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Abstract. In this study, we firstly give some properties the family F and F—convex function which are
defined by B. Samet. Then, we establish Hermite-Hadamard type inequalities involving fractional integrals
via F-convex function. Some previous results are also recaptured as special cases

1. Introduction

Let f : I € R — R be a convex function on the interval I of real numbers and a,b € [ witha < b. If
f is a convex function then the following double inequality, which is well known in the literature as the
Hermite-Hadamard inequality, holds [14]

b b
f(#) < b%af Fdx < f—(”);f( ), (1)

Note that some of the classical inequalities for means can be derived from (1) for appropriate particular
selections of the mapping f . Both inequalities hold in the reversed direction if f is concave (1).

It is well known that the Hermite-Hadamard inequality plays an important role in nonlinear analysis.
Over the last decade, this classical inequality has been improved and generalized in a number of ways;
there have been a large number of research papers written on this subject, (see, [2, 3,7, 8, 10, 13, 19, 20]) and
the references therein.

Over the years, many type of convexity have been defined, such as quasi-convex [1], pseudo-convex
[11], strongly convex [16], e—convex [6], s—convex [5], h—convex [22] etc. Recently, Samet [17] have defined
a new concept of convexity that depends on a certain function satisfying some axioms, that generalizes
different types of convexity, including e—convex functions, a—convex functions, h—convex functions, and
many others.

Recall the family # of mappings F : R X R X RX [0, 1] — RR satisfying the following axioms:
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(A1) If u; € L1(0,1),i = 1,2,3, then for every A € [0,1], we have

1 1 1 1
fF(ul(t),uz(t),ug;(t),)\)dt:F[ful(t)dt,fuz(t)dt,fu3(t)dt,)\].

0 0 0 0

(A2) Forevery u € L' (0,1), w € L*(0,1) and (z1, z2) € R?, we have

1 1
fF(w(t)u(t),w(t)zl,w(t)22, Hdt = Try [fw(t)u(t)dt,zl,zz)J,

0 0

where Tr;, : RX R X R — Ris a function that depends on (F, w), and it is nondecreasing with respect to the
first variable.
(A3) For any (w, uy, up, u3) € R*, us € [0,1], we have

wF(u1, up, us, us) = F(wuy, wuy, wusz, us) + Ly,
where L, € R is a constant that depends only on w.

Definition 1.1. Let f : [4,0] = R, (4,]) € R% a<b,bea given function. We say that f is a convex function
with respect to some F € ¥ (or F—convex function) if

F(f(tx + (1 = y), f(0), f(y), 1) <0, (x,y,t) € [a,b] X [a,b] X [0, 1].

Remark 1.2. 1) Let ¢ > 0, and let f : [4,b] = R, (a,b) € R?,a < b, be an ¢-convex function, that is (see [6])
fix+A-Dy) <tf)+A-Hf(y)+¢ (x,y,t)elab]x[ab]x][0,1].

Define the functions F : R X R x Rx[0,1] — R by
F(uy,up, uz, ug) =ty — gty — (1 — ua)uz — € 2)

and Tr, : RXRXR — Rby

1 1
Trw(ur, U, U3) = Uy — [f tw(t)dt] Up — [f(l - t)w(t)dt] Uz — €. 3)

0 0

For
Ly = (1 - w)e, (4)
it is clear that F € ¥ and
F(f(tx + (1= Dy), f(0), f(y), 1) = fltx + (1 = )y) = tf(x) = (A =D f(y) —¢ <0,

that is f is an F—convex function. Particularly, taking ¢ = 0, we show that if f is a convex function then f is
an F—convex function with respect to F defined above.
2)Let f:[a,b] > R, (a,b) € R?, a < b, be an a-convex function,a € (0,1], that is

ftx+ A -ty <t f(x)+ 1 - f(y), (x,y,t)€la bl x][a b]x][0,1].
Define the functions F : R X R x Rx[0,1] — R by

F(uy, up, us, ug) = uy — uguy — (1 — ug)us ()
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and Tr, : RXR X R — Rby

1

1
Trw(ur, Uz, uz) = uy — [f t“w(t)dt] Uy — [f(l - ta)w(t)de us. (6)
0

0

For L, =0, it is clear that F € ¥ and

F(f(tx + (1 = 1)y), f(x), f(y), 1) = fltx + (L= B)y) — t°f(x) - A =) f(y) <0,
that is f is an F—convex function.
3) Leth: ] — [0, o) be a given function which is not identical to 0, where | is an interval in R such that
(0,1) C J. Let f : [a,b] — [0, ), (a,b) € R?, a < b, be an h-convex function, that is (see [22])
ftx+ 1A =-0y) <h@®fx)+h(1-t)f(y), (x,y,t)€la bl x[ab]x][0,1].
Define the functions F : R X R x Rx [0,1] — R by

F(uy, up, uz, ug) = uy — h(ug)uz — h(1 — ug)us (7)

and Tr, : RXRXR — Rby

1 1
Trw(ti, Up, Uz) = Uy — [f h(t)w(t)dtJ Uy — [fh(l - t)w(t)dt] Us. (8)
0

0

For L, = 0, it is clear that F € F and
F(f(tx+ (1 = By), f(x), f(y), 1) = f(tx+ (1 = )y) —=h(t) f(x) —h(1 = 1) f(y) <0,
that is f is an F-convex function.

In [17], the author established the following Hermite-Hadamard type inequalities using the new con-
vexity concept:

Theorem 1.3. Let f : [a,b] > R, (a,b) € R?, a < b, be an F-convex function, for some F € F. Suppose that
f € Lila, b]. Then

a+b\ 1 7 1 (" 1
F(f(T),mf[; f(x)dx,ml f(x)dx,E)SO,

b
T (5 [ o o, ) <o

Theorem 1.4. Let f : I° C R — R be a differentiable mapping on I°, (a,b) € I° X I°, a < b. Suppose that

(i) |f'| is F-convex on [a, ], for some F € ¥
(ii) the function t € (0,1) — Ly belongs to L'(0,1), where w(t) = |1 — 2t|. Then,
2 |f@+f®) 1 [ 1
a ’ ’
:rp,w(b_lZ B b_afﬂ Ffdx|, |f @), f(b)|)+fLw(t)dts0.

0
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Theorem 1.5. Let f : I° € R — R be a differentiable mapping on 1°, (a,b) € I° X I°, a < b and let p > 1. Suppose
that

Te1 (A(P/ f;(b)|P/(P—1)) <0

where
L
-1

P
1

Ap = (=)

f f(x)dx

In the following we will give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used further in this paper. More details, one can consult [4, 9, 12, 15].

Definition 1.6. Let f € Ly[a, b]. The Riemann-Liouville integrals J, f and J; f of order a > 0 with x > a are
defined by

Jarf(x) = ﬁ f (x = t* ' f(B)dt, x>a

and

b
J_f(x) = %L (t—x)*"" f(t)dt, x <D

respectively. Here, I'(a) is the Gamma function and J, f(x) = f = f(x).

It is remarkable that Sarikaya et al. [21] first give the following interesting integral inequalities of
Hermite-Hadamard type involving Riemann-Liouville fractional integrals.

Theorem 1.7. Let f : [a,b] — R be a positive function with 0 < a < band f € Ly [a,b]. If f is a convex function on
[a,b], then the following inequalities for fractional integrals hold:

a+b F(a+1) F@+ F )
f( 2 ) 2(b- [+f(b )+ ;- f(ﬂ)]ﬁT

©)

with a > 0.

Meanwhile, Sarikaya et al. [21] presented the following important integral identity including the first-
order derivative of f to establish many interesting Hermite-Hadamard type inequalities for convexity
functions via Riemann-Liouville fractional integrals of the order a > 0.

Lemma 1.8. Let f : [a,b] — R be a differentiable mapping on (a,b) with a < b. If ' € L[a, b], then the following
equality for fractional integrals holds:

fl@+fb) T+ 1)
2 20—

1
s f@] =150 [1a-p el e a-ona a0

2. Hermite-Hadamard Type Inequality Involving Fractional Integrals

In this section, we establish some inequalities of Hermite-Hadamard type including fractional integrals
via F—convex functions.
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Theorem 2.1. Let I C R be an interval, f : I° € R — R be a mapping on I°, a,b € I°, a < b. If f is F-convex on
[a,b], for some F € F, then we have the inequalities

b\ T(a+1 T(a+1 '
P57 T o G s, g ) [ L <0 )
and
1
pr(féaﬂa)[ L f(b) + T fa)]/f(a)+f(b),f(a)+f(b))+fLwa)deO (12)

0
where w(t) = at* 1.

Proof. Since f is F-convex, we have

F(F(5Y) @@ 5) <0 vy e ol

Forx=ta+ (1 -tband y = tb + (1 — t)a, we have
a+b
F(f( ) fta+ 1 =1b), f(tb + (1 —t)a), )<0,te[0,1].
Multiplying this inequality by w(t) = at*~! and using axiom (A3), we get

F(at“‘l f(‘%b),at“-l f(ta+ (1 = 1)b), at* " f(ta + (1 - t)b), ) + Loy <0,

for t € [0,1]. Integrating over [0, 1] with respect to the variable ¢ and using axiom (A1), we obtain

a+b 1 1 1 1 1
F(f(T)a f 12714t a f 97 f(ta + (1 — t)b)dt, f t“‘lf(ta+(1—t)b)dt,§)+ f Lapdt < 0.
0 0 0 0

Using the facts that

a)®

o 1 b _ I'(a)
a-1 _ — _ a1 - a
L 7 f(ta+ (1 — t)b)dt 0= fa (b —x)"" f(x)dx b—ay = f(b)
and

o 1 b . (oc)
a—1 — — )&
j(; t* 1 f(ta + (1 — t)b)dt = T—ar [l (x —a)* ! f(x)dx = = ]b f(a),

we obtain
1
5 S 0 ) [ =

which gives (11).
On the other hand, since f is F-convex, we have

F(f(ta+(1-1)b), f(a), f(b),1) <0, t€[0,1]

and

F(f(th+ (1 —=1ta), f(b), fa),t) <0, t €[0,1].
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Using the linearity of F, we get
F(f(ta+ (1 —-1tb)+ f(tb+ (1 —t)a), f(a) + f(b), f(a) + f(b),t) <O, t €[0,1].

Applying the axiom (A3) for w(t) = at*~!, we obtain

F(at“’l [f (ta+ (1 =t)b) + f(th + (1 - H)a)], at*  [f(a) + f(b)], at* " [f(a) + f(b)], t) + Loy <0,
for t € [0,1]. Integrating over [0, 1] and using axiom (A2), we have

1

1
Tew (fo a1 [fa+ Q-8+ f(@tb+ (1 —Da)]dt, f(a) + f(), f(a) +f(b)) + fLw(t)dt <0,

0

that is

1

Tra Qom0+ G 0, 50+ 0, @)+ 50) + [ Lt <0

0

This completes the proof. [

Corollary 2.2. If we choose F(u1, up, u3, ug) = g — tgup — (1 — ug)uz — € in Theorem 2.1, then the function f is
e-convex on [a,b], € > 0 and we have the inequality

f«+b)_ T(a+1) ﬂ)+f

)= S 3 oy iSO+ f@)] <

Nlm

Proof. Using (4)with w(t) = at*™!, we have

1

1
\f@wwzsjh—aﬂUwzo (13)
0

0

Using (2), (11) and (13), we get

b\ T(a+1 r 1 1
0 > F(f(a; )’ (lga_-’-)a) g*f(b) ((a+ )]b f() ) f(; Lw(t)dt

b 1T 1)
f(”§ )-5(;“;,4 ) + I3 f@)] -

that is

f(a;b) —5((;“)[ SO+ f@)].

On the other hand, using (3) with w(t) = at*~!, we have

1

1
+
Trw(ur, Uz, u3) = g — a[f tadl’J Uy — Oé[f(l - t)fa_ldtJ Uz —&=Uy — (XL;2+ 1u3 —-& (14)
0

0
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for uy, up, u3 € R. Hence, from (12) and (14), we obtain

1

Fla+1
0 TFW( (;aja )a) [ J2f(b) + & f(a)], f@) + f(b), f@a) + f (b)) + f Layrydt

0

BCETE [ (f(@) + f(B)) + (f(a) + f(B))] - &
r 1
- —(éa_tl)a) [IZLf &) + - f(u)] - (f@) + f(b) - e
This implies that
Ia+1)

oo Vi fO I f@] < f@)+ [0 + e
and thus the proof is completed. [
Remark 2.3. If we take ¢ = 0 in Corollary 2.2, then f is convex and we have the inequality (9).

Corollary 2.4. If we choose F(uy, up, u3, us) = uy — h(ug)up — h(1 — ug)uz in Theorem 2.1, then the function f is
h-convex on [a, b] and we have the inequality

1 a+b Ia+1) 7, N
2h(%)f( 2 )Sz(b [] (b)+]b (ﬂ)]<(1(f [h(t)+h(1 )]t 1dt)

Proof. Using (4) and (11) with L, = 0, we have

b\ T T !
o > p(r(%50) Gt s, f s, g+ [ Lo

a)x 4

7552 1(5) e o+ g s

fla) + f(b)
R

that is

1 a+b T(a+1) .,
Zh(%)f( 2 )SZ(b < f@) + 1 f@)].

On the other hand, using (8) and (12) with w(t) = at*~!, we obtain

1

21150 + 1 F0)] 50+ 0,70 + 50 + [ Lt

0

I'la + 1)

0 > TGt

1 1
= oo s+ @) - a[ [ morars | h(l—t)t“ldt] [£@) + FO]

) fzga_xé) £+ Ji-f@)] - a( f (1) + k(1 t)]f“‘ldt)[f(a)+f(b)],

that is,

1
o O] < ( fo [1(t) + (1~ 1)] ta-ldt) [f@) + f®)]

and thus the proof is completed. [
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Theorem 2.5. Let I C R be an interval, f : I° € R — R be a differentiable mapping on I°,a,b € I°, a < b. Suppose
that | f’| is F—convex on [a,b], for some F € ¥ and the function t € [0,1] — Ly belongs to Ly [0,1], where
w(t) = |(1 — £)* — t%|. Then, we have the inequality

) f w(t)dt <0.

( 2 ‘f(u)+f(b) F(a+1)
TF,w —

6o Vi fO+ T f@]),

convex, we have

Proof. Since

F(lf

Using axiom (A3) with w(t) = [(1 — t)* — %], we get

F (w(

Integrating over [0, 1] and using axiom (A2), we obtain

1 1
TF,w (f ) + f Lw(t)dt <0, te [0, 1] .
0 0

From Lemma 1.8, we have

) <0, tef0,1].

)+ Ly <0, t€[0,1].

- Hb)|dt,

2 b) T(a+1 !
= f@ ;f( ) 2((;_:)({ 1. f®) + T f@)]| < fo w( - Hb)|dt.
Since Try, is nondecreasing with respect to the first variable, we establish
b) T(a+1 !
Tﬁw( 2 \f AR - 50— e+ g o) |7 f’(b)|) . fo Lyt 0.

The proof is completed. [

Corollary 2.6. Under assumptions of Theorem 2.5, if we choose F(u1, ua, U3, ug) = U1 — ugty — (1 — ug)uz — ¢, then
f ” is e-convex on [a, b], € > 0 and we have the inequality

@+ f6) T+
| —Z(b_a)a[ SO+ T2 @]

s (-3l

Proof. From (4) with w(t) = |(1 — £)* — %], we have

+2€].

1

fLw(t)dt

0

ef(l — (1 = £)* — t9))dt

1/2

f(l— 1- 1"+ t"‘)dt+f(1+ (1 - 1) — t%)dt

1/2
2 1
B 5(1_a+1(1_2_“))'
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Using (3) with w(t) = |(1 — £)* — t7]

1 1
u1—a[fﬂ(l—t)a—taldt]uz—a[f(l—t)I(l—t)“—taldt]ug,—e
0

0
1

a+1

Trw(u1, ua, u3)

1
Uy — (1—2—a)(u2+u3)—€

for uy, uy,u3 € R. Then, by Theorem 2.5, we have

2 |f@+fb) T@+1) g, "
— 2 - Z(b — a)a [ a*f(b) + ]b*f(a)]

f@+f(B)  T(a+1)
2 2(b —a)®

a-ll-l(l_Zl"‘)[

This completes the proof. O

1
f’(b)() + fo Lot

0 > Tp,w(b Af @),

2
b—a

[12.£®) + T f@)]

f’(b)|]—e+e(1— %(1— 21))

@)+

Remark 2.7. If we choose ¢ = 0 in Corollary 2.6, then

f/

is convex and we have the inequality

f@+f0) T@+1)
2 2(b — a)*

b—a 1 ,
srrre  Ueb o | KGR

which is given by Sarikaya et. al in [21].

|12 f®) + Ji- f@)]
F o)

Corollary 2.8. Under assumption of Theorem 2.5, if we choose F(u1,uy, us, tug) = u1 — h(ug)up — h(1 — ug)us, then
the function f’} is h-convex on [a, b] and we have the inequality

f@+f0) T@+1)
2 2(b—a)

1
b—a a a
< T{fh(t)m—t) —t |dt][

0

[12.f®) + J¢. f@)]

(@) +

£

Proof. From (8) with w(t) = |[(1 — £)* — %], we have

f@+f)  T@+1)
2 2(b — a)*

1
b—a a a
< T[fh(t)l(l—t) —tldtJ[

0

|12 f®) + T f@)]

f@|+

Fo)]-
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for uy, up, uz € R. Then, by Theorem 2.5,

2 b r 1
T (b 2 |f@+10) Mot D 1 o] Ao, f,(b)|)
2 |f@+fb) T(@+1)r, )
T b-a 2 - 2(b —a)® [ n*f(b)"']b—f(a)]
1
- fh(t) (1 — )" —t*|dt [f'(u)) + f’(b)” <0.
0

This completes the proof. [
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