following one: if X is a normal locally compact T1-space and M ∈ RC(X), then
dima(Λt(M)) ≤ dima(Λt(X)). Theorem 2.11 describes the LCA Λt(M) in terms of the LCA Λt(X), so that we
can reformulate the above statement in a purely algebraic terms. We will supply this new statement with an
algebraic proof, obtaining in this way an algebraic generalization of the topological statement stated above.
(Note that we will just take an LCA without requiring that it is dual to a normal locally compact T1-space.)

Proposition 3.10. Suppose that 〈B, ρ,B〉 is an LCA, m ∈ B+, and 〈Bm, ρm,Bm〉 is the relative LCA of 〈B, ρ,B〉, i.e.

ρm
df
= ρ � B2

m, Bm
df
= {b ∧m : b ∈ B}.

Then, dima(〈Bm, ρm,Bm〉) ≤ dima(〈B, ρ,B〉).

Proof. Recall that Bm
df
= {b ∈ B | b ≤ m}. We denote the complement in Bm by ∗m , i.e. a∗m df

= a∗ ∧m. Note that,
for a, b ∈ Bm, a�m b means that a(−ρ)b∗m , i.e., a(−ρ)(b∗ ∧m). Clearly, if a, b ∈ Bm and a�m b, then b∗m �m a∗m .

Let dima(〈B, ρ,B〉) = n, and suppose that a1, . . . , an+2, b1, . . . , bn+2 ∈ Bm are such that
∨n+2

i=1 bi = m and
bi �m ai. Then a∗i ∧ m � m. Indeed, we have that bi �m ai for i = 1, . . . ,n + 2. Thus a∗mi �m b∗mi , i.e.
(a∗i ∧m)� (b∗i ∧m) for i = 1, . . . ,n + 2. Since b∗i ∧m ≤ m for i = 1, . . . ,n + 2, (�3) implies that a∗i ∧m� m for
i = 1, . . . ,n + 2. Now, set

a′i
df
= ai ∨m∗ and b′i

df
= bi ∨m∗

for all 1 ≤ i ≤ n + 2; clearly,
∑n+2

i=1 b′i = 1. Furthermore, b′i � a′i . Indeed, assume not; then b′iρ(a′i )
∗, i.e.

(bi ∨m∗)ρ(a∗i ∧m). If biρ(a∗i ∧m), then bi(− �m)ai), and if m∗ρ(a∗i ∧m), then (a∗i ∧m)(− �)m), a contradiction
in both cases.

Since dima(〈B, ρ,B〉) = n, there exist c1, . . . , cn+2, d1 . . . , dn+2 ∈ B such that

n+2∨
i=1

ci = 1,
n+2∧
i=1

di = 0, and ci � di � a′i

for every i = 1, . . . ,n + 2. Set

si
df
= ci ∧m and ti

df
= di ∧m.

Clearly,
∨n+2

i=1 si = m and
∧n+2

i=1 ti = 0. All that is left to show is si �m ti �m ai. We have that

si �m ti ⇐⇒ si(−ρ)t∗mi

⇐⇒ si(−ρ)(t∗i ∧m),
⇐⇒ (ci ∧m)(−ρ)((di ∧m)∗ ∧m)
⇐⇒ (ci ∧m)(−ρ)(d∗i ∧m).

Now, (ci ∧m)(−ρ)(d∗i ∧m) is implied by ci � di.
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Similarly,

ti �m ai ⇐⇒ ti(−ρ)(a∗i ∧m),
⇐⇒ (di ∧m)(−ρ)(a∗i ∧m).

Since di � a′i , i.e. di(−ρ)(ai ∨m∗)∗, we see that (di ∧m)ρ(a∗i ∧m) is impossible, and it follows that ti �m ai.

4. Weight of a local contact algebra

In this section, we are going to define the notions of base and weight of an LCA B df
= 〈B, ρ,B〉 in such

a way that if B is complete, then the weight of B is equal to the weight of the space Λa(B), equivalently, if
X is a locally compact Hausdorff space, then the weight of X is equal to the weight of Λt(X). Clearly, the
main step is to define an adequate notion of base for a complete LCA B. In doing this, we use the fact that
the family RO(X) = {int(F) | F ∈ RC(X)} is an open base for X (because X is regular) and hence, by Theorem
2.21, RO(X) has a subfamily B, with |B| = w(X), which is a base for X.

The next definition and theorem generalize the analogous definition and theorem of de Vries [14]. Note
that our “base” (see the definition below) appears in [14] (for NCAs) as “dense set”.

Definition 4.1. Let 〈B, ρ,B〉 be an LCA and D be a subset of B. Then D is called a base for 〈B, ρ,B〉 if it is
dV-dense in 〈B, ρ,B〉. The cardinal number

wa(〈B, ρ,B〉) df
= min{|D| | D is a base for 〈B, ρ,B〉}

is called the weight of 〈B, ρ,B〉.

Lemma 4.2. Let X ∈ |HLC| andD be a base for the LCA Λt(X). Then

BD
df
= {int(F) | F ∈ D}

is a base for X.

Proof. Let x ∈ X and U be a neighborhood of x. Since X is regular and locally compact, there exist
F,G ∈ CR(X) such that x ∈ int(F) ⊆ F ⊆ int(G) ⊆ G ⊆ U. Then F�ρX G. Hence, there exists H ∈ D such that
F ⊆ H ⊆ G. It follows that int(H) ∈ BD and x ∈ int(H) ⊆ U. So, BD is a base for X.

Lemma 4.3. Let X ∈ |HLC|,B be a base for X and Cl(B) df
= {cl(U) |U ∈ B} ⊆ CR(X). Then, the sub-join-semilattice

LJ(B) of CR(X) generated by Cl(B) is a base for the LCA Λt(X).

Proof. Let F,G ∈ CR(X) and F �ρX G, i.e. F ⊆ int(G). By regularity, for every x ∈ F there exists Ux ∈ B

such that x ∈ Ux ⊆ cl(Ux) ⊆ int(G). Since F is compact, there exist n ∈ N+ and x1, . . . , xn ∈ F such that

F ⊆
⋃n

i=1 Uxi ⊆
⋃n

i=1 cl(Uxi ) ⊆ int(G). Thus H df
=
⋃n

i=1 cl(Uxi ) =
∨n

i=1 cl(Uxi ) ∈ LJ(B) and F ⊆ H ⊆ G. So, LJ(B)
is a base for the LCA 〈RC(X), ρX,CR(X)〉.

Theorem 4.4. Let X be a locally compact Hausdorff space and w(X) ≥ ℵ0. Then w(X) = wa(〈RC(X), ρX,CR(X)〉)
(i.e., w(X) = wa(Λt(X))).

Proof. We know that the family B0
df
= {int(F) | F ∈ CR(X)} is a base for X. Hence, by Theorem 2.21, there

exists a base B of X such that B ⊆ B0 and |B| = w(X). Let LJ(B) be the sub-join-semilattice of CR(X)
generated by the set {cl(U) | U ∈ B}. Then, by Lemma 4.3, LJ(B) is a base for 〈RC(X), ρX,CR(X)〉. Clearly,
|LJ(B)| = |B| = w(X). Hence, w(X) ≥ wa(〈RC(X), ρX,CR(X)〉).

Conversely, letD be a base for 〈RC(X), ρX,CR(X)〉 such that

|D| = wa(〈RC(X), ρX,CR(X)〉).

Then, by Lemma 4.2, BD
df
= {int(F) | F ∈ D} is a base for X. Since |BD| = |D|, we obtain that w(X) ≤

wa(〈RC(X), ρX,CR(X)〉).
Altogether, we have shown that w(X) = wa(〈RC(X), ρX,CR(X)〉).
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Lemma 4.5. Let 〈B, ρ,B〉 be an LCA and (ϕ, 〈B′, ρ′,B′〉) be its LCA-completion. Then:
(a) if D is a base for 〈B, ρ,B〉, then ϕ(D) is a base for 〈B′, ρ′,B′〉;
(b) if D′ is a base for 〈B′, ρ′,B′〉 and D′ ⊆ ϕ(B), then ϕ−1(D′) is a base for 〈B, ρ,B〉.

Proof. By definition, ϕ(B) is dV-dense in 〈A′, ρ′,B′〉.
(a) Let a, c ∈ B′ and a �ρ′ c. Then, by Fact 2.15, there exist b1, b2 ∈ B such that a �ρ′ ϕ(b1) �ρ′ ϕ(b2) �ρ′ c;
thus b1 �ρ b2. Hence, there exists some b ∈ D such that b1 �ρ b �ρ b2. Then, a �ρ′ ϕ(b) �ρ′ c, and
therefore, ϕ(D) is a base for 〈A′, ρ′,B′〉.
(b) This is obvious.

Theorem 4.6. Let 〈B, ρ,B〉 be an LCA, (ϕ, 〈B′, ρ′,B′〉) be its LCA-completion and wa(〈B, ρ,B〉) ≥ ℵ0. Then
wa(〈B, ρ,B〉) = wa(〈B′, ρ′,B′〉).

Proof. Let X df
= Λa(〈B′, ρ′,B′〉). Then, by Theorem 2.17, we may suppose w.l.o.g. that 〈B, ρ,B〉 is an LC-

subalgebra of Λt(X) = 〈RC(X), ρX,CR(X)〉 and (id,Λt(X)) is an LCA-completion of 〈B, ρ,B〉, where id :
〈B, ρ,B〉 −→ Λt(X) is the inclusion map; also, (id,Λt(X)) and (ϕ, 〈B′, ρ′,B′〉) are equivalent LCA-completions
of 〈B, ρ,B〉 (recall also that, by Theorem 2.10, Λt(X) and 〈B′, ρ′,B′〉 are LCA-isomorphic). So, B is dV-dense
in Λt(X). Thus B is a base for Λt(X). Let D be a base for 〈B, ρ,B〉 and |D| = wa(〈B, ρ,B〉). Then, by
Lemma 4.5(a),D is a base for Λt(X). Therefore, wa(〈B′, ρ′,B′〉) ≤ |D| = wa(〈B, ρ,B〉). Further, by Lemma 4.2,

BD
df
= {int(F) | F ∈ D} is a base for X. Applying Theorem 2.21, we find a base B for X such that B ⊆ BD

and |B| = w(X). Then, Lemma 4.3 implies that the sub-join-semilattice LJ(B) of CR(X), generated by the

set Cl(B) df
= {cl(U) | U ∈ B}, is a base for Λt(X). Since B ⊆ BD, we have Cl(B) ⊆ D. On the other hand,

D ⊆ B and B is a sub-join-semilattice of CR(X); hence LJ(B) ⊆ B. Then, by Lemma 4.5(b), LJ(B) is a base
for 〈B, ρ,B〉. Thus, using Theorem 4.4, we obtain

wa(〈B, ρ,B〉) ≤ |LJ(B)| = |B| = w(X) = wa(〈B′, ρ′,B′〉) ≤ wa(〈B, ρ,B〉).

So, wa(〈B, ρ,B〉) = wa(〈B′, ρ′,B′〉).

The next theorem is an analogue of Theorem 2.21.

Theorem 4.7. Let D be a base for an LCA 〈B, ρ,B〉 with infinite weight. Then there exists a subset D1 of D such
that |D1| = wa(〈B, ρ,B〉) and the sub-join-semilattice L of B, generated by D1, is a base for 〈B, ρ,B〉 with cardinality
wa(〈B, ρ,B〉). If D is, in addition, a sub-join-semilattice of B, then L ⊆ D.

Proof. Let (ϕ, 〈B′, ρ′,B′〉) be the LCA-completion of 〈B, ρ,B〉. As in the proof of Theorem 4.6, we set

X df
= Λa(〈B′, ρ′,B′〉) and suppose w.l.o.g. that 〈B, ρ,B〉 is an LC-subalgebra of Λt(X). Then, by Lemma 4.5(a),

D is a base for Λt(X). Thus, by Lemma 4.2, BD
df
= {int(F) | F ∈ D} is a base for X. Using Theorem 2.21, we

obtain a base B for X such that B ⊆ BD and |B| = w(X). Let D1
df
= {cl(U) | U ∈ B}. Then D1 ⊆ D ⊆ B and, by

Lemma 4.3, the sub-join-semilattice L of CR(X), generated by D1, is a base for Λt(X). Since L ⊆ B, Lemma
4.5(b) implies that L is a base for 〈B, ρ,B〉. Clearly, L coincides with the sub-join-semilattice of B, generated
by D1. Using Theorems 4.4 and 4.6, we obtain |L| = |D1| = |B| = w(X) = wa(〈B′, ρ′,B′〉) = wa(〈B, ρ,B〉).

Proposition 4.8. If 〈B, ρ,B〉 is an LCA and |B| ≥ ℵ0 then wa(〈B, ρ,B〉) ≥ ℵ0.

Proof. Let (ϕ, 〈B′, ρ′,B′〉) be the LCA-completion of 〈B, ρ,B〉. As in the proof of Theorem 4.6, we set

X df
= Λa(〈B′, ρ′,B′〉) and suppose w.l.o.g. that 〈B, ρ,B〉 is an LC-subalgebra of Λt(X). Then B ⊆ RC(X), and

thus |RC(X)| ≥ ℵ0. Assume that w(X) is finite. Then X is a discrete space and w(X) = |X|. Thus RC(X)
is finite, a contradiction. Therefore, w(X) ≥ ℵ0. From Theorems 4.4 and 4.6, we obtain wa(〈B, ρ,B〉) =
wa(〈B′, ρ′,B′〉) = wa(Λt(X)) = w(X) ≥ ℵ0.
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Theorem 4.9. Let X ∈ |HLC|. Then X is metrizable iff there exists a set Γ and a family {〈Bγ, ργ,Bγ〉 | γ ∈ Γ} of
complete LCAs such that

Λt(X) =
∏
{〈Bγ, ργ,Bγ〉 | γ ∈ Γ}

and, for each γ ∈ Γ, wa(〈Bγ, ργ,Bγ〉) ≤ ℵ0.

Proof. It is well known that a locally compact Hausdorff space is metrizable if and only if it is a topological
sum of locally compact Hausdorff spaces with countable weight (see, e.g., [3, p. 315] or [27, Theorem
5.1.27]). Since Λt is a duality functor, it converts the HLC-sums in DLC-products. Hence, our assertion
follows from the theorem cited above and Theorems 2.13 and 4.4.

Corollary 4.10. If 〈B, ρ,B〉 is a complete LCA and wa(〈B, ρ,B〉) ≤ ℵ0, then Λa(〈B, ρ,B〉) is a metrizable, separable,
locally compact space.

Notation 4.11. Let 〈A, ρ,B〉 be an LCA. We set

〈A, ρ,B〉S
df
= {a ∈ A | a�ρ a}.

We will write simply “AS” instead of “〈A, ρ,B〉S” when this does not lead to an ambiguity.

Theorem 4.12. Let 〈B, ρ,B〉 be an LCA and (ϕ, 〈B′, ρ′,B′〉) be its LCA-completion. Then the space Λa(〈B′, ρ′,B′〉)
is zero-dimensional if and only if the set BS ∩ B is a base for 〈B, ρ,B〉.

Proof. Set X df
= Λa(〈B′, ρ′,B′〉). As in the proof of Theorem 4.6, we may suppose w.l.o.g. that 〈B, ρ,B〉 is an

LC-subalgebra of Λt(X), and that B is dV-dense in Λt(X). Then, it follows from Lemma 4.2 that the set

BB
df
= {int(F) | F ∈ B} is a base for X.

(⇒) Let X be zero-dimensional. Then there exists a base B for X consisting of clopen compact sets. Clearly,
for every U ∈ B, we have U �ρX U. Since B is dV-dense in Λt(X), we obtain B ⊆ BS ∩ B. Therefore, BS ∩ B
is a base for X. Since BS ∩ B is closed under joins, Lemma 4.3 implies that BS ∩ B is a base for Λt(X). Then,
using Lemma 4.5(b), we obtain that BS ∩ B is a base for 〈B, ρ,B〉.
(⇐) Let x ∈ X and U be a neighborhood of x. Since BB is a base for X, there exist a, b ∈ B such that
x ∈ int(a) ⊆ a ⊆ int(b) ⊆ b ⊆ U; hence, a �ρ b. Thus, there exists some c ∈ BS ∩ B such that a ≤ c ≤ b.
Since c is clopen in X and x ∈ c ⊆ U, it follows that X has a base consisting of clopen sets, i.e. X is
zero-dimensional.

In the sequel, we will denote by K the Cantor set.
Note that RC(K) is isomorphic to the completion A of a free Boolean algebra A0 with ℵ0 generators,

Equivalently, RC(K) is the unique (up to isomorphism) atomless complete Boolean algebra A containing a
countable dense subalgebra A0 (see, e.g., [33, Example 7.24]). Defining in A a relation ρ by a(−ρ)b if and only
if there exists some c ∈ A0 such that a ≤ c ≤ b∗, we obtain (as we will see below) that 〈A, ρ〉 is a complete
NCA which is NCA-isomorphic to the complete NCA 〈RC(K), ρK〉. We will now present a generalization
of this construction.

We denote by Bool the category of all Boolean algebras and Boolean homomorphisms, by Stone the
category of all compact zero-dimensional Hausdorff spaces and continuous maps, and by

Sa : Bool −→ Stone

the Stone duality functor (see, e.g., [33]).

Theorem 4.13. Let A0 be a dense Boolean subalgebra of a Boolean algebra A. For all a, b ∈ A, set a �ρ b if there
exists some c ∈ A0 such that a ≤ c ≤ b. Then the following holds:
(a) 〈A, ρ〉 is an NCA, 〈A, ρ〉S = A0, A0 is the smallest base for 〈A, ρ〉 and w(〈A, ρ〉) = |A0|.

(b) If A is complete, then Λa(〈A, ρ〉) is homeomorphic to Sa(A0), and (i0, 〈A, ρ〉) is an NCA-completion of the NCA
〈A0, ρ

A0
s 〉, where i0 : A0 −→ A is the inclusion map.
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Proof. (a) It is easy to check that the relation ρ satisfies conditions (� 1)-(� 7). To establish (� 5) and (� 6),
use the fact that for every c ∈ A0 we have, by the definition of the relation�ρ, that c�ρ c. Hence, 〈A, ρ〉 is
an NCA. By definition of the relation�ρ, we obtain for c ∈ A, c�ρ c if and only if c ∈ A0; thus, 〈A, ρ〉S = A0.
Obviously, A0 is the smallest base for 〈A, ρ〉; hence, w(〈A, ρ〉) = |A0|.

(b) Let A be complete and set X df
= Sa(A0). Then, the Stone map s : A0 −→ CO(X) is a Boolean isomorphism.

Let i : CO(X) −→ RC(X) be the inclusion map. Then (i◦ s,RC(X)) is a completion of A0. We know that (i0,A)
is a completion of A0. Thus, there exists a Boolean isomorphism ϕ : A −→ RC(X) such that ϕ ◦ i0 = i ◦ s. We
will show thatϕ : 〈A, ρ〉 −→ 〈RC(X), ρX〉 is an NCA-isomorphism. Let a, b ∈ A and a�ρ b. Then, there exists
some c ∈ A0 such that a ≤ c ≤ b. Thus, ϕ(a) ≤ ϕ(c) ≤ ϕ(b). We have ϕ(A0) = CO(X); hence, ϕ(c) ∈ CO(X).
Therefore, ϕ(a) ⊆ int(ϕ(b)), i.e. ϕ(a) �ρX ϕ(b). Conversely, let F,G ∈ RC(X) and F �ρX G, i.e. F ⊆ int(G).
Since CO(X) is a base of X, F is compact and CO(X) is closed under finite unions, we obtain that there
exists some U ∈ CO(X) such that F ⊆ U ⊆ int(G) ⊆ G. Then, ϕ−1(U) ∈ A0 and ϕ−1(F) ≤ ϕ−1(U) ≤ ϕ−1(G).
Thus, by the definition of ρ, we obtain ϕ−1(F) �ρ ϕ−1(G). Therefore, ϕ : 〈A, ρ〉 −→ 〈RC(X), ρX〉 is an
NCA-isomorphism. Since 〈RC(X), ρX〉 = Λt(X) and Λa(ϕ) : Λa(Λt(X)) −→ Λa(〈A, ρ〉) is a homeomorphism,
we obtain that Λa(〈A, ρ〉) is homeomorphic to Sa(A0), using Theorem 2.10.

As we have seen in (a), A0 is a base for 〈A, ρ〉, and thus, A0 is dV-dense in 〈A, ρ〉. Hence, for proving that
(i0, 〈A, ρ〉) is an NCA-completion of 〈A0, ρ

A0
s 〉, we need only show that ρ ∩ (A0 × A0) = ρA0

s . So, let a, b ∈ A0.
Then,

a(−ρ)b⇐⇒ (∃c ∈ A0)(a ≤ c ≤ b∗).

Clearly, a(−ρ)b implies that a ∧ b = 0, i.e., a(−ρA0
s )b. Conversely, if a(−ρA0

s )b, then a ∧ b = 0; hence, a ≤ b∗.
Since a ≤ a ≤ b∗ and a ∈ A0, we obtain that a(−ρ)b. Therefore, for every a, b ∈ A0, we have aρA0

s b if and only
if aρb.

5. Algebraic density and weight

One may wonder why we do not define the notion of weight of a local contact algebra, or, more generally,
of a Boolean algebra, in a much simpler way, based on the following reasoning: if X is a semiregular space,
then RO(X) is a base for X; thus, by Theorem 2.21, RO(X) contains a subfamily B such that B is a base for
X and |B| = w(X); clearly, if X is semiregular, then a subfamily B of RO(X) is a base for X if and only if for
any U ∈ RO(X), we have U =

⋃
{V ∈ B | V ⊆ U}.

Having this in mind, it would be natural to define the weight of a Boolean algebra B as the smallest
cardinality of subsets M of B such that for each b ∈ B,

b =
∨
{x ∈M | x ≤ b}.

The obtained cardinal invariant is well known in the theory of Boolean algebras as the density or π-weight
(and even pseudoweight) of B and is denoted by πw(B) (see, e.g., [24, 33, 36]), but we will denote it by πwa(B).
So,

πwa(B) df
= min{|M| | (∀b ∈ B)(b =

∨
{x ∈M | x ≤ b})}.

It is easy to see that πwa(B) is equal to the smallest cardinality of a dense subset of B (see [33, Lemma 4.9.]).
Clearly, if B is a dense subalgebra of A, then πwa(B) = πwa(A); in particular, B has the same density as its
completion. Observe that a Boolean algebra has infinite π-weight if and only if it is infinite.

However, owing to the fact that in RO(X) the union is not equal to the join, πwa(RO(X)) may be strictly
smaller than the weight of a space X, even when X is semiregular. It is well known that πwa corresponds
to the topological notion of π-weight. Recall that a π–base for a topological space (X,T ) is a subfamily P of
T \ {∅} such that for every U ∈ T \ {∅} there exists some V ∈ Pwith V ⊆ U. The cardinal invariant π-weight
is defined as

πw(X) df
= min{|P| | P is a π–base for X}.
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It is easy to see that for a semiregular space X,

πw(X) = πwa(RO(X)) = πwa(RC(X)). (1)

Clearly, πw(X) ≤ w(X), and, as is well known, the inequality may be strict, even for compact Hausdorff
spaces. For example, considerNwith the discrete topology, and its Stone-Čech compactification βN. Since
{{n} | n ∈ N} is a π–base for βN, we obtain πw(βN) = πwa(RC(βN)) = ℵ0. On the other hand, it is well
known that w(βN) = 2ℵ0 [27]. The same example shows that πw is not isotone, since βN \N ⊆ βN, and

ℵ0 = πw(βN) � πw(βN \N) = 2ℵ0 .

Algebraically, the situation is as follows. Let B be the finite–cofinite algebra over N, and B its completion;
then, πwa(B) = πwa(B) = ℵ0. Now, B is isomorphic to the set algebra 2N which, in turn, is isomorphic to
RC(βN).

In the rest of the section we shall investigate the connections among wa, πwa, and their corresponding
topological notions.

Suppose that 〈B, ρ,B〉 is an LCA. Obviously, (LC3) implies that B is dense in B. If D is a dense subset of
B, then D∩B is a dense subset of B, since B is an ideal of B. Furthermore, every base for 〈B, ρ,B〉 is a dense
subset of B; hence,

πwa(B) ≤ wa(B, ρ,B).

Proposition 5.1. Let 〈B, ρ,B〉 be an LCA and M be a subset of B. Then the following conditions are equivalent:

1. M is a dense subset of 〈B, ρ,B〉.
2. For each a ∈ B+ there exists b ∈M+ such that b�ρ a.
3. For each a ∈ B+, a =

∨
{b ∈M | b�ρ a};

4. For each a ∈ B+, a =
∨
{b ∈M | b�ρ a}.

Proof. The implications

1. ⇐⇒ 2., 3. ⇐⇒ 4., and 4. ⇒ 1.

can be easily obtained using (LC3) or [33, Lemma 4.9.], or the fact that B is a dense subset of B. So we only
show 1. ⇒ 4. Let a ∈ B+; then a =

∨
{b ∈ M | b ≤ a} since M is dense in B. Let a1 ∈ B and b ≤ a1 for every

b ∈ M such that b �ρ a. Assume that a � a1. Then a ∧ a∗1 > 0. By (LC3) there exists some c ∈ M+ such that
c �ρ a ∧ a∗1, and the density of M implies that there is some b ∈ M+ with b ≤ c. Then b �ρ a ∧ a∗1. Thus
b�ρ a; hence, b ≤ a1 by the definition of b. Altogether, we obtain b ≤ a1 ∧ a∗1 = 0, a contradiction. It follows
that a ≤ a1; therefore, a =

∨
{b ∈M | b�ρ a}.

Definition 5.2. A topological space (X,T ) is called π-semiregular if the family RO(X) is a π-base for X.

Clearly, every semiregular space isπ-semiregular. The converse is not true. Indeed, the half–disc topology
from [42, Example 78] is a π-semiregular T2 1

2
-space which is not semiregular. On the other hand, there

exist spaces which are not π-semiregular: if X is an infinite set with the cofinite topology then X is not a
π-semiregular space since RO(X) = {∅,X}.

The following lemma from [24] is an analogue of Theorem 2.21:

Lemma 5.3. ([24]) If B is aπ-base for a space X then there exists aπ-baseB′ of X such thatB′ ⊆ B and |B′| = πw(X).

The next proposition is a generalisation of (1).

Proposition 5.4. If X is π-semiregular, then πw(X) = πwa(RC(X)).

Proof. Since X is π-semiregular, RO(X) is a π-base for X. Hence, by Lemma 5.3, there exists a π-base B
of X such that B ⊆ RO(X) and |B| = πw(X); obviously, B is a dense subset of RO(X) as well. Hence,
πw(X) ≥ πwa(RO(X)), and, clearly, πw(X) ≤ πwa(RO(X)) = πwa(RC(X)).
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Proposition 5.5. Let A be an infinite Boolean algebra. Then there exists a normal contact relation ρ on A such that
wa(〈A, ρ〉) = πwa(A) and 〈A, ρ〉S is a base for 〈A, ρ〉.

Proof. There exists a dense subset D of A with |D| = πwa(A). Note that πwa(A) ≥ ℵ0. Let B be the
Boolean subalgebra of A generated by D. Now, Proposition 4.13 implies that there exists a normal contact

relation ρ on A such that B df
= 〈A, ρ〉S is a base for 〈A, ρ〉 and wa(〈A, ρ〉) = |B|. Since |B| = |D|, we obtain

wa(〈A, ρ〉) = πwa(A).

Theorem 5.6. Let X be a π-semiregular space and πw(X) ≥ ℵ0. Then there exists a zero-dimensional compact
Hausdorff space Y with w(Y) = πw(X) such that the Boolean algebras RC(X) and RC(Y) are isomorphic.

Proof. Set τ df
= πw(X) and A df

= RC(X). Then, by Proposition 5.4, πwa(A) = τ. Now, by Proposition 5.5,
there exists a normal contact relation ρ on A such that wa(〈A, ρ〉) = τ and 〈A, ρ〉S is a base for 〈A, ρ〉. Using

Theorems 4.12 and 4.4, we see that Y df
= Λa(〈A, ρ〉) is a zero-dimensional compact Hausdorff space with

w(Y) = τ. Finally, by de Vries’ duality theorem, RC(Y) is isomorphic to A, i.e. to RC(X).

Theorem 5.6 is not true for general spaces with infiniteπ-weight. Indeed, let X be countably infinite with
the cofinite topology; then, πw(X) = ℵ0, and RC(X) = {∅,X}. On the other hand, if Y is a zero-dimensional
compact Hausdorff space with RC(Y) = {∅,Y} then 1 = w(Y) < ℵ0 = πw(X).
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[4] P. S. Alexandroff, P. S. Urysohn, Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch. Amsterdam 14, 1929.
[5] A. V. Arhangel’skii, V. I. Ponomarev, Fundamentals of General Topology: Problems and Exercises, Reidel, Dordrecht, 1984.

Originally published by Izdatelstvo Nauka, Moscow, 1974.
[6] B. Bennett, I. Düntsch, Axioms, Algebras and Topology, In: M. Aiello, I. Pratt-Hartmann, J. van Benthem (Eds.), Handbook of

Spatial Logics, Springer-Verlag, Berlin Heidelberg, 2007, 99–160.
[7] L. Biacino, G. Gerla, Connection structures: Grzegorczyk’s and Whitehead’s definition of point, Notre Dame Journal of Formal

Logic 37 (1996) 431–439.
[8] G. Birkhoff, Lattice Theory, Providence, Rhode Island, 1967.
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