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Abstract. The purpose of this paper is to propose and investigate a stochastic SIQR epidemic model with
saturated incidence rate. Firstly, we give some conditions to guarantee the stochastic SIQR epidemic model
has a unique global positive solution. Then we verify that the disease in this model will die out exponentially
if Rs

0 < 1, while the disease will be persistent in the mean if Rs
0 > 1. Moreover, by constructing suitable

Lyapunov functions, we establish some sufficient conditions for the existence of an ergodic stationary
distribution for the model. Finally, we provide some numerical simulations to illustrate the analytical
results.

1. Introduction

Since Kermack and Mckendrick [1] firstly proposed an epidemic model in 1927, the study of infectious
diseases via mathematical models have become important and popular. Up to now, a lot of researchers have
made significant progress on both spreading and controlling of infectious diseases, such as measles, plague,
influence, chickenpox, smallpox, tuberculosis, hepatitis B and so on [2–4]. One of the famous diseases model
is the SIR epidemic model, which includes three compartments: the susceptible compartment S, the infected
compartment I and the removed compartment R. However, for some diseases, especially most childhood
diseases, quarantine to the infective individuals is a common effective control strategy. In order to describe
the various disease-progression stages, an extra class, the class of quarantine to the infective individuals
(denoted by Q), should be added to the system. The model is called the SIQR model, and SIQR models
have been studied by some researchers [5–9].

As we all know, the incidence rate of a disease plays a key role in the study of mathematical epidemiology.
In the literature, the bilinear incidence rate βSI is frequently used [10–12]. However, when the number
of susceptible individuals is large, the inhibition effect due to the crowding of the infective individuals
was not considered in the bilinear incidence rate. Capasso and Serio [13] introduced a saturated incidence
1(I)S = SI

1+αI into the cholera epidemic model to avoid the unboundedness of the incidence rate. Saturated
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incidence may be more realistic for many cases [14–17]. For more realism and interest, in this paper, we
assume that the infections are transmitted through the saturated incidence rate. Thus, the corresponding
SIQR model has the following form:

dS
dt

= Λ − µS −
βSI

1 + αI
,

dI
dt

=
βSI

1 + αI
− (µ + γ + δ + θ)I,

dQ
dt

= δI − (µ + ε + θ)Q,

dR
dt

= γI + εQ − µR,

(1)

where S,I,Q,R denote the numbers of susceptible, infected, quarantined and recovered individuals, respec-
tively. All the parameters in the model are positive constants and have the following features: Λ is the
constant recruitment rate of S corresponding to births and immigration; µ denotes the natural death rate; β
is the transmission rate; θ denotes the disease-caused death rate of I and Q; γ and ε represent the recover
rates from compartment I, Q to R, respectively; δ denotes the removal rate from I to Q. In system (1), the
basic reproduction number is R0 =

βΛ
µ(µ+γ+δ+θ) .According to the theory in [18], we can obtain that the system

(1) has the following properties: If R0 < 1, then system (1) has an unique and globally asymptotically stable
disease-free equilibrium E0 = (S0, 0, 0, 0) = ( δµ , 0, 0, 0); If R0 > 1, then E0 is unstable and system (1) has an
endemic equilibrium E∗ = (S∗, I∗,Q∗,R∗) which is globally asymptotically stable, where

S∗ =
αΛ + µ + γ + δ + θ

µα + β
, I∗ =

µ(R0 − 1)
µα + β

, Q∗ =
µδ(R0 − 1)

(µα + β)(µ + ε + θ)

and

R∗ =
(γ(µ + ε + θ) + εδ)(R0 − 1)

(µα + β)(µ + ε + θ)
.

In fact, due to the uncertainty and random phenomena in the nature, epidemic models are inevitably
affected by the environmental fluctuations. Therefore, it is more suitable to include stochastic perturbations
in the deterministic models. Many scholars have proposed different approaches to introduce stochastic
perturbations into differential equations to reveal the effects of environmental fluctuations[9, 19–25]. Nev-
ertheless, to our knowledge, none of the aforementioned SIQR epidemic models with saturated incidence
rate considers stochastic fluctuation. In this paper, we adopt the approach used in [22] to assume that the
natural death rate fluctuate around some average value owing to environmental fluctuation and the inten-
sity of stochastic perturbations for each compartments is proportional to their subpopulations respectively.
Thus we propose the following stochastic SIQR epidemic model with saturated incidence rate:

dS =

[
Λ − µS −

βSI
1 + αI

]
dt + σ1SdB1(t),

dI =

[
βSI

1 + αI
− (µ + γ + δ + θ)I

]
dt + σ2IdB2(t),

dQ =
[
δI − (µ + ε + θ)Q

]
dt + σ3QdB3(t),

dR =
[
γI + εQ − µR

]
dt + σ4RdB4(t),

(2)

where Bi(t) is standard one-dimensional independent Brownian motion and σ2
i > 0 represents the intensity

of the white noise for i = 1, 2, 3, 4.
Throughout this paper, let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0

satisfying the usual conditions, that is, it is rightly continuous and increasing while F0 contains all P−null
sets). If f (t) is an integral function on [0,∞), we denote 〈 f (t)〉 = 1

t

∫ t

0 f (r)dr. The subsequent part of this
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paper is as follows: In section 2, we prove the existence and uniqueness of a global positive solution in
system (2). In section 3, we obtain sufficient conditions for extinction of the disease. In section 4, we also
establish sufficient conditions for the persistence in the mean of the disease. In section 5, we investigate the
existence of an ergodic stationary distribution, which means that the disease will prevail and can not die
out in the population. In section 6, some numerical simulations are presented to illustrate the theoretical
results. The paper ends with conclusions in Section 7.

2. Existence and Uniqueness of Positive Solution

In order to analyze the dynamical behavior of an epidemic model, the first concern is whether the
solution is global and positive. In this section, we shall use the Lyapunov function method used in [11] to
prove the existence and uniqueness of a global positive solution in system (2).

Theorem 2.1. For any given initial value (S(0), I(0),Q(0),R(0)) ∈ R4
+, there is a unique positive solution (S(t), I(t),

Q(t),R(t)) of system (2) on t ≥ 0 and the solution will remain inR4
+ with probability one, namely (S(t), I(t),Q(t),R(t)) ∈

R4
+ for all t ≥ 0 almost surely (a.s.).

Proof. Since the coefficients of system (2) satisfy the local Lipschitz condition, we know that, for any initial
value (S(0), I(0),Q(0),R(0)) ∈ R4

+, there is a unique local solution (S(t), I(t),Q(t),R(t)) on t ∈ [0, τe], where τe
is the explosion time [26]. To show this solution is global, we only need to prove that τe = ∞ a.s. Let m0 > 0
be sufficiently large such that each component of (S(0), I(0),Q(0),R(0)) all lies in the interval [ 1

m0
,m0]. For

each integer m ≥ m0, define the following stopping time

τm = inf
{
t ∈ [0, τe) : min{S(t), I(t),Q(t),R(t)} ≤

1
m

or max{S(t), I(t),Q(t),R(t)} ≥ m
}
.

Throughout this paper, we let inf ∅ = ∞ (∅ denotes the empty set). Obviously, τm is an increasing function
as m → ∞. We also let τ∞ = limm→∞ τm. Then τ∞ ≤ τe a.s. If τ∞ = ∞ a.s. is true, then τe = ∞ a.s. and
(S(t), I(t),Q(t),R(t)) ∈ R4

+ a.s. for all t ≥ 0. That is to say, in order to show this assertion, we only need to
prove τ∞ = ∞ a.s. If the assertion is false, then there is a pair of constants T > 0 and ε̄ ∈ (0, 1) such that
P{τm ≤ T} ≥ ε̄ for each integer m ≥ m0. Let us define a C2-function from R4

+ to R+ by

U(S, I,Q,R) = (S − 1 − ln S) + (I − 1 − ln I) + (Q − 1 − ln Q) + (R − 1 − ln R).

According to the general Itô formula (see, for example, Theorem 4.2.1 of [26]), we have

dU(S, I,Q,R) = LU(S, I,Q,R)dt + σ1(S − 1)dB1(t) + σ2(I − 1)dB2(t) + σ3(Q − 1)dB3(t) + σ4(R − 1)dB4(t),

where LU : R4
+ → R+ is defined by

LU(S, I,Q,R) =
(
1 −

1
S

) (
Λ − µS −

βSI
1 + αI

)
+

(
1 −

1
I

) ( βSI
1 + αI

− (µ + γ + δ + θ)I
)

+

(
1 −

1
Q

) (
δI − (µ + ε + θ)Q

)
+

(
1 −

1
R

) (
γI + εQ − µR

)
+
σ2

1 + σ2
2 + σ2

3 + σ2
4

2

= Λ + 4µ + γ + δ + ε + 2θ − µ(S + R) − (µ + θ)(I + Q) −
Λ

S
+

βI
1 + αI

−
βS

1 + αI

−
δI
Q
−
γI
R
−
εQ
R

+
σ2

1 + σ2
2 + σ2

3 + σ2
4

2

≤ Λ + 4µ + γ + δ + ε + 2θ +
β

α
+
σ2

1 + σ2
2 + σ2

3 + σ2
4

2
:= K

and K is a positive constant. Thus,

dU(S, I,Q,R) ≤ Kdt + σ1(S − 1)dB1(t) + σ2(I − 1)dB2(t) + σ3(Q − 1)dB3(t) + σ4(R − 1)dB4(t).
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For any m ≥ m0, integrating the above inequality on both sides from 0 to τm ∧ T and taking expectation
yield

EU(S(τm ∧ T), I(τm ∧ T),Q(τm ∧ T),R(τm ∧ T)) ≤ U(S(0), I(0),Q(0),R(0)) + E

∫ τm∧T

0
Kdt

≤ U(S(0), I(0),Q(0),R(0)) + KT
< ∞.

Let Ωm = {τm ≤ T}. Then we have P(Ωm) ≥ ε̄. Note that, for every ω ∈ Ωm, one of the components in
(S(τm ∧ T), I(τm ∧ T),Q(τm ∧ T),R(τm ∧ T)) equals either m or 1

m . Consequently,

U(S(0), I(0),Q(0),R(0)) + KT ≥ P{τm ≤ T}min{m − 1 − ln m,
1
m
− 1 + ln m}

≥ ε̄min{m − 1 − ln m,
1
m
− 1 + ln m}.

Letting m→∞ leads to the contradiction

∞ > U(S(0), I(0),Q(0),R(0)) + KT = ∞.

This completes the proof.

3. Extinction

When investigating epidemic models, we are interested in the threshold value which tells us when the
disease will extinct and when the disease will persist in a population. In this section, we consider sufficient
conditions for the extinction of the disease in system (2).

Lemma 3.1. For any initial value (S(0), I(0),Q(0),R(0)) ∈ R4
+, the solution (S(t), I(t),Q(t),R(t)) of system (2) has

the following properties:

lim
t→∞

S(t)
t

= 0 , lim
t→∞

I(t)
t

= 0 , lim
t→∞

Q(t)
t

= 0 , lim
t→∞

R(t)
t

= 0 a.s.

and
lim sup

t→∞

ln S(t)
t
≤ 0 , lim sup

t→∞

ln I(t)
t
≤ 0 , lim sup

t→∞

ln Q(t)
t
≤ 0 , lim sup

t→∞

ln R(t)
t
≤ 0 a.s.

Furthermore, if µ >
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)
/2, then

lim
t→∞

∫ t

0 S(r)dB1(r)

t
= 0 , lim

t→∞

∫ t

0 I(r)dB2(r)

t
= 0 , lim

t→∞

∫ t

0 Q(r)dB3(r)

t
= 0 , lim

t→∞

∫ t

0 R(r)dB4(r)

t
= 0 a.s.

The proof of Lemma 3.1 is similar to Lemmas 2.1 and 2.2 of [27], so we omit it here.

Theorem 3.2. Assume µ >
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)
/2. Let (S(t), I(t),Q(t),R(t)) be a solution of system (2) with initial

value (S(0), I(0),Q(0),R(0)) ∈ R4
+. If

Rs
0 :=

βΛ

µ(µ + γ + δ + θ +
σ2

2
2 )
< 1,

then

lim sup
t→∞

ln I(t)
t
≤

(
µ + γ + δ + θ +

σ2
2

2

)
(Rs

0 − 1) < 0 a.s.

In other words, the disease will die out exponentially with probability one.
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Proof. From the first two equations of system (2), we have

S(t) − S(0)
t

+
I(t) − I(0)

t
= Λ − µ〈S(t)〉 − (µ + γ + δ + θ)〈I(t)〉 +

σ1

t

∫ t

0
S(r)dB1(r) +

σ2

t

∫ t

0
I(r)dB2(r),

which implies that

〈S(t)〉 =
Λ

µ
−
µ + γ + δ + θ

µ
〈I(t)〉 + ϕ(t), (3)

where ϕ(t) is defined by

ϕ(t) =
σ1

µt

∫ t

0
S(r)dB1(r) +

σ2

µt

∫ t

0
I(r)dB2(r) −

S(t) − S(0)
µt

−
I(t) − I(0)

µt
.

Noting Lemma 3.1, we can derive limt→∞ ϕ(t) = 0 a.s. Using Itô formula to system (2) yields

d(ln I) =

[
βS

1 + αI
− (µ + γ + δ + θ) −

σ2
2

2

]
dt + σ2dB2(t).

Integrating this from 0 to t and then dividing by t on both side, we get

ln I(t) − ln I(0)
t

=
β

t

∫ t

0

S(r)
1 + αI(r)

dr −
(
µ + γ + δ + θ +

σ2
2

2

)
+
σ2

t
B2(t)

≤ β〈S(t)〉 −
(
µ + γ + δ + θ +

σ2
2

2

)
+
σ2

t
B2(t)

=
βΛ

µ
−
β(µ + γ + δ + θ)

µ
〈I(t)〉 + βϕ(t) −

(
µ + γ + δ + θ +

σ2
2

2

)
+
σ2

t
B2(t)

≤

(
µ + γ + δ + θ +

σ2
2

2

)
(Rs

0 − 1) + βϕ(t) +
σ2

t
B2(t).

By the strong law of large numbers for martingales [28], one can obtain

lim
t→∞

B2(t)
t

= 0 a.s.

Taking the superior limit of both sides and note that Rs
0 < 1, we have

lim sup
t→∞

ln I(t)
t
≤

(
µ + γ + δ + θ +

σ2
2

2

)
(Rs

0 − 1) < 0 a.s.

This implies that limt→∞ I(t) = 0 a.s. In other words, the disease will die out exponentially with probability
one.

Moreover, when limt→∞ I(t) = 0 a.s. , it is easy to prove that limt→∞Q(t) = 0 a.s. and limt→∞ R(t) = 0 a.s.
by system (2). This completes the proof.

Remark 3.3. Comparing with the basic reproduction number of deterministic model (1), the parameter Rs
0 in stochastic

model (2) is less than R0, which reveals that the extinction of the disease I in stochastic model (2) is much easier than
that in the corresponding deterministic model (1). Moreover, if σ2 = 0, then Rs

0 = R0, which means that we generalize
the results of deterministic system.
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4. Persistence in the Mean

In this section, we shall establish sufficient conditions for the persistence in the mean of the disease.

Definition 4.1. [27] System (2) is said to be persistent in the mean if lim inft→∞
1
t

∫ t

0 I(r)dr > 0 a.s.

Theorem 4.2. Assume µ >
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)
/2. Let (S(t), I(t),Q(t),R(t)) be a solution of system (2) with initial

value (S(0), I(0),Q(0),R(0)) ∈ R4
+. If Rs

0 > 1, then

lim inf
t→∞

1
t

∫ t

0
I(r)dr ≥

µ(µ + γ + δ + θ +
σ2

2
2 )

(β + αµ)(µ + γ + δ + θ)
(Rs

0 − 1) > 0 a.s.

Proof. By Itô formula, we can get

d(ln I + αI) =

[
βS − (µ + γ + δ + θ +

σ2
2

2
) − α(µ + γ + δ + θ)I

]
dt + σ2(1 + αI)dB2(t).

Integrating this equality from 0 to t and then dividing by t on both sides, it follows from (3) that

ln I(t) − ln I(0)
t

+ α
I(t) − I(0)

t

= β〈S(t)〉 − (µ + γ + δ + θ +
σ2

2

2
) − α(µ + γ + δ + θ)〈I(t)〉 +

σ2

t
B2(t) +

ασ2

t

∫ t

0
I(r)dB2(r)

=
βΛ

µ
−
β(µ + γ + δ + θ)

µ
〈I(t)〉 + βϕ(t) − (µ + γ + δ + θ +

σ2
2

2
) − α(µ + γ + δ + θ)〈I(t)〉

+
σ2

t
B2(t) +

ασ2

t

∫ t

0
I(r)dB2(r)

= (µ + γ + δ + θ +
σ2

2

2
)(Rs

0 − 1) −
(µ + γ + δ + θ)(β + αµ)

µ
〈I(t)〉 + βϕ(t) +

σ2

t
B2(t)

+
ασ2

t

∫ t

0
I(r)dB2(r).

Obviously, this equality can be rewritten as follows:

1
t

∫ t

0
I(r)dr =

1
l

[
(µ + γ + δ + θ +

σ2
2

2
)(Rs

0 − 1) + βϕ(t) +
σ2

t
B2(t) +

ασ2

t

∫ t

0
I(r)dB2(r)

−
ln I(t) − ln I(0)

t
− α

I(t) − I(0)
t

]
,

where l = 1
µ (β + αµ)(µ + γ + δ + θ). By Lemma 3.1 and Theorem 3.2, taking the limit inferior on both sides

of the last equality, we obtain

lim inf
t→∞

1
t

∫ t

0
I(r)dr ≥

µ(µ + γ + δ + θ +
σ2

2
2 )

(β + αµ)(µ + γ + δ + θ)
(Rs

0 − 1) a.s.

Consequently, due to the condition Rs
0 > 1, the proof of Theorem 4.2 is completed.

Remark 4.3. From Theorems 3.2 and 4.2, we can conclude that when the noise is so small such that max
(
σ2

1, σ
2
2, σ

2
3, σ

2
4

)
<

2µ, then the value of Rs
0 which is below 1 or above 1 will lead to the disease to go extinct or persist in the mean.

Therefore, Rs
0 can be considered as the threshold value of the stochastic model (2).
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5. Stationary Distribution and Ergodicity

In the previous section, we have discussed the extinction and persistence in the mean of disease under
the condition max

(
σ2

1, σ
2
2, σ

2
3, σ

2
4

)
< 2µ. In this section, we get rid of the condition max

(
σ2

1, σ
2
2, σ

2
3, σ

2
4

)
< 2µ,

and focus on the existence of an ergodic stationary distribution, which means that the disease will prevail.
Let X(t) be a homogeneous Markov process in Rn

+ described by the following stochastic equation:

dX(t) = b(X)dt +

k∑
r=1

1r(X)dBr(t).

The diffusion matrix is defined as follows:

A(x) = (ai j(x)), ai j(x) =

k∑
r=1

1i
r(x)1 j

r(x).

Lemma 5.1. [29] The Markov process X(t) has a unique ergodic stationary distribution π(·) if there exists a bounded
domain D ⊂ Rn with regular boundary Γ and

A1: there is a positive number M such that

d∑
i, j=1

ai j(x)ξiξ j ≥M|ξ|2, ∀x ∈ D, ∀ξ ∈ Rn.

A2: there exists a nonnegative C2-function V such that LV is negative for any Rn
\ D, where L denotes the

differential operator defined by

L =

n∑
i=1

bi(x)
∂
∂xi

+
1
2

n∑
i, j=1

ai j(x)
∂2

∂xi∂x j
.

Then

Px

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Rn

f (x)π(dx)
}

= 1

for all x ∈ Rn, where f (·) is a function integrable with respect to the measure π.

Theorem 5.2. Assume

R̂s
0 :=

βΛ(
µ +

σ2
1

2

) (
µ + γ + δ + θ +

σ2
2

2

) > 1.

Then, for any initial value (S(0), I(0),Q(0),R(0)) ∈ R4
+, system (2) has a unique stationary distribution π(·) and it

has the ergodic property.

Proof. To prove Theorem 5.2, we only need to verify conditions A1 and A2 in Lemma 5.1 hold. First, we
verify A2. Set

b := 2

µ +
σ2

1

2


1
2


 βΛ(
µ + γ + δ + θ +

σ2
2

2

)


1
2

−

µ +
σ2

1

2


1
2

 .
Then it is easy to see that b > 0. Now we construct a C2-function V : R4

+ → R+ as follows:

V(S, I,Q,R) = p(− ln S − c ln I) + (S + I + Q + R)(ρ+1)
− ln S − ln Q − ln R

:= pV1 + V2 + V3 + V4 + V5,
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where

c =
µ +

σ2
1

2

µ + γ + δ + θ +
σ2

2
2

,

positive constants p and ρ satisfy the following conditions

−pb + A + 3µ + ε + θ +
σ2

1 + σ2
2 + σ2

3

2
≤ −2, (4)

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)
< µ, (5)

and A is a constant which will be determined later. It is easy to check that

lim inf
k→∞,(S,I,Q,R)∈R4

+\Uk

V(S, I,Q,R) = +∞,

where Uk =
(

1
k , k

)
×

(
1
k , k

)
×

(
1
k , k

)
×

(
1
k , k

)
. In addition, V(S, I,Q,R) is a continuous function. Hence, V(S, I,Q,R)

must have a minimum point (S̄0, Ī0, Q̄0, R̄0) in the interior of R4
+. Therefore, we define a nonnegative C2-

function V̄ in the following form

V̄(S, I,Q,R) = V(S, I,Q,R) − V(S̄0, Ī0, Q̄0, R̄0).

Applying the general Itô formula [26], we have

LV1 = −

(
Λ

S
+

cβS
1 + αI

)
+

βI
1 + αI

+ µ +
σ2

1

2
+ c(µ + γ + δ + θ) +

cσ2
2

2

≤ −2
(

cβΛ
1 + αI

) 1
2

+
βI

1 + αI
+ µ +

σ2
1

2
+ c(µ + γ + δ + θ) +

cσ2
2

2

= −2


βΛ

(
µ +

σ2
1

2

)
(
µ + γ + δ + θ +

σ2
2

2

)
(1 + αI)


1
2

+ 2

µ +
σ2

1

2

 +
βI

1 + αI

= −2

µ +
σ2

1

2


1
2


 βΛ(
µ + γ + δ + θ +

σ2
2

2

)
(1 + αI)


1
2

−

µ +
σ2

1

2


1
2

 +
βI

1 + αI
.

Similarly, one has

LV2 = (ρ + 1)(S + I + Q + R)ρ(Λ − µS − (µ + θ)I − (µ + θ)Q − µR) +
1
2
ρ(ρ + 1)

×(S + I + Q + R)ρ−1(σ2
1S2 + σ2

2I2 + σ2
3Q2 + σ2

4R2)

≤ (ρ + 1)(S + I + Q + R)ρ(Λ − µ(S + I + Q + R)) +
1
2
ρ(ρ + 1)(S + I + Q + R)ρ+1

×

(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)
= (ρ + 1)Λ(S + I + Q + R)ρ − (ρ + 1)

[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
(S + I + Q + R)ρ+1

≤ A −
1
2

(ρ + 1)
[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
(S + I + Q + R)ρ+1

≤ A −
1
2

(ρ + 1)
[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
(Sρ+1 + Iρ+1 + Qρ+1 + Rρ+1),
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where

A = sup
S+I+Q+R∈(0,∞)

{
Λ(ρ + 1)(S + I + Q + R)ρ −

1
2

(ρ + 1)

×

[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
(S + I + Q + R)ρ+1

}
< ∞.

Moreover, we can obtain

LV3 = −
Λ

S
+ µ +

βI
1 + αI

+
σ2

1

2
, LV4 = −

δI
Q

+ µ + ε + θ +
σ2

3

2
, LV5 = −

γI
R
−
εQ
R

+ µ +
σ2

4

2
.

Hence, one has

LV̄ ≤ −2p

µ +
σ2

1

2


1
2


 βΛ(
µ + γ + δ + θ +

σ2
2

2

)
(1 + αI)


1
2

−

µ +
σ2

1

2


1
2


+

(p + 1)βI
1 + αI

−
1
2

(ρ + 1)
[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
(Sρ+1 + Iρ+1 + Qρ+1 + Rρ+1)

−
Λ

S
−
δI
Q
−
γI
R
−
εQ
R

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
.

Consider the compact subset

D =
{
ε1 ≤ S ≤

1
ε1
, ε1 ≤ I ≤

1
ε1
, ε2 ≤ Q ≤

1
ε2
, ε2 ≤ R ≤

1
ε2

}
,

where ε1, ε2 are sufficiently small positive constants such that the following conditions hold

−
Λ

ε1
+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1, (6)

−pb̄ + (p + 1)βε1 + A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1, (7)

−
δ
ε1

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1, (8)

−
γ

ε1
+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1, (9)

−

(ρ + 1)
[
µ − 1

2ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
2ερ+1

1

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A

+ 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1, (10)

−

(ρ + 1)
[
µ − 1

2ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
2ερ+1

2

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A

+ 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1, (11)
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where

b̄ = 2

µ +
σ2

1

2


1
2


 βΛ(
µ + γ + δ + θ +

σ2
2

2

)
(1 + αε1)


1
2

−

µ +
σ2

1

2


1
2

 .
With sufficiently small ε1, we obtain that condition (7) holds due to (4). Then

R4
+ \D = D1 ∪D2 ∪ · · · ∪D8,

with

D1 = {(S, I,Q,R) ∈ R4
+, 0 < S < ε1}, D2 = {(S, I,Q,R) ∈ R4

+, 0 < I < ε1},

D3 = {(S, I,Q,R) ∈ R4
+, I ≥ ε1, 0 < Q < ε2}, D4 = {(S, I,Q,R) ∈ R4

+, I ≥ ε1, 0 < R < ε2},

D5 =
{
(S, I,Q,R) ∈ R4

+,S >
1
ε1

}
, D6 =

{
(S, I,Q,R) ∈ R4

+, I >
1
ε1

}
,

D7 =
{
(S, I,Q,R) ∈ R4

+,Q >
1
ε2

}
, D8 =

{
(S, I,Q,R) ∈ R4

+,R >
1
ε2

}
.

Next, we show the negativity of LV̄ from the following eight cases:
Case 1. If (S, I,Q,R) ∈ D1, then (6) implies that

LV̄ ≤ −
Λ

S
+ 2p

µ +
σ2

1

2

 +
(p + 1)βI

1 + αI
+ A + 3µ + ε + θ +

σ2
1 + σ2

3 + σ2
4

2

≤ −
Λ

ε1
+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1.

Case 2. If (S, I,Q,R) ∈ D2, then it from (7) that

LV̄ ≤ −2p

µ +
σ2

1

2


1
2


 βΛ(
µ + γ + δ + θ +

σ2
2

2

)
(1 + αI)


1
2

−

µ +
σ2

1

2


1
2


+

(p + 1)βI
1 + αI

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ −pb̄ + (p + 1)βε1 + A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1.

Case 3. If (S, I,Q,R) ∈ D3, then

LV̄ ≤ 2p

µ +
σ2

1

2

 +
(p + 1)βI

1 + αI
−
δI
Q

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

−
δε1

ε2
+ A + 3µ + ε + θ +

σ2
1 + σ2

3 + σ2
4

2
.

Choosing

ε2 = ε2
1, (12)

we obtain

LV̄ ≤ −
δ
ε1

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1,

which follows from (8).
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Case 4. If (S, I,Q,R) ∈ D4, then it follows from (9) and (12) that

LV̄ ≤ 2p

µ +
σ2

1

2

 +
(p + 1)βI

1 + αI
−
γI
R

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

−
γε1

ε2
+ A + 3µ + ε + θ +

σ2
1 + σ2

3 + σ2
4

2

≤ −
γ

ε1
+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ −1.

Case 5. If (S, I,Q,R) ∈ D5, then (10) implies that

LV̄ ≤ 2p

µ +
σ2

1

2

 +
(p + 1)βI

1 + αI
−

1
2

(ρ + 1)
[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
Sρ+1

+A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ −

(ρ + 1)
[
µ − 1

2ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
2ερ+1

1

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A

+ 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1.

Case 6. If (S, I,Q,R) ∈ D6, then one has

LV̄ ≤ 2p

µ +
σ2

1

2

 +
(p + 1)βI

1 + αI
−

1
2

(ρ + 1)
[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
Iρ+1

+A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ −

(ρ + 1)
[
µ − 1

2ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
2ερ+1

1

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A

+ 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
.

In view of (10), we have LV̄ ≤ −1.
Case 7. If (S, I,Q,R) ∈ D7, according to (12) we can see that

LV̄ ≤ 2p

µ +
σ2

1

2

 +
(p + 1)βI

1 + αI
−

1
2

(ρ + 1)
[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
Qρ+1

+A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ −

(ρ + 1)
[
µ − 1

2ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
2ερ+1

2

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A

+ 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
,

which together with (11) yields that LV̄ ≤ −1.
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Case 8. If (S, I,Q,R) ∈ D8, the conditions (11) and (12) lead to

LV̄ ≤ 2p

µ +
σ2

1

2

 +
(p + 1)βI

1 + αI
−

1
2

(ρ + 1)
[
µ −

1
2
ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
Rρ+1

+A + 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2

≤ −

(ρ + 1)
[
µ − 1

2ρ
(
σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4

)]
2ερ+1

2

+ 2p

µ +
σ2

1

2

 +
(p + 1)β
α

+ A

+ 3µ + ε + θ +
σ2

1 + σ2
3 + σ2

4

2
≤ −1.

Based on the above discussions, it follows that

LV̄ ≤ −1, ∀(S, I,Q,R) ∈ R4
+ \D,

which proves that condition A2 holds.
To verify A1, note that the diffusion matrix of system (2) is

A((S, I,Q,R)) =


σ2

1S2 0 0 0
0 σ2

2I2 0 0
0 0 σ2

3Q2 0
0 0 0 σ2

4R2

 .
For any (S, I,Q,R) ∈ D, there is a constant M = min{σ2

1S2, σ2
2I2, σ2

3Q2, σ2
4R2
} > 0 such that

4∑
i, j=1

ai jξiξ j = σ2
1S2ξ2

1 + σ2
2I2ξ2

2 + σ2
3Q2ξ2

3 + σ2
4R2ξ2

4 ≥M|ξ|2

for any ξ ∈ R4
+. This shows that A1 also holds. According to Lemma 5.1, the proof is completed.

Remark 5.3. From Theorem 5.2, we can observe that, if R̂s
0 > 1, then system (2) has a unique ergodic stationary

distribution, which means that the disease will prevail. Notice that R̂s
0 < Rs

0. Meanwhile, taking attention to the
expression of R̂s

0, we can control the disease outbreak by environmental white noise.

6. Numerical Simulations

In this section, the Milstein’s Higher Order Method developed in [30] is used to solve system (2)
numerically. According to this method, we can get the following discretization equation of system (2):

Sk+1 = Sk +

[
Λ − µSk −

βSkIk

1 + αIk

]
∆t + σ1Sk

√

∆tξ1,k +
σ2

1

2
Sk∆t(ξ2

1,k − 1),

Ik+1 = Ik +

[
βSkIk

1 + αIk
− (µ + γ + δ + θ)Ik

]
∆t + σ2Ik

√

∆tξ2,k +
σ2

2

2
Ik∆t(ξ2

2,k − 1),

Qk+1 = Qk +
[
δIk − (µ + ε + θ)Qk

]
∆t + σ3Qk

√

∆tξ3,k +
σ2

3

2
Qk∆t(ξ2

3,k − 1),

Rk+1 = Rk +
[
γIk + εQk − µRk

]
∆t + +σ4Rk

√

∆tξ4,k +
σ2

4

2
Rk∆t(ξ2

4,k − 1),
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where time increment ∆t > 0, and ξ1,k, ξ2,k, ξ3,k, ξ4,k are independent Gaussian random variables which
follows N(0, 1).

The following numerical simulations are given to show the effectiveness of the main results. As
mentioned in the introduction of this paper, system (2) can be used to describe some diseases in the situation
that the natural death rate fluctuate around some average value owing to environmental fluctuation and
the intensity of stochastic perturbations for each compartments is proportional to their subpopulations.
However, we would like to point out that the values of the parameters of system (2) and the initial values
in the following numerical simulations are chosen for illustration purposes and are not taken from real life
data for any diseases.
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Figure 1: σ1 = σ2 = σ3 = σ4 = 0
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Figure 2: σ1 = σ2 = σ3 = σ4 = 0.6
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Figure 3: σ1 = σ2 = σ3 = σ4 = 0.1

In system (2), we choose the parameters Λ = 0.6, β = 0.5, α = 0.1, µ = 0.3, γ = 0.1, ε = 0.3, θ = 0.2, δ = 0.3
and the initial value S(0) = 0.7 (see, for example, [16]), I(0) = 0.8 (see, for example, [16]), Q(0) = 0.2,R(0) =
0.2. Firstly, letting the environmental noise intensities be σ1 = σ2 = σ3 = σ4 = 0, we know that the stochastic
system (2) degenerates into the deterministic system (1). Now we can calculate that R0 = 1.1111 > 1 and so
there is a globally asymptotically stable endemic equilibrium S∗ = 1.81, I∗ = 0.06,Q∗ = 0.02,R∗ = 0.04. Fig.
1 confirms this fact. Secondly, letting the environmental noise intensities be σ1 = σ2 = σ3 = σ4 = 0.6, we
obtain that max

(
σ2

1, σ
2
2, σ

2
3, σ

2
4

)
< 2µ and Rs

0 = 0.9259 < 1, which satisfy the conditions of Theorem 3.2. This
means that the disease will go to extinction exponentially in stochastic system (2), which is shown in Fig. 2.
Comparing Fig. 1 with Fig. 2, it reveals that the extinction of the disease I in stochastic system (2) is much
easier than that in the corresponding deterministic system (1). Thirdly, in Fig. 3, letting the environmental
noise intensities be σ1 = σ2 = σ3 = σ4 = 0.1, we get max

(
σ2

1, σ
2
2, σ

2
3, σ

2
4

)
< 2µ and Rs

0 = 1.1050 > 1, and so the
conditions of Theorem 4.2 hold. That is to say, the disease will be persistent in the mean. Finally, we choose
the environmental noise intensities be σ1 = σ2 = σ3 = 0.04 and σ4 = 0.8. Then R̂s

0 = 1.1072 > 1, which means
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that the conditions of Theorem 5.2 hold. Therefore, system (2) has a unique ergodic stationary distribution.
Figs. 4 and 5 illustrate this fact.
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Figure 4: σ1 = σ2 = σ3 = 0.04, σ4 = 0.8
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Figure 5: Relative frequency density

7. Conclusions

In this paper, we studied a stochastic SIQR epidemic model with the saturated incidence rate. We
showed that the stochastic SIQR epidemic model has a unique global positive solution and derived two
corresponding parameters Rs

0 and R̂s
0 which can be used to regulate the disease dynamics as follows:

(i) If Rs
0 < 1 and max

(
σ2

1, σ
2
2, σ

2
3, σ

2
4

)
< 2µ, then

lim sup
t→∞

ln I(t)
t
≤

(
µ + γ + δ + θ +

σ2
2

2

)
(Rs

0 − 1) < 0 a.s.

and
lim
t→∞

Q(t) = 0 a.s. lim
t→∞

R(t) = 0 a.s.

That is to say, the disease will go to extinction exponentially.

(ii) If Rs
0 > 1 and max

(
σ2

1, σ
2
2, σ

2
3, σ

2
4

)
< 2µ, then

lim inf
t→∞

1
t

∫ t

0
I(r)dr ≥

µ(µ + γ + δ + θ +
σ2

2
2 )

(β + αµ)(µ + γ + δ + θ)
(Rs

0 − 1) > 0 a.s.

This means that the disease will be persistent in the mean a.s.

(iii) If R̂s
0 > 1 (Note that R̂s

0 < Rs
0 implies that Rs

0 > 1), then the stochastic SIQR epidemic model has a
unique ergodic stationary distribution. It reveals that the disease will prevail.

From the results mentioned above, we can observe that the noise can suppress the disease outbreak.
Note that the incidence rate considered in this paper is saturated. However, in some practice situations, the
incidence rate may not be saturated. Therefore, it would be interesting to know what happens if system (2)
is with nonlinear incidence rate of the form f (S, I,Q,R)? We leave this for future work.
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