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The Adjacency-Jacobsthal-Hurwitz Type Numbers

Ömür Devecia, Yeşim Aküzüma

aDepartment of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract. In this paper, we define the adjacency-Jacobsthal-Hurwitz sequences of the first and second
kind. Then we give the exponential, combinatorial, permanental and determinantal representations and
the Binet formulas of the adjacency-Jacobsthal-Hurwitz numbers of the first and second kind by the aid of
the generating functions and the generating matrices of the sequences defined.

1. Introduction

It is well-known that Jacobsthal sequence {Jn} is defined recursively by the equation

Jn+1 = Jn + 2Jn−1

for n > 0, where J0 = 0, J1 = 1.
In [5], Deveci and Artun defined the adjacency-Jacobsthal sequence as follows:

Jm,n (mn + k) = Jm,n (mn − n + k + 1) + 2Jm,n (k)

for k ≥ 1, m ≥ 2 and n ≥ 4 with initial constants Jm,n (1) = · · · = Jm,n (mn − 1) = 0 and Jm,n (mn) = 1.
It is easy to see that the characteristic polynomial of the adjacency-Jacobsthal sequence is

f (x) = xmn
− xmn−n+1

− 2.

Suppose that the (n + k)th term of a sequence is defined recursively by a linear combination of the
preceding k terms:

an+k = c0an + c1an+1 + · · · + ck−1an+k−1

where c0, c1, . . . , ck−1 are real constants. In [10], Kalman derived a number of closed-form formulas for the
generalized sequence by the companion matrix method as follows:

Let the matrix A be defined by
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A =
[
ai, j

]
k×k

=



0 1 0 · · · 0 0
0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
...

...
...

...
0 0 0 · · · 0 1
c0 c1 c2 ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an

an+1
...

an+k−1


for n > 0.

Let an nth degree real polynomial q be given by

q (x) = c0xn + c1xn−1 + · · · + cn−1x + cn.

In [9], the Hurwitz matrix Hn =
[
hi, j

]
n×n

associated to the polynomial q was defined as shown:

Hn =



c1 c3 c5 · · · · · · · · · 0 0 0

c0 c2 c4
...

...
...

0 c1 c3
...

...
...

... c0 c2
. . . 0

...
...

... 0 c1
. . . cn

...
...

...
... c0

. . . cn−1 0
...

...
... 0 cn−2 cn

...
...

...
... cn−3 cn−1 0

0 0 0 · · · · · · · · · cn−4 cn−2 cn


.

Recently, many authors have studied number theoretic properties such as these obtained from homoge-
neous linear recurrence relations relevant to this paper [3, 4, 6–8, 11, 12, 14, 16–19]. In this paper, we
define the adjacency-Jacobsthal-Hurwitz sequences of the first and second kind by using Hurwitz matrix
for characteristic polynomial of the adjacency-Jacobsthal sequence of order 4m. Then we develop some
their properties such as the generating function, exponential representations, the generating matrices and
the combinatorial representations. Also, we give relationships among the adjacency-Jacobsthal-Hurwitz
sequences of the first and second kind and the permanents and the determinants of certain matrices which
are produced by using the generating matrices of the adjacency-Jacobsthal-Hurwitz sequences of the first
and second kind. Finally, we obtain the Binet formulas for the adjacency-Jacobsthal-Hurwitz sequences of
the first and second kind by the aid of the roots of characteristic polynomials of the adjacency-Jacobsthal-
Hurwitz sequences of the first and second kind.
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2. The Main Results

It is readily seen that Hurwitz matrix for characteristic polynomial of the adjacency-Jacobsthal sequence
of order 4m, HJ

4m =
[
hi, j

]
4m×4m

is defined by

hi, j =


1 if i = 2ı and j = ı for 1 ≤ ı ≤ 2m,
−1 if i = 1 + 2ı and j = 2 + ı for 1 ≤ ı ≤ 2m − 1,
−2 if i = 2ı and j = 2m + ı for 1 ≤ ı ≤ 2m,
0 otherwise.

By the aid of the matrix HJ
4m, we define the adjacency-Jacobsthal-Hurwitz sequences of the first and

second kind, respectively by:

J1
m (4m + k) = J1

m (2m + k) − 2J1
m (k) for k ≥ 1 and m ≥ 4, (1)

where

J1
m (1) = 1, J1

m (2) = · · · = J1
m (2m) = 0, J1

m (2m + 1) = 1, J1
m (2m + 2) = · · · = J1

m (4m) = 0

and

J2
m (4m + k) = J2

m (k) − 2J2
m (2m + k) for k ≥ 1 and m ≥ 4, (2)

where

J2
m (1) = 1, J2

m (2) = · · · = J2
m (4m − 1) = 0, J2

m (4m) = 1.

Clearly, the generating functions of the adjacency-Jacobsthal-Hurwitz sequences of the first and second
kind are given by

11 (x) =
1

1 − x2m + 2x4m

and

12 (x) =
1 + 3x2m

1 + 2x2m − x4m ,

respectively. It can be readily established that the adjacency-Jacobsthal-Hurwitz sequences of the first and
second kind have the following exponential representations, respectively:

11 (x) = exp


∞∑

i=1

(
x2m

)i

i

(
1 − 2x2m

)i


and

12 (x) =
(
1 + 3x2m

)
exp


∞∑

i=1

(
x2m

)i

i

(
x2m
− 2

)i

 .
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By equations (1) and (2), we can write the following companion matrices, respectively:

C1
m =

(2m) th
↓

0 · · · 0 1 0 · · · 0 −2
1 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0
...

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
0 0 0 · · · 0 0 1 0


4m×4m

and

C2
m =



0 1 0 0 0 · · · 0 0
0 0 1 0 0 · · · 0 0
0 0 0 1 0 · · · 0 0
...

...
. . . · · ·

...
0 0 0 0 · · · 1 0 0
0 0 0 0 · · · 0 1 0
0 0 0 0 · · · 0 0 1
1 0 . . . 0 −2 0 · · · 0


4m×4m.

↑

(2m + 1) th

The companion matrices C1
m and C2

m are called the adjacency-Jacobsthal-Hurwitz matrices of the first and
second kind, respectively. For detailed information about the companion matrices, see [13, 15]. Let J1

m (α)
and J2

m (α) be denoted by J1,α
m and J2,α

m . By mathematical induction on α, we derive

(C1
m)α=



J1,α+1
m J1,α+2

m · · · J1,α+2m
m −2J1,α−2m+1

m · · · −2J1,α−1
m −2J1,α

m
J1,α
m J1,α+1

m · · · J1,α+2m−1
m −2J1,α−2m

m · · · −2J1,α−2
m −2J1,α−1

m
...

...
...

...
...

...
J1,α−4m+2
m J1,α−4m+3

m · · · J1,α−2m+1
m −2J1,α−6m+2

m · · · −2J1,α−4m
m −2J1,α−4m+1

m


4m×4m (3)

and

(
C2

m

)α
=


J2,α
m J2,α−1

m · · · J2,α−2m+1
m J2,α+2m

m · · · J2,α+2
m J2,α+1

m
J2,α+1
m J2,α

m · · · J2,α−2m+2
m J2,α+2m+1

m · · · J2,α+3
m J2,α+2

m
...

...
...

...
...

...
J2,α+4m−1
m J2,α+4m−2

m · · · J2,α+2m
m J2,α+6m−1

m · · · J2,α+4m+1
m J2,α+4m

m


4m×4m.

(4)

for α ≥ 1. Note that det
(
C1

m

)α
= (2)α and det

(
C2

m

)α
= (−1)α

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 · · · kv
1 0 0
...

. . .
...

0 · · · 1 0


.
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Theorem 2.1. (Chen and Louck [2]) The
(
i, j

)
entry k(n)

i, j (k1, k2, . . . , kv) in the matrix Kn (k1, k2, . . . , kv) is given by
the following formula:

k(n)
i, j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

t j + t j+1 + · · · + tv

t1 + t2 + · · · + tv
×

(
t1 + · · · + tv

t1, . . . , tv

)
kt1

1 · · · k
tv
v , (5)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = n − i + j,
(t1+···+tv

t1,...,tv

)
=

(t1+···+tv)!
t1!···tv! is a

multinomial coefficient, and the coefficients in (5) are defined to be 1 if n = i − j.

Now we concentrate on finding combinatorial representations for the adjacency-Jacobsthal-Hurwitz
numbers of the first and second kind.

Corollary 2.2. The following hold:
(i) J1

m (n) =
∑

(t1,t2...,t4m)
tα+tα+1+···+t4m
t1+t2+···+t4m

×
(t1+···+t4m

t1,...,t4m

)
(−2)t4m for 1 ≤ α ≤ 2m,

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + (4m) t4m = n − 1.
(ii) J1

m (n) =
∑

(t1,t2...,t4m)
t4m

t1+t2+···+t4m
×

(t1+···+t4m
t1,...,t4m

)
(−2)t4m ,

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + (4m) t4m = n + 4m − 1.
(iii) J2

m (n) =
∑

(t1,t2...,t4m)
tα+tα+1+···+t4m
t1+t2+···+t4m

×
(t1+···+t4m

t1,...,t4m

)
(−2)t2m+1 for 1 ≤ α ≤ 2m,

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + (4m) t4m = n.

Proof. If we take i = α + 1, j = α such that 1 ≤ α ≤ 2m for case (i)., i = 1, j = 4m for case (ii) and i = j = α
such that 1 ≤ α ≤ 2m for case (iii) in Theorem 2.1 , then we can directly see the conclusions from equations
(3) and (4).

Definition 2.3. A u× v real matrix M =
[
mi, j

]
is called a contractible matrix in the kth column (resp. row.) if

the kth column (resp. row) contains exactly two non-zero entries.

Let u1, u2, . . .,umn be row vectors of the matrix M. If M is contractible in the kth column such that
mi,k , 0,m j,k , 0 and i , j, then the (u − 1) × (v − 1) matrix Mi j:k obtained from M by replacing the ith row
with mi,kx j +m j,kxi and deleting the jth row. The kth column is called the contraction in the kth column relative
to the ith row and the jth row.

If M is a real matrix of order α > 1 and N is a contraction of M, then per (M) = per (N) which was proved
in [1].

Now we consider relationships between the adjacency-Jacobsthal-Hurwitz sequences of the first and
second kind and the permanents of certain matrices which are obtained by using the generating matrices
of these sequences.

Let u > 4m be a positive integer and suppose that M1,u
m =

[
m1,u,m

i, j

]
and M2,u

m =
[
m2,u,m

i, j

]
are the u × u

super-diagonal matrices, defined by

M1,u
m =

(2m) th
↓

(4m) th
↓

0 · · · 0 1 0 · · · 0 −2 0 · · · 0 0 0
1 0 · · · 0 1 0 · · · 0 −2 0 · · · 0 0
0 1 0 · · · 0 1 0 · · · 0 −2 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 0 · · · 0 1 0 · · · 0 −2 0
0 0 · · · 0 1 0 · · · 0 1 0 · · · 0 −2
0 0 0 · · · 0 1 0 · · · 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 · · · 0 0 1 0 · · · 0 1 0


u×u
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and

M2,u
m =



0 1 0 · · · 0 0 0 · · · 0 0 0 0 0 0
0 0 1 0 · · · 0 0 0 · · · 0 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 0 1 0 · · · 0 0 0 · · · 0 0 0
−2 0 · · · 0 0 1 0 · · · 0 0 0 · · · 0 0
0 −2 0 · · · 0 0 1 0 · · · 0 0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 −2 0 · · · 0 0 1 0 · · · 0 0 0
1 0 · · · 0 −2 0 · · · 0 0 1 0 · · · 0 0
0 1 0 · · · 0 −2 0 · · · 0 0 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 0 · · · 0 −2 0 · · · 0 0 1 0
0 0 · · · 0 1 0 · · · 0 −2 0 · · · 0 0 1
0 0 0 · · · 0 1 0 · · · 0 −2 0 · · · 0 0


u×u.

↑

(u − 4m + 1) th
↑

(u − 2m + 1) th

Theorem 2.4. For u > 4m,

per
(
M1,u

m

)
= J1

m (u + 1) and per
(
M2,u

m

)
= J2

m (u + 4m) .

Proof. Let us consider the matrix M1,u
m and the adjacency-Jacobsthal-Hurwitz sequence of the first kind. We

use induction on u. Now we assume that the equation holds for u ≥ 4m, then we show that the equation
holds for u + 1. If we expand the per

(
M1,u+1

m

)
by the Laplace expansion of permanent according to the first

row, then we obtain

per
(
M1,u+1

m

)
= per

(
M1,u−2m+1

m

)
− 2per

(
M1,u−4m+1

m

)
.

Since per
(
M1,u−2m+1

m

)
= J1

m (u − 2m + 2) and per
(
M1,u−4m+1

m

)
= J1

m (u − 4m + 2) , it is easy to see that

per
(
M1,u+1

m

)
= J1

m (u − 2m + 2) − 2J1
m (u − 4m + 2) = J1

m (u + 2). So we have the conclusion.

There is a similar proof for the matrix M2,u
m and the adjacency-Jacobsthal-Hurwitz sequence of the second

kind.

Let v ≥ 4m be a positive integer and suppose that the matrices A1,v
m =

[
a1,v,m

i, j

]
v×v

and A2,v
m =

[
a2,v,m

i, j

]
v×v

are
defined, respectively, by

a1,v,m
i, j =


1

if i = ı and j = ı + 2m − 1 for 1 ≤ ı ≤ v − 2m + 1
and

i = ı + 1 and j = ı for 1 ≤ ı ≤ v − 2m,
−1 if i = 1 + ı and j = ı for v − 2m + 1 ≤ ı ≤ v − 1,
−2 if i = ı and j = 4m + ı − 1 for 1 ≤ ı ≤ v − 4m + 1,
0 otherwise

and

a2,v,m
i, j =


1

if i = ı + 2m − 1 and j = ı + 2m for 1 ≤ ı ≤ v − 2m
and

i = ı + 4m − 1 and j = ı for 1 ≤ ı ≤ v − 4m + 1,
−1 if i = ı and j = ı + 1 for 1 ≤ ı ≤ 2m − 1,
−2 if i = ı + 2m − 1 and j = ı for 1 ≤ ı ≤ v − 2m + 1,
0 otherwise.
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Then we can give the permanental representations other than the above by the following theorem.

Theorem 2.5. For v ≥ 4m,

per
(
A1,v

m

)
= −J1

m (v + 1) and per
(
A2,v

m

)
= −J2

m (v + 4m) .

Proof. Let us consider the matrix A2,v
m and the adjacency-Jacobsthal-Hurwitz sequence of the second kind.

The assertion may be proved by induction on v. Let the equation be hold for v ≥ 4m, then we show that the
equation holds for v + 1. If we expand the per

(
A2,v+1

m

)
by the Laplace expansion of permanent according to

the first row, then we obtain

per
(
A2,v+1

m

)
= per

(
A2,v−4m+1

m

)
− 2per

(
A2,v−2m+1

m

)
= −J2

m (v + 1) − 2
(
−J2

m (v + 2m + 1)
)

= −J2
m (v + 4m + 1) .

Thus we have the conclusion.
There is a similar proof for the matrix A1,v

m and the adjacency-Jacobsthal-Hurwitz sequence of the first
kind.

Now we define a v × v matrix Bv
m as in the following form:

(v − 4m) th
↓

Bv
m =



−1 · · · −1 0 · · · 0
−1
0 A1,v−1

m
...
0


,

then we have the following result:

Corollary 2.6. For v > 4m + 1,

perBv
m =

v−1∑
i=1

J1
m (i) .

Proof. If we extend the perBv
m with respect to the first row, we obtain

per Bv
m = per Bv−1

m + perA1,v−1
m .

From Theorem 2.4, Theorem 2.5 and induction on v, the proof follows directly.

A matrix M is called convertible if there is an n× n (1,−1)-matrix K such that det (M ◦ K) = perM, where
M ◦ K denotes the Hadamard product of M and K.

Now assume that the matrices T =
[
ti, j

]
u×u

and S =
[
si, j

]
v×v

are defined by

T =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1
1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


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and

S =



1 −1 1 1 · · · 1
1 1 −1 1 · · · 1
...

...
. . .

...
1 1 · · · 1 −1 1
1 1 · · · 1 1 −1
1 1 · · · 1 1 1


.

Then we give relationships between the adjacency-Jacobsthal-Hurwitz sequences of the first and second
kind and the determinants of the Hadamard products M1,u

m ◦ T, A1,v
m ◦ T, M2,u

m ◦ S and A2,v
m ◦ S.

Theorem 2.7. Let u, v ≥ 4m, then

det
(
M1,u

m ◦ T
)

= J1
m (u + 1) ,

det
(
A1,v

m ◦ T
)

= −J1
m (v + 1) ,

det
(
M2,u

m ◦ S
)

= J2
m (u + 4m)

and

det
(
A2,v

m ◦ S
)

= −J2
m (v + 4m) .

Proof. Since det
(
M1,u

m ◦ T
)

= per
(
M1,u

m

)
, det

(
A1,v

m ◦ T
)

= per
(
A1,v

m

)
, det

(
M2,u

m ◦ S
)

= per
(
M2,u

m

)
and det

(
A2,v

m ◦ S
)

= per
(
A2,u

m

)
for u, v ≥ 4m, by Theorem 2.4 and Theorem 2.5, we have the conclusion

Now we concentrate on finding the Binet formulas for the adjacency-Jacobsthal numbers.
Clearly, the characteristic equations of the matrices M1,u

m and M2,u
m are

x4m
− x2m + 2 = 0

and

x4m + 2x2m
− 1 = 0,

respectively. It is easy to see that the above equations do not have multiple roots. Let
{
β(1)

1 , β
(1)
2 , . . . , β

(1)
4m

}
and{

β(2)
1 , β

(2)
2 , . . . , β

(2)
4m

}
be the sets of the eigenvalues of the matrices M1,u

m and M2,u
m , respectively and let V(λ)

m be
(4m) × (4m) Vandermonde matrix as follows:

V(λ)
m =



(
β(λ)

1

)4m−1 (
β(λ)

2

)4m−1
· · ·

(
β(λ)

4m

)4m−1(
β(λ)

1

)4m−2 (
β(λ)

2

)4m−2
· · ·

(
β(λ)

4m

)4m−2

...
...

...

β(λ)
1 β(λ)

2 β(λ)
4m

1 1 · · · 1


,

where λ = 1, 2. Now assume that

W(λ)
m (i) =



(
β(λ)

1

)α+4m−i(
β(λ)

2

)α+4m−i

...(
β(λ)

4m

)α+4m−i


and V(λ)

m
(
i, j

)
is a (4m) × (4m) matrix obtained from V(λ)

m by replacing the jth column of V(λ)
m by W(λ)

m (i).
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Theorem 2.8. For α ≥ 1 and λ = 1, 2,

cm,λ,α
i, j =

det
(
V(λ)

m
(
i, j

))
det

(
V(λ)

m

) ,

where
(
Cλm

)α
=

[
cm,λ,α

i, j

]
.

Proof. Let us considerλ as 1. Since the equation x4m
−x2m+2 = 0 does not have multiple roots, β(1)

1 , β
(1)
2 , . . . , β

(1)
4m

are distinct and so the matrix M1,u
m is diagonalizable. Then, it is readily seen that C1

mV(1)
m = V(1)

m Ω1
m, where

Ω1
m =

(
β(1)

1 , β
(1)
2 , . . . , β

(1)
4m

)
. Since the Vandermonde matrix V(1)

m is invertible, we can write
(
V(1)

m

)−1
C1

mV(1)
m = Ω1

m.

Thus, we easily see that the matrix C1
m is similar to Ω1

m. Then, we have
(
C1

m

)α
V(1)

m = V(1)
m

(
Ω1

m

)α
for α ≥ 1. So

we obtain the following linear system of equations:

cm,1,α
i,1

(
β(1)

1

)4m−1
+ cm,1,α

i,2

(
β(1)

1

)4m−2
+ · · · + cm,1,α

i,4m =
(
β(1)

1

)α+4m−i

cm,1,α
i,1

(
β(1)

2

)4m−1
+ cm,1,α

i,2

(
β(1)

2

)4m−2
+ · · · + cm,1,α

i,4m =
(
β(1)

2

)α+4m−i

...

cm,1,α
i,1

(
β(1)

4m

)4m−1
+ cm,1,α

i,2

(
β(1)

4m

)4m−2
+ · · · + cm,1,α

i,4m =
(
β(1)

4m

)α+4m−i
.

Then, for each i, j = 1, 2, . . . , 4m, we derive cm,1,α
i, j as

det
(
V(1)

m
(
i, j

))
det

(
V(1)

m

) .

There is a similar proof for λ = 2.

As an immediate consequence of this we have

Corollary 2.9. For α ≥ 1,

J1
m (α) =

det
(
V1

m (k + 1, k)
)

det
(
V(1)

m

) for 1 ≤ k ≤ 2m ,

J1
m (α) = −

det
(
V1

m (1, 4m)
)

2 det
(
V(1)

m

) ,

and

J2
m (α) =

det
(
V2

m (k, k)
)

det
(
V(2)

m

) for 1 ≤ k ≤ 2m.
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