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Abstract. Let M(X) be the ring of all real measurable functions on a measurable space (X,A ). In this
article, we show that every ideal of M(X) is a Z◦-ideal. Also, we give several characterizations of maximal
ideals of M(X), mostly in terms of certain lattice-theoretic properties of A . The notion of T-measurable
space is introduced. Next, we show that for every measurable space (X,A ) there exists a T-measurable
space (Y,A ′) such that M(X) � M(Y) as rings. The notion of compact measurable space is introduced. Next,
we prove that if (X,A ) and (Y,A ′) are two compact T-measurable spaces, then X � Y as measurable spaces
if and only if M(X) � M(Y) as rings.

1. Introduction

It is well known that RX is the collection of all real-valued functions on X, for every non-empty set X
and this with the (pointwise) addition and multiplication is a reduced commutative ring with identity. Let
(X,A ) be measurable space and M(X,A ), abbreviated M(X) be the set of all real measurable functions on
X, then M(X) is a subring of RX. Viertl in [18] shows that if X is a topological space and A is the set of
all Borel sets of X then every maximal ideal of M(X) is real if and only if A contains only a finite number
of elements if and only if every ideal of M(X) is fixed. Hager in [10] shows that if (X,A ) is a measurable
space, then M(X) is a regular ring in the sense of Von Neumann (i.e., for every given f ∈ M(X), there is an
element 1 in M(X) with f 21 = f ). Azadi et al. in [2] prove that if (X,A ) is a measurable space, then M(X)
is an ℵ0-self-injective ring. Moreover, if A contains all singletons, then M(X) has an essential socle. Amini
et al. in [1] generalized, simultaneously, the ring of real-valued continuous functions and the ring of real
measurable functions. Momtahan in [13] studied essential ideals, socle, and some related ideals of rings of
real measurable functions. He also studied the Goldie dimension of rings of measurable functions. In the
paper [6] Estaji and Mahmoudi Darghadam investigated rings of real measurable functions vanishing at
infinity on a measurable space.

Let X be any topological space andR be the space of real numbers with its usual topology. C(X) is the set
of all real-valued continuous functions with domain X (see [8, 11]). The main progress in the area of rings
of real-valued continuous functions defined over a topological space X was provided by three historical
subjects as follow:
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(1). Completely regular spaces were first discussed by Tychonoff [17]. We recall from [8, Theorem 3.9]
that for every topological space X, there exists a completely regular Hausdorff space Y and a continuous
mapping τ of X onto Y, such that the mapping 1 7→ 1oτ is an isomorphism of C(Y) onto C(X), which the
reduction to completely regular spaces is due to Stone [16, P. 460] and Čech [4, P. 826].
(2). For every f ∈ RX, Z( f ) := {x ∈ X : f (x) = 0} is called the zero-set of f . An ideal I of C(X) is called fixed
if the set

⋂
f∈I Z( f ) is non-empty; otherwise, I is called free. The maximal fixed ideals of the ring C(X) are

precisely the sets Mp = { f ∈ C(X) : f (p) = 0}, for every p ∈ X. The Gelfand-Kolmogoroff theorem generalizes
this assertion to the case of arbitrary maximal ideals of C(X) as follows: (Gelfand-Kolmogoroff). A subset
M of C(X) is a maximal ideal of C(X) if and only if there is a unique point p ∈ βX such that M coincides with
the set { f ∈ C(X) : p ∈ clβX Z( f )} (see [7, 9])
(3). Again from [8, Theorem 3.9] we recall that two compact spaces X and Y are homeomorphic if and only
if rings C(X) and C(Y) are isomorphic. This is due to Gelfand and Kolmogoroff (see [7]).

It is worth noting that measurable spaces have been studied by many authors. We think that it would
be of interest to others. The present paper is devoted to placing these results in a measurable space context.
We study the three above-mentioned subjects for the ring of all real measurable functions on a measurable
space. The paper is organized as follows:

Section 2 of this paper is a prerequisite for the rest of the paper. The definitions and results of this section
are taken from [15].

In Section 3, the notion of fixed ideal in ZA -ideal in the ring of all real measurable functions on a
measurable space are introduced and we show that for every measurable space (X,A ) and every ideal I of
M(X), I is a z-ideal à la Mason of M(X) if and only if I is a ZA -ideal of M(X) if and only if I is a Z◦-ideal of
M(X) (see Proposition 3.12). Also, we prove that every ideal in M(X) is a z-ideal (see Proposition 3.13).

In Section 4, we show that a subset M of M(X) is a maximal ideal if and only if there exists a unique
J ∈ ΣId(A ) such that M = MJ, where MJ = { f ∈ M(X) : coz( f ) ∈ J} (see Proposition 4.3). Next, we study the
relations between maximal free ideals of M(X) and prime ideals of A (see Proposition 4.5). Also, we prove
that for every subset M of M(X), M is a fixed maximal ideal of M(X) with

⋃
f∈M coz( f ) ∈ A if and only if

there exists a prime element P of A such that M = MP, where MP = { f ∈M(X) : coz( f ) ⊆ P} (see Proposition
4.6). Finally, we show that a compact measurable (X,A ) is determined by fixed maximal ideals of M(X)
(see Proposition 4.11).

In Section 5, the notion of T-measurable space is introduced and we show that for every measurable space
(X,A ), there is a T-measurable space (Y,A ′) and an onto function θ : X → Y such that η : M(Y) → M(X)
given by 1 7→ 1 ◦ θ is an isomorphism (see Proposition 5.6). In Proposition 5.7, we give an algebraic
characterization of T-measurable spaces in terms of maximal ideals and this implies that if (X,A ) is a
T-measurable space, then for every element P of A , P is a prime element of A if and only if |X \ P| = 1
(see Corollary 5.8). Also, we show that a measurable space (X,A ) is a T-measurable space if and only if for
every prime ideal P in M(X), |

⋂
f∈P Z( f )| ≤ 1 (see Proposition 5.10).

In Section 6, we prove that for every compact measurable space (X,A ) there is a compact T-measurable
space (Y,A ′) such that M(X) � M(Y) as rings (see Corollary 6.2). Also, for every compact T-measurable
space (X,A ), we show that X � max(M(X)) as measurable spaces. If (X,A ) and (Y,A ′) are two compact
T-measurable spaces, then X � Y as measurable spaces if and only if M(X) � M(Y) as rings (see Proposition
6.7 and Corollary 6.8).

2. Preliminaries

Here, we recall some definitions and results from the literature on measurable spaces and partially
ordered sets. For further information see [15] on measurable-theoretic concepts and [5, 14] on lattice-
theoretic concepts.

2.1. measurable spaces

Let us recall some general notation from [15]. Let X be a nonempty set. A collection A of subsets of a
set X is said to be a σ-algebra in X if A has the following three properties:

(i) X ∈ A .
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(ii) If A ∈ A , then Ac
∈ A , where Ac is the complement of A relative to X.

(iii) If {An}n∈N ⊆ A , then
⋃

n∈N An ∈ A .

If A is a σ-algebra in X, then X or, for clarity (X,A ) is called a measurable space, and the members of A are
called the measurable sets in X. If X is a measurable space, Y is a topological space, and f is a mapping of X
into Y, then f is said to be measurable provided that f−1(V) is a measurable set in X for every open set V in
Y. If X is a measurable space, then the set of all measurable maps from X into R is denoted M(X), and the
members of M(X) are called the real measurable functions on X, where R denotes the set of all real numbers
with the ordinary topology.

We recall from [15, Theorem 1.10] that if A is any collection of subsets of X, there exists the smallest
σ-algebra A ∗ in X such that A ⊆ A ∗. This A ∗ is called the σ-algebra generated by A and it is denoted by
< A >. Since the intersection of any family of σ-algebras in X is a σ-algebra in X, we conclude that < A >
is intersection of the family of all σ-algebras A in X which containA. Hence < A >=< Ac >=< A∪Ac >,
whereAc := {Ac : A ∈ A}. Also, ifA,B ⊆ P(X) withA ⊆ B , then < A >⊆< B >.

The set M(X) of all real measurable functions on a measurable space (X,A ) will be provided with an
algebraic structure and an order structure. Since their definitions do not involve measurity, we begin by
imposing these structures on the collection RX of all functions from X into the set R of real numbers.
Addition, multiplication, joint, and meet in RX are defined by the formulas ( f + 1)(x) = f (x) + 1(x),
( f1)(x) = f (x)1(x), ( f ∨1)(x) = max{ f (x), 1(x)}, and ( f ∧1)(x) = min{ f (x), 1(x)}. It is obvious that (RX; +, .,∨,∧)
is an f -ring, this conclusion is the immediate consequence of the corresponding statements about the field
R. Also, (M(X); +, .,∨,∧) is an sub- f -ring of RX.

2.2. partially ordered sets

Let us recall some general notation from [5, 14]. A poset L is a lattice if and only if for every a and b in L
both sup{a, b} and inf{a, b} exist (in L). For subset X of a poset L and x ∈ L we write:

1. ↓X = {y ∈ L : y ≤ x for some x ∈ X}.
2. ↑X = {y ∈ L : y ≥ x for some x ∈ X}.
3. ↓x = ↓{x}.
4. ↑x = ↑{x}.

A nonempty subset J of a lattice L is called an ideal of L if x ∨ y ∈ J and ↓x ⊆ J, for all x, y ∈ J. A nonempty
subset F of a lattice L is called a filter of L if x ∧ y ∈ F and ↑x ⊆ F, for all x, y ∈ F. We say an element a of
a lattice L is a top element (bottom element) of L if x ≤ a (a ≤ x), for all x ∈ X. We denote the top element
and the bottom element of a lattice L by > and ⊥ respectively. A lattice L is said to be bounded if there exist
the top element and the bottom element in the lattice. An element a of a bounded lattice L is said to be
compact if a =

∨
S, S ⊆ L, implies a =

∨
T for some finite subset T of S. A bounded lattice L is said to be

compact whenever its top element > is compact. A lattice L is said to be distributive lattice if the binary
operations ∨ and ∧ hold distributive property, i.e.; for any x, y, z ∈ L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). An element p of a bounded distributive lattice L is said to be prime if p < >
and a ∧ b ≤ p imply that a ≤ p or b ≤ p. An element m of a bounded lattice L is said to be maximal (or dual
atom) if m < > and m ≤ x ≤ > imply that m = x or x = >. As it is well known, every maximal element
in a bounded distributive lattice is prime. We write ΣL and max(L) for the set of all prime elements and
maximal elements of L , respectively. A σ-frame is a lattice L with countable joins

∨
n, finite meets ∧, top

>, bottom ⊥ and satisfying x ∧
∨

n xn =
∨

n(x ∧ xn), for n ∈ J, a countable index set, x, xn ∈ L. A frame is a
complete lattice L in which the distributive law x ∧

∨
S =

∨
s∈S(x ∧ s) holds for all x ∈ L and S ⊆ L. The

frame of open subsets of a topological space X is denoted by OX.
If A is a σ-algebra in X, then the following statements hold.

(1) (A ,⊆) is a Boolean algebra.
(2) (A ,⊆) is a σ-frame.
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3. Filters in σ-algebras

Consider f ∈ RX, the set f−1(0) will be called the zero-set of f . We shall find it convenient to denote this
set by Z( f ), or, for clarity, by ZX( f ):

Z( f ) = ZX( f ) = {x ∈ X : f (x) = 0}.

Any set that is a zero-set of some function in RX is called a zero-set in X. For any subset A from M(X), we
write ZA [A] = {Z( f ) : f ∈ A} and we put ZA [X] = ZA [M(X)].

For every f , 1 ∈ RX, we have
(1) Z( f ) = Z(| f |) = Z( f n), every n ∈N.
(2) Z( f1) = Z( f ) ∪ Z(1).
(3) Z( f 2 + 12) = Z(| f | + |1|) = Z( f ) ∩ Z(1).

Remark 3.1. Let (X,A ) be a measurable space and A ∈ A , then the characteristic function χA : X → R is a
real measurable function on X with Z(χA ) = Ac.

Proposition 3.2. If (X,A ) is a measurable space, then ZA [X] = A .

Proof. Let f be a real measurable function on the measurable space (X,A ), then Z( f ) = f−1[0,+∞) ∩
f−1(−∞, 0] ∈ A . Therefore, ZA [X] ⊆ A . By Remark 3.1, A ⊆ ZA [X] and so ZA [X] = A .

Let (X,A ) be a measurable space. Then we have
⋂

n∈N Z( fn) ∈ ZA [X] and
⋃

n∈N Z( fn) ∈ ZA [X], for every
{ fn}n∈N ⊆M(X). Therefore, ZA [X] is a σ-frame.

Proposition 3.3. Let f be a real measurable function on a measurable space (X,A ). The element f is a unit element
of M(X) if and only if Z( f ) = ∅.

Proof. Necessity. By hypothesis, there is a 1 ∈ M(X) such that f1 = 1, then Z( f ) ∪ Z(1) = Z( f1) = Z(1) = ∅,
which implies that Z( f ) = ∅.

Sufficiency. We define 1 : X → R given by 1(x) = 1
f (x) , for every x ∈ X. Since Z( f ) = ∅, we conclude that

1 ∈ RX. We have

1−1(r,+∞) =
(
{x ∈ X : r f (x) < 1} ∩ f−1(0,+∞)

)
∪

(
{x ∈ X : r f (x) > 1} ∩ f−1(−∞, 0)

)
,

for every r ∈ R. Since r f ∈ M(X), we infer that 1−1(r,+∞) ∈ A , for every r ∈ R. Therefore, 1 ∈ M(X) and
f1 = 1. Hence f is a unit element of M(X).

Definition 3.4. Let (X,A ) be a measurable space. A proper filter of A is called a ZA -filter on X.

In the following proposition, we study relations between proper ideals and ZA -filters.

Proposition 3.5. Let (X,A ) be a measurable space. In M(X), the following statements hold.
(1) If I is a proper ideal in M(X), then the family Z[I] = {Z( f ) | f ∈ I} is a ZA -filter on X.
(2) If F is a ZA -filter on X, then the family Z−1[F ] = { f | Z( f ) ∈ F } is a proper ideal in M(X).

Proof. (1). Consider f , 1 ∈ I and h ∈M(X). By hypothesis, f 2 + 12, f h ∈ I, then Z( f )∩Z(1) = Z( f 2 + 12) ∈ Z[I]
and if Z( f ) ⊆ Z(h), then Z(h) = Z( f ) ∪ Z(h) = Z( f h) ∈ Z[I]. Also, since I contains no unit, we conclude from
Proposition 3.3 that ∅ < Z[I].

(2). Let J = Z−1[F ]. By Definition ZA -filter and Proposition 3.3, J contains no unit. Let f , 1 ∈ J, and let
h ∈M(X). Then:

Z( f − 1) = Z( f + (−1)) ≥ Z( f ) ∩ Z(−1)) ≥ Z( f ) ∩ Z(1) ∈ F

and hence Z( f − 1) ∈ F , by Definition ZA -filter. Therefore, f − 1 ∈ Z−1[F ]. Moreover,

Z(h f ) = Z(h) ∪ Z(h) ⊇ Z( f ) ∈ F ,

and hence Z( f h) ∈ F , by Definition ZA -filter. Therefore f h ∈ Z−1[F ]. This completes the proof that J is a
proper ideal in M(X).
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Let (X,A ) be a measurable space. A ZA -filter F on a set X is said to be an ZA -ultrafilter if it is maximal
(with respect to inclusion) in the family of all ZA -filters on X.

In the following proposition, we study relations between maximal ideals and ZA -ultrafilters.

Proposition 3.6. Let (X,A ) be a measurable space. In M(X), the following statements hold.
(1) If M is a maximal ideal in M(X), then Z[M] is a ZA -ultrafilter on X.
(2) If F is a ZA -ultrafilter on X, then Z−1[F ] is a maximal ideal in M(X).

The mapping Z is one-one from the set of all maximal ideals in M(X) onto the set of all ZA -ultrafilters on X.

Proof. Since ZA and Z−1
A

preserve inclusion, the result follows at once from Proposition 3.5.

Let A ∈ A and F ⊆ A , we say A meets F if and only if A ∩ B , ∅, for all B ∈ F . It is evident that
1. A ZA -filter F on X is a ZA -ultrafilter if and only if A meets F , it implies that A ∈ F , for every A ∈ A .
2. If F and G are disjoint ZA -ultrafilter on X, then there are elements A ∈ F and B ∈ G such that

A ∩ B = ∅.
3. If {Fi}i∈I is a nonempty collection of ZA -filters on X, then

⋂
i∈I Fi is a ZA -filter on X.

4. Every ZA -filter on X is contained in a ZA -ultrafilter on X .

Proposition 3.7. Let M be a maximal ideal in M(X). If Z( f ) meets every member of Z[M], then f ∈M.

Proof. The set Z[M] is a ZA -ultrafilter on X, by Proposition 3.6, and so, if Z( f ) meets every member of Z[M],
then Z( f ) ∈ Z[M]. Therefore f ∈ Z−1[Z[M]]; moreover, M ⊆ Z−1[Z[M]], and M is a maximal ideal, so that
f ∈M = Z−1[Z[M]].

Proposition 3.8. Let (X,A ) be a measurable space. For every p ∈ X,

Mp := { f ∈M(X) : f (p) = 0}

is a maximal ideal in M(X).

Proof. By Proposition 3.3, it is clear that Mp is a proper ideal in M(X). Consider f ∈ M(X) \ Mp with
f (p) = r , 0. From 1 − 1

r f ∈M(X) and (1 − 1
r f )(p) = 0, we infer that 1 − 1

r f ∈Mp, which implies that Mp is a
maximal ideal in M(X).

Recall the notion of a z-ideal of a ring R as was introduced by Mason in [12]. In lattice theory this notion is
known as “z-ideals à la Mason”. Denote by max(R) the set of all maximal ideals of the ring R. For a ∈ R, let

M(a) = {M ∈ max(R) | a ∈M}.

An ideal I of a ring R is called a z-ideal à la Mason if wheneverM(a) ⊆M(b) and a ∈ I, then b ∈ I.

Lemma 3.9. Let (X,A ) be a measurable space. In M(X), the following statements are equivalent, for every
f , 1 ∈M(X).

(1) M( f ) ⊆M(1).
(2) Z( f ) ⊆ Z(1).
(3) Ann( f ) ⊆ Ann(1).

Proof. (1)⇒(2). We have

p ∈ Z( f )⇒ f ∈Mp ∈M( f ) ⊆M(1)⇒ 1 ∈Mp ⇒ p ∈ Z(1).

(2)⇒(3). We have

h ∈ Ann( f )⇒ X = Z(h f ) = Z(h) ∪ Z( f ) ⊆ Z(h) ∪ Z(1) = Z(h1)⇒ h ∈ Ann(1).

(3)⇒(1). Consider M ∈M( f ). Since

Z(χZ( f ) f ) = Z(χZ( f ) ) ∪ Z( f ) = (X \ Z( f )) ∪ Z( f ) = X,

we conclude that χZ( f ) ∈ Ann( f ) ⊆ Ann(1), which implies that χZ( f )1 = 0 ∈ M. Since Z(χ2
Z( f )

+ f 2) = ∅, we
conclude from Proposition 3.3 that 1 ∈M, we infer that M ∈M(1). ThereforeM( f ) ⊆M(1).
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For each element a of a ring R, let Pa be the intersection of all minimal prime ideals containing a and by
convention, we put the intersection of an empty set of ideals equal to R. We recall from [3] that a proper
ideal I of a ring R is called a Z◦-ideal if for each a ∈ I we have Pa ∈ I. Also,

Proposition 3.10. [3] Let R be a reduced ring and I be a proper ideal in R, then the following are equivalent.

(1) I is a Z◦-ideal in R.
(2) Pa = Pb and a ∈ I, imply that b ∈ I.
(3) Ann(a) = Ann(b) and a ∈ I, imply that b ∈ I.
(4) a ∈ I implies that Ann(Ann(a)) ⊆ I.

Definition 3.11. An ideal I of the ring M(X) is called a ZA -ideal if whenever Z( f ) ⊆ Z(1), f ∈ I and 1 ∈M(X),
then 1 ∈ I.

Proposition 3.12. Let (X,A ) be a measurable space. If I is an ideal in M(X), then the following statements are
equivalent.

(1) I is a z-ideal à la Mason of M(X).
(2) I is a ZA -ideal of M(X).
(3) I is a Z◦-ideal of M(X).

Proof. By Lemma 3.9 and Proposition 3.10, it is evident.

Proposition 3.13. Let (X,A ) be a measurable space. Every ideal in M(X) is a z-ideal.

Proof. Let I be an ideal of M(X). Suppose that f , 1 ∈ M(X) with Z( f ) ⊆ Z(1) and f ∈ I. We define h : X→ R
by h(x) = 1

f (x) , if x ∈ coz( f ) and 0 otherwise. Then h ∈ M(X) and 1 = 1h f ∈ I. This completes the proof, by
Proposition 3.12.

The following proposition shows that the primeity of a ideal in M(X) coincides with its semiprimeity.

Proposition 3.14. Let (X,A ) be a measurable space. Let I be a proper ideal in M(X). Then the following statements
are equivalent.

(1) I is a prime ideal.
(2) I contains a prime ideal.
(3) For every f , 1 ∈M(X), if f1 = 0, then f ∈ I or 1 ∈ I.
(4) For every f ∈M(X), there is a zero set belonging to Z[I] on which f does not change sign.

Proof. (1)⇒(2) and (2)⇒(3) are trivial.
(3)⇒(4). We observe that for every f ∈M(X),

( f ∨ 0)( f ∧ 0) = f +(− f−) = 0.

Then, by hypothesis, either f ∨ 0 or f ∧ 0 is in I , and hence Z( f ∨ 0) or Z( f ∧ 0) is in Z[I]. However, f does
not change sign on one of them, since

Z( f ∧ 0) ∩ f−1(−∞, 0) = f−1[0,+∞) ∩ f−1(−∞, 0) = ∅

and
Z( f ∨ 0) ∩ f−1(0,+∞) = f−1(−∞, 0] ∩ f−1(0,+∞) = ∅.

(4)⇒(1). Given 1h ∈ I, consider the function |1| − |h|. By hypothesis, there is a zero set Z of Z[I] on which
|1| − |h| is non-negative, say, Z ∩ (|1| − |h|)−1(−∞, 0) = ∅. Then there is an element f in I such that Z = Z( f ), it
implies that Z( f ) ∩ Z(1) ⊆ Z(h). From

Z((h1)2 + f 2) = Z(h1) ∩ Z( f ) = [Z(h) ∩ Z( f )] ∪ [Z(1) ∩ Z( f )] ⊆ Z(h)

and (h1)2 + f 2
∈ I, we conclude that h ∈ I, since, by Propositions 3.12 and 3.13, I is the ZA -ideal in M(X).

Thus, I is prime.
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4. Maximal ideals in M(X)

Let (X,A ) be a measurable space. For each I ∈ Id(A ), the ideal MI is defined by

MI = { f ∈M(X) : coz( f ) ∈ I}.

Lemma 4.1. Let (X,A ) be a measurable space. For each I, J ∈ Id(A ), MI = MJ if and only if I = J.

Proof. Necessity. If a ∈ I then χa ∈MI, which implies that a = coz(χa) ∈ J. Therefore, I = J.
Sufficiency. It is clear.

Remark 4.2. Let (X,A ) be a measurable space. Consider I ∈ ΣId(A ) and I ( J ∈ Id(A ). Then there exists
an element a in J \ I and since a ∧ a′ = ⊥ ∈ I ∈ ΣId(A ), we conclude that a′ ∈ I ⊆ J, which implies that
> = a ∨ a′ ∈ J and so, J = A . Therefore,

ΣId(A ) = max(Id(A )).

In the following proposition, we investigate the relations between maximal ideals of M(X) and maximal
ideals of A .

Proposition 4.3. Let (X,A ) be a measurable space. A subset M of M(X) is a maximal ideal if and only if there exists
a unique J ∈ ΣId(A ) such that M = MJ.

Proof. Necessity. Let M be a maximal ideal of M(X). We set I = {a ∈ A : a ≤ coz( f ) for some f ∈M}. By
Proposition 3.3, A , I ∈ Id(A ) and since Id(A ) is a compact frame, we conclude that J ∈ ΣId(A ) such that
I ⊆ J. From> < J, we infer that M ⊆MJ , M(X), and in view of the maximality of M we must have M = MJ.
By Lemma 4.1, there exists a unique J ∈ ΣId(A ) such that M = MJ.

Sufficiency. Consider J ∈ ΣId(A ) and Q ∈ Id(M(X)) with MJ ( Q. Then there exists an element f in
Q \MJ. From coz( f ) < J, we infer from Remark 4.2 that there exists an element a in J such that

coz(χa + f 2) = coz(χa) ∨ coz( f ) = a ∨ coz( f ) = >,

which implies that χa + f 2
∈ Q is a unit element of M(X) and so, Q = M(X). Therefore, MJ is a maximal

ideal of M(X).

Definition 4.4. Let I be an ideal in M(X). If
⋂

f∈I Z( f ) is nonempty, we call I a fixed ideal; if
⋂

f∈I Z( f ) = ∅,
then I is a free ideal. Also, ifK ⊆ A with

⋂
K is nonempty, we callK a fixed subset of A ; if

⋂
K = ∅, thenK

is a free subset of A .

In the following proposition, we investigate the relations between fixed maximal ideals of M(X) and prime
ideals of A .

Proposition 4.5. Let (X,A ) be a measurable space. For every subset M of M(X), M is a fixed maximal ideal of M(X)
if and only if there exists a prime ideal P of A such that

⋃
P ( X and M = MP.

Proof. Necessity. Let M be a fixed maximal ideal of M(X). Then, by Proposition 4.3, M = MP for some P of
ΣId(A ). Since for every A ∈ P, χA ∈MP, we infer that

⋃
P =

⋃
f∈MP coz( f ) ( X.

Sufficiency. Consider P ∈ ΣId(A ) with
⋃

P ( X. Then, by Proposition 4.3, MP is a maximal ideal in M(X).
Since for every A ∈ P, χA ∈MP, we conclude that

⋃
f∈MP coz( f ) =

⋃
P ( X, which implies that MP is a fixed

maximal ideal of M(X).

Let (X,A ) be a measurable space. For each A ∈ A with A ( X, define the subset MA of M(X) by

MA := { f ∈M(X) : coz( f ) ⊆ A}

In the following proposition, we investigate the relations between fixed maximal ideals of M(X) and
prime elements of A .
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Proposition 4.6. Let (X,A ) be a measurable space. For every subset M of M(X), M is a fixed maximal ideal of M(X)
with

⋃
f∈M coz( f ) ∈ A if and only if there exists a prime element P of A such that M = MP.

Proof. Necessity. We claim that P :=
⋃

f∈M coz( f ) is a prime element of A . If not, there exist V,W ∈ A such
that V ∩W ⊆ P, V * P and V * P, then χX\V , χX\W ∈M and this implies X = (X \V) ∪ (X \W) ∪ (V ∩W) = P,
but this is a contradiction to the fact that M is a fixed maximal ideal of M(X), which proves the claim. By
the maximality of M, we have M = MP, since M ⊆MP (M(X).

Sufficiency. Consider P ∈ ΣA . From ↓P ∈ ΣId(A ), we conclude from Proposition 4.3 that MP = M↓P is a
maximal ideal in M(X). Since χP ∈ M↓P, we conclude that

⋃
f∈M↓P coz( f ) = P ( X, which implies that MP is

a fixed maximal ideal in M(X), by Proposition 4.5.

As an immediate consequence we now have the following corollary.

Corollary 4.7. Let (X,A ) be a measurable space. For every subset M of M(X) with
⋃

f∈M coz( f ) ∈ A , M is a fixed
prime ideal of M(X) if and only if M is a fixed maximal ideal of M(X).

A measurable space (X,A ) is called a compact measurable space if A is a compact lattice.

Definition 4.8. LetK be a nonempty family of sets. K is said to have the finite intersection property provided
that the intersection of any finite number of members ofK is nonempty.

Remark 4.9. Let (X,A ) be a measurable space. It is evident that every subfamily of A with the finite
intersection property is contained in some ZA -ultrafilter.

Proposition 4.10. Let (X,A ) be a measurable space. Then (X,A ) is a compact measurable space if and only if every
family of measurable subsets of X with the finite intersection property has nonempty intersection.

Proof. Necessity. Let K be any family of measurable subsets of X with the finite intersection property. If⋂
K = ∅, then

⋃
A∈K Ac = X and from {Ac : A ∈ K} ⊆ A , we conclude that there exist A1, . . . ,An ∈ K such

that
⋃n

i=1 Ac
i = X, by hypothesis. Then

⋂n
i=1 Ai = ∅, and this is a contradiction to the fact thatK has the finite

intersection property.
Sufficiency. Let B ⊆ A such that X =

⋃
B. Suppose that for every finite subset A of B, X ,

⋃
A, then

K := {Bc : B ∈ B} ⊆ A have the finite intersection property, but
⋂
K = ∅, and this is a contradiction. Hence

there exists a finite subsetA of B such that X =
⋃
A. Therefore, (X,A ) is a compact measurable space.

Our next result shows that compact measurable spaces admit a simple characterization in terms of fixed
ideals and fixed ZA -filters.

Proposition 4.11. Let (X,A ) be a measurable space. The following statements are equivalent.

(1) (X,A ) is compact.
(2) Every proper ideal in M(X) is fixed.
(3) Every maximal ideal in M(X) is fixed.
(4) Every ZA -filter in A is fixed.
(5) Every ZA -ultrafilter in A is fixed.

Proof. The equivalence of (2) with (4) and (3) with (5) are evident, by Propositions 3.5 and 3.6.
(1)⇒(2). Let I be a proper ideal in M(X). Then, by Proposition 3.5, Z[I] is ZA -filter in A . Since Z[I] has

the finite intersection property, we conclude from Proposition 4.9 that
⋂

Z[I] , ∅, which implies that I is a
fixed ideal.

(2)⇒(3). Evident.
(3)⇒(1). Suppose that K ⊆ A has the finite intersection property. Then, by Remark 4.9, there exists a

ZA -ultrafilter F such that K ⊆ F . Therefore, by Proposition 3.6, ∅ ,
⋂
F ⊆

⋂
K and we conclude from

Proposition 4.10 that (X,A ) is compact.
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5. T-measurable spaces

In this section, we show that in the study of rings of measurable functions on a measurable space there
is no need to deal with measurable spaces that are not T-measurable.

Definition 5.1. Let X be an abstract set, and consider an arbitrary subfamily C of RX. The weak measurable
space induced by C on X is defined to be the smallest σ-algebra in X such that all functions in C are measurable.

Let C ⊆ RX andA := { f−1(O) : f ∈ C, O ∈ OR}. Then (X, < A >) is the weak measurable space induced
by C on X.

Lemma 5.2. Let (X,A ) be a measurable space, Y , ∅ and A ⊆ P(Y). Suppose that f : X → Y is a function and
< A > is the σ-algebra generated byA on Y. Then

{ f−1(A) : A ∈ A} ⊆ A

if and only if
{ f−1(B) : B ∈< A >} ⊆ A .

Proof. It is evident, because f−1(
⋃
λ∈Λ Bλ) =

⋃
λ∈Λ f−1(Bλ) , f−1(

⋂
λ∈Λ Bλ) =

⋂
λ∈Λ f−1(Bλ) and f−1(Bc) =

( f−1(B))c, for every {Bλ}λ∈Λ ⊆ P(Y) and every B ∈ P(Y).

Proposition 5.3. Let (X,A ) be a measurable space, Y , ∅ and C ⊆ RY. Let A ′ be the weak measurable space
induced by C on Y and f : X→ Y be a function. Then for every 1 ∈ C, 1 ◦ f ∈M(X) if and only if for every A ∈ A ′,
f−1(A) ∈ A .

Proof. Necessity. Let O ∈ OR, then f−1(1−1(O)) ∈ A . Therefore, By Definition 5.1 and Lemma 5.2, f−1(A) ∈ A
for every A ∈ A ′.

Sufficiency. Let O ∈ OR, then 1−1(O) ∈ A ′, which implies that f−1(1−1(O)) ∈ A . Therefore, 1 ◦ f ∈ M(X)
for every 1 ∈ C.

Definition 5.4. A measurable space (X,A ) is said to be T-measurable if whenever x and y are distinct points
in X, there is a measurable set containing one and not the other (see [19]).

Lemma 5.5. Let (X,A ) be a measurable space. Define x ∼ x′ in X to mean that f (x) = f (x′) for every f ∈ M(X).
Then the following statements hold.

(1) The relation ∼ is an equivalence relation.
(2) If A ∈ A then A =

⋃
x∈A[x]∼.

(3) For each f ∈ M(X), associate a function h f ∈ R
X/∼ given by h f ([x]∼) = f (x). If AX/∼ is the weak measurable

space induced by {h f : f ∈M(X)} on X/ ∼, then (X/ ∼,AX/∼) is a T-measurable space.

Proof. (1). It is evident.
(2). Consider x ∈ A ∈ A , then, by Proposition 3.2, there exists an element f in M(X) such that z( f ) = A.

If y ∈ [x], then 1(x) = 1(y) for all 1 ∈M(X), which implies that f (y) = f (x) = 0, hence y ∈ z( f ) = A.
(3). By the statement (2), (X/ ∼,AX/∼) is a measurable space. Consider [x], [x′] ∈ X/ ∼ with [x] , [x′].

Then there exists an element f in M(X) such that f (x) , f (x′), which implies that h f ([x]) , h f ([x′]). Consider

r :=
|h f ([x]) − h f ([x′])|

3
.

Thus, by Definition 5.1,
[x] ∈ h−1

f (h f ([x]) − r, h f ([x]) + r) ∈ AX/∼,

[x′] ∈ h−1
f (h f ([x′]) − r, h f ([x′]) + r) ∈ AX/∼

and
h−1

f (h f ([x]) − r, h f ([x]) + r) ∩ h−1
f (h f ([x′]) − r, h f ([x′]) + r) = ∅.

Therefore, (X/ ∼,AX/∼) is a T-measurable space.
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The next proposition eliminates any reason for considering rings of real measurable functions on other than
T-measurable spaces.

Proposition 5.6. For every measurable space (X,A ) there is a T-measurable space (Y,A ′) and an onto function
θ : X→ Y such that η : M(Y)→M(X) given by 1 7→ 1 ◦ θ is an isomorphism and the following statements hold.

(1) For every A ∈ A , θ(A) ∈ A ′.
(2) For every B ∈ A ′, θ−1(B) ∈ A .

Proof. Suppose ∼ is the same equivalence relation Lemma 5.5. We put Y := X/ ∼ and A ′ := AX/∼. Then, by
Lemma 5.5, (Y,A ′) is a T–measurable space. Define θ : X → Y by θ(x) = [x]∼. Hence θ is an onto function
and h f ◦ θ = f for any f ∈ M(X), where h f is the same function Lemma 5.5. Then η : M(Y) → M(X) given
by 1 7→ 1 ◦ θ is an onto function and we have

η(11 + 12)(x) = ((11 + 12) ◦ θ)(x) = (11 ◦ θ)(x) + (12 ◦ θ)(x) = (η(11) + η(12))(x)

and
η(1112)(x) = ((1112) ◦ θ)(x) = (11 ◦ θ)(x)(12 ◦ θ)(x) = (η(11)η(12))(x),

for every 11, 12 ∈M(Y) and every x ∈ X. Since θ is onto, we infer that

ker(η) = {1 ∈M(Y) : ∀x ∈ X, 1(θ(x)) = {0}} = {1 ∈M(X) : 1(Y) = {0}} = {0},

which implies that η is an isomorphism, i.e., M(X) � M(Y) as rings.
If A ∈ A then, by Proposition 3.2, there is an element f in M(X) such that A = z( f ), which implies that

z(h f ) = {[x] : h f ([x]) = 0} = {[x] : f (x) = 0} = {[x] : x ∈ z( f )} = θ(z( f )).

Therefore, by Proposition 3.2, θ(A) ∈ A ′. Thus, the statement (1) holds.
Since A ′ is the weak measurable space induced by {h f : f ∈ M(X)} on Y and for every f ∈ M(X),

h f ◦ θ = f , we conclude from Lemma 5.3 that for every B ∈ A ′, θ−1(B) ∈ A . Thus, the statement (2)
holds.

As a consequence of the foregoing theorem, algebraic or lattice properties that hold for all M(X), with
T-measurable space X, hold just as well for all M(X), with arbitrary measurable space X.

Now, we give an algebraic characterization of T-measurable spaces in terms of maximal ideals.

Proposition 5.7. Let (X,A ) be a measurable space. Then the following statements are equivalent.

(1) The measurable space (X,A ) is a T-measurable space.
(2) If x and y are distinct points in X, then Mx , My.
(3) For every maximal ideal M in M(X), |

⋂
f∈M Z( f )| ≤ 1.

Proof. (1)⇒(2). Assume that x and y are distinct points in X. By hypothesis, there exists a measurable set A
in X such that x ∈ A and y < A. By Remark 3.1, χA ∈My \Mx.

(2)⇒(3). Let M be a maximal ideal in M(X) with |
⋂

f∈M Z( f )| ≥ 2. If x and y are distinct points in⋂
f∈M Z( f ), then M ⊆ Mx and M ⊆ My. Since M is maximal, we conclude from Proposition 3.8 that

My = M = Mx, and this is a contradiction.
(3)⇒(1). Assume that x and y are distinct points in X. Then, by Proposition 3.8,

⋂
f∈Mx

Z( f ) = {x} and⋂
f∈My

Z( f ) = {y}, which imply that there exists an element f in Mx \My. Since Z( f ) ∈ A , x ∈ Z( f ) and
y < Z( f ), we infer that (X,A ) is a T-measurable space.

Corollary 5.8. Let (X,A ) be a T-measurable space. For every element P of A , P is a prime element of A if and only
if |X \ P| = 1.

Proof. Necessity. By Propositions 4.6 and 5.7, |X \ P| = |
⋂

f∈MP
z( f )| = 1.

Sufficiency. It is clear.
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We recall that a ring R is called a Gelfand ring or a PM-ring if each of its proper prime ideals is contained
in a unique maximal ideal. The following proposition shows that M(X) is a Gelfand ring.

Proposition 5.9. Let (X,A ) be a measurable space. Every prime ideal in M(X) is contained in a unique maximal
ideal.

Proof. Let P be a prime ideal. We know that every ideal is contained in at least one maximal ideal. If M and
M′ are distinct maximal ideals such that P ⊆ M ∩M′, then, by Proposition 3.14, M ∩M′ is a prime ideal,
since M and M′ are ZA -ideals. This is a contradiction to the fact that M ∩M′ is not prime.

The following proposition shows that T-measurable spaces have a nice characterization in terms of prime
ideals.

Proposition 5.10. Let (X,A ) be a measurable space. Then the measurable space (X,A ) is a T-measurable space if
and only if for every prime ideal P in M(X), |

⋂
f∈P Z( f )| ≤ 1.

Proof. Necessity. Let P be a prime ideal in M(X) such that x, y ∈
⋂

f∈P Z( f ) with x , y. Then, by hypothesis
and Proposition 5.7, Mx and My are distinct maximal ideals such that P ⊆ Mx ∩My. This is a contradiction
to the fact that every prime ideal in M(X) is contained in a unique maximal ideal.

Sufficiency. Let M be a maximal ideal in M(X), then M is a prime ideal in M(X), which implies that
|
⋂

f∈M Z( f )| ≤ 1, by hypothesis. Therefore, by Proposition 5.7, (X,A ) is a T-measurable space.

Definition 5.11. [5] Let L be a distributive lattice and F be a filter of L. The filter F is called prime filter if
I , L and x ∨ y ∈ F implies x ∈ F or y ∈ F.

In the following proposition, we study relations between prime ideals and prime ZA -filters.

Proposition 5.12. Let (X,A ) be a measurable space. In M(X), the following statements hold.

(1) If P is a prime ideal in M(X), then Z[P] is a prime ZA -filter on X.
(2) If F is a prime ZA -filter on X, then Z−1[F ] is a prime ideal in M(X).

The mapping Z is one-one from the set of all prime ideals in M(X) onto the set of all prime ZA -filters on X.

Proof. (1). Consider f , 1 ∈M(X) with Z( f1) = Z( f )∪Z(1) ∈ Z[P]. Since Pz := Z−1[Z[P]] is a ZA -ideal in M(X)
and Z( f1) ∈ Z[P] = Z[Pz], we conclude that f1 ∈ Pz. From P ⊆ Pz and Proposition 3.14, we infer that Pz is a
prime ideal in M(X), which implies that f ∈ Pz or 1 ∈ Pz. Hence Z( f ) ∈ Z[Pz] = Z[P] or Z(1) ∈ Z[Pz] = Z[P]
and, by Proposition 3.5, the proof is now complete.

(2). Consider f , 1 ∈ M(X) with f1 ∈ Z−1[F ], then Z( f ) ∪ Z(1) = Z( f1) ∈ F, which implies that Z( f ) ∈ F
or Z(1) ∈ F, by hypothesis. Hence f ∈ Z−1[F ] or 1 ∈ Z−1[F ] and, by Proposition 3.5, the proof is now
complete.

6. On compact measurable spaces

In this section, we study the third subject. We begin with the following lemma.

Lemma 6.1. Let (X,A ) be a compact measurable space. Suppose θ and (Y,A ′) are the same symptoms of Proposition
5.6. Then the following statements hold.

(1) If A is a compact element of A , then θ(A) is a compact element of A ′.
(2) If B ∈ A ′ is a compact element of A ′, then θ−1(B) is a compact element of A .

Proof. Let A be a compact element of A and {Bλ : λ ∈ Λ} ⊆ A ′ such that θ(A) ⊆
⋃
λ∈Λ Bλ. From

A ⊆ θ−1(
⋃
λ∈Λ Bλ) =

⋃
λ∈Λ θ

−1(Bλ), we conclude that there exists a finite subset Λ′ of Λ such that A ⊆⋃
λ∈Λ′ θ

−1(Bλ). Hence θ(A) ⊆ θ(
⋃
λ∈Λ′ θ

−1(Bλ)) =
⋃
λ∈Λ′ Bλ. Therefore, θ(A) is a compact element of A ′.

Thus, the statement (1) holds.
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Let B ∈ A ′ be a compact element of A ′ and {Aλ : λ ∈ Λ} ⊆ A such that θ−1(B) ⊆
⋃
λ∈Λ Aλ. Since θ is the

onto function, we infer that
B = θ(θ−1(B)) ⊆ θ(

⋃
λ∈Λ

Aλ) =
⋃
λ∈Λ

θ(Aλ),

which implies that there is a finite subset Λ′ of Λ such that B ⊆
⋃
λ∈Λ′ θ(Aλ), in other words, θ−1(B) ⊆⋃

λ∈Λ′ Aλ. Therefore, θ−1(B) is a compact element of A . Thus, the statement (2) holds.

Corollary 6.2. For every compact measurable space (X,A ) there is a compact T-measurable space (Y,A ′) such that
M(X) � M(Y), as rings.

Proof. It is evident, by Proposition 5.6 and Lemma 6.1.

Remark 6.3. Let (X,A ) be a compact measurable space. Consider A ∈ A and {Bλ}λ∈Λ ⊆ A with A ⊆⋃
λ∈Λ Bλ. From Ac

∈ A and X = Ac
∪

⋃
λ∈Λ Bλ, we infer that there exists a finite subset Λ0 of Λ such that

X = Ac
∪

⋃
λ∈Λ0

Bλ, which implies that A ⊆
⋃
λ∈Λ0

Bλ. Therefore, for every A ∈ A , A is a compact element
of A .

Corollary 6.4. Let (X,A ) be a measurable space and A,B ∈ A . The following statements hold.

(1) If A or B is a compact element of A , then A ∩ B is a compact element of A .
(2) If A and B are compact elements of A , then A ∪ B is a compact element of A .
(3) A is a compact element of A if and only if ↑Ac is a compact lattice.
(4) If A is a compact element of A then B is a compact element of A , for every B ∈ ↓A.

Proof. It is evident.

Throughout this paper, we put
F ( f ) := {M ∈ max(M(X)) : f ∈M},

for every f ∈M(X). Hence F (1) = ∅ and F (0) = max(M(X)). Also, by Propositions 4.11 and 5.7, if (X,A ) is
a compact T-measurable space, then

F ( f ) = {Mx : x ∈ z( f )},

for every f ∈M(X).

Proposition 6.5. For every compact T-measurable space (X,A ),(
max(M(X)),

{
F ( f ) : f ∈M(X)

} )
is a T-measurable space.

Proof. Consider f ∈M(X) and { fn}n∈N ⊆M(X). Therefore,

F ( f )c = {Mx : x ∈ coz( f )} = {Mx : x ∈ z(χz( f ) )} = F (χz( f ) )

and ⋃
n∈N

F ( fn) =
⋃
n∈N

{Mx : x ∈ z( fn)} = {Mx : x ∈
⋃
n∈N

z( fn)} = F (χ(
⋂

n∈N coz( fn))).

Also, if M1 and M2 are distinct points in max(M(X)), then there exists an element f ∈ M(X) such that
f ∈ M1 \M2, which implies that M1 ∈ F ( f ) and M2 < F ( f ). Hence

(
max(M(X)),

{
F ( f ) : f ∈M(X)

} )
is a

T-measurable space.

Definition 6.6. Let (X1,A1) and (X2,A2) be two measurable spaces. We say that (X1,A1) and (X2,A2) are
homeomorphic, provided that there exists a one to one and onto function f : X1 → X2 such that

A ∈ A1 ⇔ f (A) ∈ A2,

for every A ∈ A1.
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If we denote ”(X1,A1) is homeomorphic with (X2,A2)” by X � Y, then the relationship� is an equivalence
relation on any set of measurable spaces.

Proposition 6.7. For every compact T-measurable space (X,A ), X � max(M(X)) as measurable spaces.

Proof. We define
ϕ : X −→ max(M(X))

x 7−→ Mx.

By Propositions 4.11 and 5.7, ϕ is a one-one correspondence and also, for every f ∈M(X), we have

ϕ[z( f )] = {Mx : x ∈ z( f )} = F ( f )

and
ϕ−1(F ( f )) = {x ∈ X : x ∈ z( f )} = z( f ).

Therefore, by Proposition 3.2, X � max(M(X)) as measurable spaces.

The measure defined on max(M(X)) in Proposition 6.7, is called the Stone measure on max(M(X)).

Corollary 6.8. If (X,A ) and (Y,A ′) are two compact T-measurable spaces, then X � Y as measurable spaces if and
only if M(X) � M(Y) as rings.

Proof. By Proposition 6.7, it is obvious.
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