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co Can be Renormed to Have the Fixed Point Property
for Affine Nonexpansive Mappings

Veysel Nezir?, Nizami Mustafa®

?Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey

Abstract. PK. Lin gave the first example of a non-reflexive Banach space (X, || - |) with the fixed point
property (FPP) for nonexpansive mappings and showed this fact for (¢!, || - |l;) with the equivalent norm || - ||
given by

8k
[lx|l = sup

5 Z ), for all x = (x)nen € £
keIN =k

We wonder (cy, || - l») analogue of PK. Lin’s work and we give positive answer if functions are affine
nonexpansive. In our work, for x = (&), € ¢y, we define

= Jef' )
lxl := lim sup y Z PV where ¥k Tk 3, yris strictly increasing with y > 2, Vk € N,
P (e P 2]

then we prove that (co, [I-l) has the fixed point property for affine ||-||-nonexpansive self-mappings.
Next, we generalize this result and show that if p(-) is an equivalent norm to the usual norm on ¢y such
that

. 1y , 1y
hmnsup P (E mZ{ Xm + x) = hmnsup P [E ; xm] + p(x)
for every weakly null sequence (x,),, and forall x € ¢y, then forevery A > 0, ¢, withthenorm|| - || p = PC)+AN
has the FPP for affine || - [|,-nonexpansive self-mappings.

1. Introduction

Normed spaces (X, || - ||) with the property: [#] [ For every closed, bounded, convex (non-empty) subset
C of (X, 1| - I), for all nonexpansive mappings T: C — C [thatis, ||[Tx — Ty|| < |lx — yl|, for all x,y € C], T has
a fixed point in C] became known as spaces with “the fixed point property for nonexpansive mappings”
(FPP (n.e.)). Moreover, (X, || - ||) is said to have “the weak fixed point property for nonexpansive mappings”
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(w-FPP (n.e.)) if for every weakly compact, convex (non-empty) subset C of (X, || - ||), for all nonexpansive
mappings T: C — C, T has a fixed point in C.

The sequence spaces (c, || - ||) and (I, 1I-|l1) are both nonreflexive and possess the w-FPP(n.e.), but do not
have the FPP(n.e.). Researchers do not know whether or not every reflexive Banach space (X, || - ||) has the
fixed point property for nonexpansive maps but this and related questions have been and still are central
themes in metric fixed point theory.

For example, Dowling and Lennard [4] showed that every nonreflexive subspace of L![0,1] fails the
fixed point property and Dominguez Benavides [3] proved that given a reflexive Banach space (X, || - [I),
there exists an equivalent norm || - ||. on X such that (X, || - ||.) has the fixed point property for nonexpansive
mappings. In 2014, motivated by work in Nezir [17], Lennard and Nezir [14] used the above-described
theorem of Dominguez Benavides and the Strong James’ Distortion Theorems [5, Theorem 8], to prove the
following theorem: [If a Banach space is a Banach lattice, or has an unconditional basis, or is a symmetrically
normed ideal of operators on an infinite-dimensional Hilbert space, then it is reflexive if and only if it has
an equivalent norm that has the fixed point property for cascading nonexpansive mappings]. Moreover, in
[15], Lennard and Nezir proved that I' cannot be equivalently renormed to have the FPP for semi-strongly
asymptotically nonexpansive maps. Moreover, by a similar proof to that of Theorem 10 of Dowling,
Lennard and Turett [5], they showed that ¢y cannot be equivalently renormed to have the FPP for strongly
asymptotically nonexpansive maps. From this, we conclude that if (X, || - ||) is a non-reflexive Banach lattice,
then (X, || - ||) fails the fixed point property for || - ||-semi-strongly asymptotically nonexpansive mappings.
They strengthened this result to: [If a Banach space is a Banach lattice then it is reflexive if and only if it has
the fixed point property for affine semi-strongly asymptotically nonexpansive mappings].

In 2008, PK. Lin [16] showed that ¢! can be renormed to have FPP with the equivalent norm || - || given
by

k (o)
Y e, forall x = (oy)en € €'
n=k

|lx|l = sup
reny 1+ 8k

The analogue of P. K. Lin’s work for (cy, || - [l) is still an open question; that is, it is still unknown whether
or not there exists any renorming of cy such that it can have the FPP (n.e) respect to that equivalent norm.

Moreover, in the Ph.D. Thesis of Carlos Hernandez written under supervision of Maria Japén Pineda
[9, Theorem 4.2.1] and in their recent paper [10, Theorem 3.2], they invented an equivalent norm on L' that
has the FPP for all closed bounded sets and all affine nonexpansive mappings. This partially extends Lin’s
! theorem to L.

In the third section of our paper, we show that Banach space ¢y is also in the same category as L!; that is,
co can be renormed to have the fixed point property for affine nonexpansive mappings. Next, we generalize
it in our last section by showing that if p(:) is an equivalent norm to the usual norm on cy such that

lim sup p {% Z X + x] = limsup p [% Z xm] + p(x)
n m=1 n m=1

for every weakly null sequence (x,), and forallx € ¢y, then forevery A > 0, ¢o withthenorm/||- ||, = p(-)+A|l"ll
has the FPP for affine || - || p-honexpansive self-mappings.

2. Preliminaries

Definition 2.1. Let E be a non-empty closed, bounded, convex subset of a Banach space (X, || - [|). Let
T : E — E be a mapping.

1. We say T is affine if for all A € [0, 1], forall x,y € E, T((1 = A)x + Ay) = (1 = 1) T(x) + AT(y) .

2. We say T is nonexpansive if [|[T(x) = T(y)|| < llx — yll, forallx,y € E.
Also, we say that E has the fixed point property for nonexpansive mappings [FPP(n.e.)] if for all nonex-
pansive mappings T : E — E, there exists z € E with T(z) = z.
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Let (X, - |]) be a Banach space and E € X. We will denote the closed, convex hull of E by co(E). As

usual, (co, || - llo) is given by cg = {x = (Xy)neN : €ach x, € Rand lim x, = 0} with ||x]le := sup |x,| for all
=00 nelN

x = (Xp)neN € Co. Also, £ := {x = (Xy)neN : €ach x, € R and ||x||; := Z x| < oo} .
n=1

Lemma 2.2. ([19]) ¢o has weak Banach-Saks property ; that is, if (x,), is a sequence in cy converging to x in weak
topology, then there exists a subsequence (x, ), such that its Cesaro average converges in norm to x.

Lemma 2.3. ([7]) If {x,} is a sequence in I' converging to x in weak-star topology, then for any y € I!

r(y) =r(x) + |y - x||, where r (y) = limsup |x, — v, -

3. ¢y Can be Renormed to Have the Fixed Point Property for Affine Nonexpansive Mappings

In this section, proofs of our theorems and lemmas are inspired by the proofs of theorems and lemmas
given by Helga Fetter and Berta Gamboa de Buen [6] such that they extend PK. Lin’s work [16]. We
implement our ideas and get our desired result with the help of their work.

Lemma 3.1. ([6]) Let (X, || . ||) be a Banach space and let C C X be a closed convex nonempty (ccne) subset. Assume
T : C — Ca fixed point free nonexpansive mapping. Then, there exists a ccne T-invariant set D and a > 0 such that
for every ccne T-invariant set D’ C D, diamD’ > a.

Lemma 3.2. Let (X, || . ||) bea Banach spaceand let C C X bea ccnesubset. Assume T : C — Can affine nonexpansive
mapping and (x,), C C be an approximate fixed point sequence (afps). Consider a function ®@ : C — [0, oo) given by

m

s

n=1

, YyeC.

@ (y) = limsup

Ifd > infrec P(x) and D = {x € C: P(x) < d}, then D is a ccne T-invariant set with diamD < 2d.

Lemma 3.3. Let (X, ||.||) be a Banach space and let C C X be a ccne subset. Assume T : C — C an affine
nonexpansive fixed point free mapping. Let D C C and a > 0 be as in lemma 3.1. Then

inf {lim sup %Z Xn = Y|| 1 (n), €D, (xy),isanafps, y €D } g

Proof. Assume by contradiction that

inf {lim sup l X = Y|| : (xn), €D, (x4),is an afps , y € D } < g.

m mn:l
}ﬂ)

By Lemma 3.2, D’ is ccne, T-invariant and diamD’ < a which is a contradiction. [

Then there exists an afps (x,), C D such that

m

IR

n=

§IH

= {ye D : limsup

Lemma 3.4. Let (X, ||.|) be a Banach space and let C C X be a ccne subset. Assume T : C — C an affine
nonexpansive fixed point free mapping. Let D C C and a > 0 be as in Lemma 3.1 so that D is a T-invariant ccne set
such that if D’ C D is a T-invariant ccne set then diamD’ > a. Then,

m
IR

n=1

SR
AN

zeX

inf {hm sup 2 (X)), € D, (xn),is an afps } >
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Proof. Using Lemma 3.3, for every s € IN, for every afps (xi), € D and for any z € X,

a 1 v 1v 1 v 1
- <l — - - < I — -zl +|lz— =
5 < 1mﬂ~;;up m;x" S;x, < 1msup ng‘xn z z Zx,
Thus,

a 1 v 1v 1 v 1v
— < limsuplimsup ||— Xy — — X < limsup||— Xy —Z +11msu z— — X
2 sp,,,pm;”srzlr pm;" p s;r

1 m

= 2lim sup p an
n=

O

Corollary 3.5. Let (X, || . ||) be a Banach space and let C C X be a ccne subset. Assume that T : C — C is an affine
nonexpansive fixed point free mapping and that for every T-invariant ccne set D C C, let a > 0 be as in Lemma 3.1
and diamD > a. Then,

DR

n=

»lkm

inf {hm sup 2 (xn), € C, (xpn),is an afps, xy, g x} > -

Now we give another lemma but from now on, unless it is stated as a different norm on cp, the norm
Il Il on co will denote the equivalent norm as follows: For x = (&), € co, define

é P \»r
lx]ll == hm n sup yk[z | | ] where y T 3, ykis strictly increasing with yx > 2, Yk € IN.
® keN

We can understand easily that the above expression is indeed an equivalent norm on ¢y due to the following
facts:

Let x = (&i);en € co. We will consider x # (0,0, - - - ) otherwise proof of the claim is clear.
Then,

AN €N 3 |lxllo = sup|&l = max|&l = [En].
keN keN

Due to power mean inequalities formula (see eg. [8]) (using the one given with weighted power means),

llxlloo max |&i|
k<N

= max{|&], &, -, En}
_ (|51|p+|52|p+"'+|5N|p)”
= lim

2N

p—NX)

Then, it is easy to see that our norm is equivalent to the usual norm on cy.
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Lemma 3.6. Assume that (x,), C (co, || - ll) and x, — 0. Then, there exists a subsequence (x,), of (xu), and a
w

M4
sequence (uy), with we = Y, aje; where (e;); is the canonical basis and (a;); C R such that
i=mp+1

1
lim ||= ank —Uj

j
j—oo ] P

o0

The proof of the above is straightforward by the proof of the Bessaga-Pelczynski Selection Principle [2,
p-46] [1] and by passing to a subsequence of (x,), that is equivalent to the block basic sequence (u4), and is
essentially disjointly supported.

One can easily obtain the following partial analogue result to [7, Lemma 1] by the following lemma.

Lemma 3.7. Let (xy), be a bounded sequence in a Banach space (X, ||-||). Consider a function s : X — [0, c0) given
by

Then, if X has weak Banach-Saks property and x € X is the weak limit of the sequence (x,),, then there exists a
subsequence (xy,), whose norm limit is x such that if s is redefined via this subsequence, we have s(x) = 0 and
s(y) = ||y —x|| , Yy € X and for any equivalent norm |||| on X.

Thus, since co has weak Banach-Saks property [19], the above can be applied.

s(y) = limsup , YyeX.

Remark 3.8. We need to note that exact cp-analogue of [7, Lemma 1] cannot be done. Indeed, dx € ¢y and a
sequence (x,), in ¢ such that

n

%Zxk—x

k=1

n

N

k=1

lim sup + [xloo-

n

# limsup
n

Now consider the following 2"~! x 2"~! matrices E,, n € N.

=[] =y o] e

_ e
O R ==
OO ==
OO O

i.e., E, will be the 2! x2""!-matrix whose ij-th entry is 1 if i < jand 0 otherwise. Using these as “diagonals”
and zeroing out all other entries of the matrix, define an infinite matrix

Ey 0s 0s O0s
0's E, 0s 0
g=|0s 0s E; 0
0’s 0's 0's E4

If x,, denotes the n-th row of the infinite matrix E, then (x,) is a sequence in ¢y that converges weakly to 0.

211 B
Note that 2,,1—_1 Y x| = % > % Then, if x = e, it is easy to check that
|
, 1v , 1v 1
1 =limsup|— X —x|| # limsup —Zxk + ¥l = = + 1.
n = n = 2
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But when we work on ¢y, one can consider the fact that co has so called m, property where p = co by N.
Kalton and D. Werner in [12] and then we could say the followings:

1 IRy
lim sup ||— Xp — X = max.limsup (|- xell 5 Xl 1)
1v ' %
= lim|limsup|= ) x| +Ixl"] -
p—)oo[ n P Tl; -

Lemma 3.9. Assume that (x,), C (co, || - lle), X — x and that
w

i

%an—x

n=1

= q exists. Then, lim

j—oo

=4a.

00

Proof. Scaling y,, we may assume that yx Ty 1, yxis strictly increasing and we can redefine the equivalent
norm according to this change. We may also suppose without loss of generality that x, — 0. Let (x,,),
w
j
be a subsequence of (x,), such that lim % Y, X,
k=1

]—)OC

exists. By Lemma 3.6, we may assume that there is a

[e9]

M1
sequence (ux), with ux = ), aje; where (¢;); is the canonical basis and (#;); C R such that

i=my+1
1y ¥
]lgg ;kz_;xnk uj i :]h_)rg ;kz_;xnk ujfl = 0.
Define yy = x,, for every k € N. Then,
Iy . (TR .
fim 5 2w = i ] = and tim v =lim el

By the definition of the equivalent norm || . ||, there exists / € IN such that

e\

) = 2 im [Z;‘ %] where g; = 0 in case i < m;.
P

Since y;, < Y41, if n < mj, we have that

1 1
Mjq P Mjq P
lim Z—Iai|p = lim Z —lai|p
V”p_wo AVEDY y”p—)oo , i
1=n i=mj+1

it |
< Ypp lim
p—eol !
i=mj+1
Mj+1 P %
~ et Y 10
Vn+1 p—sco 2i
i=n+1

and mj+ 1<I< M1 Also,

1
Mjs1 My »
lim Z —lailp > lim Z _|a,-|”

i:mj+1
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and so

==
==

V= Vm lim E% 7>1im i lail 7
Vimj - PO 2] ey, 2

i=l

Hence, we obtain that

el = [l

771,41 P P
su la;| — y; lim Z M
p il =71 psco i

mj+1<i<mjy

1 1
"Z”” | '”Z’” |
= lim — | —y/lim —
p—oo 21 p—oo ; 21

i=mj+1

A IA
. R
—_ —
+ |
= =
§ =
I 3
P
= | E
~— <
I~ Jr— p ——
J’é =
8 +
Y S p—
M\S =y
g
I\J|_ —
— i
N2
bﬁ/‘

|
—_
S
F =
X
|
~
JE
g5
—_——
-M\i_
R
N|§
=
————
==

Then, taking the limit as j — co, we get that lim |[u;l|  — |“u]|H = 0and so
j—oo

~ tm ] = tim [ = tm

j—oo j—oo jooo

lim

jooo

1¢ 1¢
;E Yk ; E Yr|| =a.
k=1 k=1

(o)

j
Since every subsequence of % 2. xi has in turn a subsequence such that
k=1

lim

j—oo

j
% Y. x|l =a, we get the desired result. Also, the reciprocal can be proved in the same way. [
k=1

(o)

Lemma 3.10. Assume that (x,),, C (co, |l - lle), Xy — x and that
w

. IG-. 1y ¥

fi fim | 5 )3 = 5 Qo =aond fim ) )
exist. Then, there exists a subsequence (), of (x,),, such that

s g ¢

lim i 7 )y = 5 X | =0 =2lm 5 o

Proof. Similarly to the proof of Lemma 3.9, scaling y,,, we may assume that yx Tx 1, yxis strictly increasing
and we can redefine the equivalent norm according to this change and we can let (x,, ), be a subsequence of

i
% Y. Xy || exists. Furthermore, by Lemma 3.6, we may assume that there is a sequence
k=1

(o)

(x1),, such that lim

j—0o
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M1
(w) withug = Y, aje; where (e;); is the canonical basis and (4;); C R such that
i=myp+1

= lim

j—oo

j
1
lim - Xy
j—wo ] ;

b

k=1

We may also assume, by passing a subsequence that

S

1 1
-ty

n= n=1

and lim lim |||u] - Msm

§—00 ]—»oo

lim lim

5§00 j—o00

exist. Define y; = x,, for every k € IN. Then, for every j,s € N,

1 j 1 s 1 j 1 s
RO L5 3P B 15y (R 15 Pt
] n=1 5 n=1 ] n=1 s n=1
1 j 1<
< - ll+ ) Y-l L Y-,
]nzl n=1
and
1 j 1 s 1 j 1 s
(PRI Ly P [ PR R 11 S
J n=1 00 s n=1 o0 J n=1 S n=1 0
1 1e
< ||uj_u5”oo+ = Yn —uj|l + s Yn — Us
n=1 0 n=1 0o
Hence, lim lim Mu] —u5||| = a. Assume that s > j. By the definition of the equivalent norm || . ||, there exists

§—00 j—)OO

I e N withm;+1 <1 < ms, such that

_y a:')p ; 0 if i<mjormj <i<m
mu —usm =y, lim —| wherea, ={a; if mi+1<i<mi
j pse o i j j
i=l or ms+1<i<mgq.

Since ¥y < yns1,if n < mj, we have that

' Mg Ll;p ‘ Mg |a;‘p %
popin S| - 3 B

==

_ MP ;
)/n+1;}i_1;§o Z ?

<
i=n i=mj+1 i=mj+1
1
Msi1 |ﬂ;‘p 4
Vn+l 00 i
i=n+1

Hence we obtain that

1 1
| M1 |a;"’ P | Ms41 |a;|7’ z
im — | = +1 lim E —_—
Vi p—o ZA 21 - ym/+1 p—oo 2t

i=l i=mj+1

iV, (Y
; >,}E{LZZ 2|

mj+1

and so
Mj+1

)/l - ym]‘+1 lim
S

=]
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Thus, we have
Ms+1 ! |p ;

,,
sup W-%E&@:ér)

mj+1<i<mgyq i=l

wy Y w oY
. . 1
- 352[,2 21] ‘VIJE?O[ZTJ

i=m;j+1 i=l

o = el = ot = e

M4 )F’ ; -1 |a(|P ;
< (1- )/z) lim [Z > ] +;E§O[A_Z #]
i=l i=mj+1
Therefore,
m ’|p ;
Vi— Vm [l )
=B -ll 5 (142522 - (3
Ms+1 '|P %
(Y. ="
- (ym,-+1 yl)r}g‘o(; 2 ]
Assume that ], < d (since the sequence is bounded). Then, 0 < [lu; =l = [Ju; = ]| < (2 = )24

taking the limit as j — oo and as s — co next, we get that
lim lim [fu; — wl| |||uj - usm = 0 and so using Lemma 3.9 and Lemma 3.7 (and considering we had passed
S—00 J—

to a subsequence already) we obtain that

] s
1 1
a = lim lim |||u] - usm = lim lim |ju; — ul| , = lim lim |- E Xp— — Xy
S§—00 ]—)00 §—00 ]—)oo S§—00 ]—)oo ] S
k=1 k=1 lloo
S
R ! Iy N ERS
=l1m—.§ Xx +hm—§ Xj =211m—.§ x¢|| =2lim —.E Xxl|-
j—o0 ] s—x || S jooo ] j—oeo ]
k=1 oo k=1 lleo k=1 oo k=1

O

Lemma 3.11. Assume that C C (o, ||*lle) isa ccneset, T : C — C is an affine nonexpansive fixed point free mapping,
(x4), € Cisan afps, x, — u, such that
w

j
1
lim (|- x, —ul| exists, ®:C — [0, ) given b
]—)oo ]nZ . [ )g y
® (x) = limsup lZm;xn—x andD:{x: (D(x)sé}i(l)andso {x: O(x) <d}+0.
mo || . 4

Assume further that (y,), C D and y, — y. Then,

m

1
~ Y -y

n=1

lim sup

(o)
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Proof. Using equality (1), for every s € IN,

d 1y 1y
1 > limmsup a;xn—ysm—hmmsup a;xn—u+u—ysm
1 m
> lim a;xn— sllve =y +y=ul,

m
%l > hmsuphmsup Z %an—.‘/k
=1 =1 o0
1 ” 1y
T i L _Z
> 1mssup 1mmsup m;xn 5 L Yn .
> =l 1 v 11' ly
- _mlirolo EZXW _”y_u||°°+zsg{'}’ gzyn_y
n=1 oo n=1 e
Thus,
1 v 1y
limmsup E;yn—ymﬁd‘ﬂ,& m LY w—“y—un-

Now, we prove the corresponding lemma in (co, [[-[l)-

Lemma 3.12. Assume that C C (cy, || |le) is a ccne set, T : C — C is an affine nonexpansive fixed point free mapping,
(xn), € Cisanafps, x, — u, such that
w

LY e

n=1

lim

j—oo

exists, (uy), is as in lemma 3.6,

lim

j—oo

j
1
—E Xy —u—1ujl| =0, ®:C — [0,0c0) given b
j i g Y

n=1

m

. 1 o
CD(x):hmmsup aan—x and D = {x: O(x) <d} #0.

n=1
n
Assume further that (y,), C D, yx =y and lim || ¥y — y|| exists. Then,
n—oo |7 2

lim

Proof. Assume ¢ > 0, k such that H|y - Pkym < ¢ and [Ju — Pyul| < € where Py is the natural projection. By

Tn+1
passing to a subsequence of (y,), we may also assume that there is a sequence (v,), withv, = Y, bje; and
i=ry+1
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lim %kéyk—y—vn . Let N > k be such that for n > N, %élxk—u—un < ¢and %élyk—y—vn <e.
Then, if m, > rj;1 > N, then
1y 1y
lim sup Mun +Peu—v; — Pkykm < limsup| [|" kg = Yilll kg o =W myj —V- U;l”
" ' = Pl + [y = Pey|
< d+4e.
Then, if rjy; > kand m, +1 > rj;; and r; +1 < s; < 741 is such that |Hv]||| = ys.Psllvjll, , we get
Mun + Pru — v; —Pkykm > sl + lluallee) = |||v]|” + |luxll. Hence, since u, - 0, using Lemma 3.9,
d+4e > |||v]|“ + Vs lirrlnllu,,lloo = |||Z)]|H + Vs lign ll#,ll and by passing to the limit as j — oo, we have
d +4e > lim MZJ]m + lim [|u, || = lim % é i — y|| + lim || 1 i Xy — u|| and this concludes the proof. [
] n ] k=1 n m=1

Theorem 3.13. Assume that C C (co, || - ll) is a ccne set, T : C — C is an affine nonexpansive fixed point free
mapping, (x,),, C C is an afps, x, — 0 and that
w

1 &
D= {x : limmsup p HZ:; Xy —X i < d} is assumed not empty.
If
1 v , .
¢ = inf {limmsup p” HZ:; Yn — ylH : (Yn), €D, (yn),is an afps with y, = y},
then
inf {lim sup %i Yn—2|| : 2 € D,(yn), C D is an afps with y, = y} > 2c.
" n=1
Proof. By contradiction, assume that there exists z € D and (y,), C D is an afps with y, =Y such that
a= lim 1 £1 Y — z|| < 2c. Then, by the hypothesis, lim sup m% fl Yn — yH > cand

zeDlz{ueD: lim sup
m

1 m
a;yn—u Sa};t(l)

and Dj is a ccne which is T-invariant by Lemma 3.1. Let (1,),, € D be an afps which converges weakly to
u. Then, by Lemma 3.12,

m

1
azyn—y

n=1

<a- lim <2c—-c=c
m—00

m
E U, — U

n=1

lim sup
m

S

which is a contradiction. [

Theorem 3.14. Consider the equivalent norm ||-|| to the usual norm || - || of co given below.
For x = (&k)x € co, define

o (g P
llxl := lim sup yx Z L where v Tk 3, Yi is strictly increasing with vy > 2, Vk € IN.
p—ee keIN j_k 2]

Then, (co, IIl) has the fixed point property for affine ||-||-nonexpansive self-mappings.
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Proof.

Py
Define |lx]l; := )/k hm [2 | ]| J Vk € IN.

Then, ||x[| = sup Ixll. By contradiction, assume that C C (co, | - [l) is a ccne set, T : C — C is an affine
kelN
nonexpansive fixed point free mapping and that C satisfies the hypothesis of Corollary 3.5. Thus,

m

1
¥

m n=1

b = inf {lim sup

¢ (yn), € Cis an afps with y, — y} > 0.

Let a = 4y1 — 8, €1 = {5, assume that (x,), C Cis an afps with x, — xo and that
w
n

%in—)(()

i=1

b <lim < (1+ )b
n

Without loss of generality we may assume xo = 0 and by Lemma 3.10, taking an appropriate subsequence,

n
lim % Y, x;||| exists and
n—o0 i=1
1 v 1 v 1v
7}113010}}% a;xl EZ‘ l =2;}g§o ;;xi <2(1 + &1)b.
Let
1 n
D={Z€C: lim sup - Xi—2z S2(1+€1)b}.
n i=1
Then by the above, D is a ccne set. Now, let
m
. . 1 . .
c =inf{limsup || — Zyn -yl : (yn), € Disan afps with y, — y¢.
m m n=1 ¢

Note that ¢ > b and that if (y,), C D is an afps with y, — y and lim H‘ Z Vi— y‘” exists, by Lemma 3.9,
w n—oo

n n n
bScS’}im”‘%Zyi—y“ =&im”}l2y, andbﬁ}}im %lei —Alm” Elxi and so
—00 i=1 —00 — i= - co
1 1 n n
—Mll, = il = tim |~ Y x|+l - m |- Y )
g =1 oo 1 oo
, 1v 1v
fé%%zzﬂﬁ ‘EZ”}
i=1 ) i=1 )
4 1 n 1 m 1 n 1 m
< —lim 1 - ;- = Al = lim |[= Al —2lim ||— =

< —(1 + 81)1’) 3b = b(— -3+ éé’l)
71 71 71

Now let x € D satisfy
lxlly < llxdll < (T + e1)b < (1 + e1)c. )
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n n
Such an element exists since lim ‘l Y. xill| < (1 + &1)b and so for n large enough % Y xilll < (1 + &1)b.
i=1 i=1
Let &2 = 35,5 and m large enough so that
1
)/_1|"(I = Pu)xlly = I = Pl < cé2. (4)
n
Letes = m where ®,, = 1-7y,, and let (), C D be an afps with y, =y and ,}1_{2) m% E‘l yi — Y| exists
such that
1 n
CimlEY ey = pm Y ey ) P
< (1 + 83) .
Thus, there exists N € N such that for every k > N,
lli ; — < +e3) )
y1||k 4 nimy = i
i=1 oo
N
Now let A = 75 ’&) 5 and setz = Ax + (1 - Ny Ei yi € D (due to convexity of D) and pick j > N.

Now note that if k > m, then ||u||; < %Illullll, Yu € ¢y and so using the inequalities 2, 4 and 5, we have

1¢ 1¢
Hl Zyz—z = (I—P@;Zyi—z <I—Pm>72yi—y+y—z
i=1 i= k
1 j N
< 72%— +(1-2) Z + Al = Pl + ||l ]
i=1 i=1
[ 8 8
< v+ e3)(2 = A) + Ayren + Ay (— -3+ —61)] c
L V1 V1
< 2+283+/\(€2—4+§+§81—83)]C
L YN
ad?, ]
<
88+ a)(1 - <Dm)
But if k < m, then
1¢ 1 ¢
—.Zyi—z < — —.Zy,-—y+y—z
]izl k ]i=1 1
A 1 (|1 ¢ 1
< Y| — Ulixlly + +—1l= =yl +A-Mll< i
SETCI MO IS RRERE IO |
9 9
< [2—2<Dm+(1—CDm){/\(——3+—£1)+283Hc
V1 V1

5_ D,,(20 + 3a)
2(8 + a)



V. Nezir, N. Mustafa / Filomat 32:16 (2018), 5645-5663 5658

1¢ ad?, ®,,(20 + 3a)
;;yi—z < max{[Z— 86+ a) _q)m)z]c,[Z— —2(8+a) ]c} <2c

contradicting with Theorem 3.13. [

Hence, lim
j

4. Family of Equivalent Norms on ¢y with FPP for Affine Nonexpansive Mappings

In this section, we generalize our result from the previous section and firstly we would like to note
that the proof of our theorem below is inspired by the proofs of theorems and lemmas given by Carlos A.
Hernandez-Linares, Marfa A. Jap6n and Enrique Llorens-Fuster [11] such that they extend PK. Lin’s work
[16]. We implement our ideas and get our desired result with the help of their work. In our theorem, the
reader will notice that Lemma 3.7 shows that our hypothesis in our theorem below is reasonable. Now, let
us see our theorem with its proof and a remark concluding our paper.

Theorem 4.1. If p(:) is an equivalent norm to the usual norm on co such that
limsu 12”,‘ Xy + x| =limsu 1214: X |+ p(x)
; pp n L m T ams pp n L m|+pP

for every weakly null sequence (xy),, and for all x € cy, then for every A > 0, co with the norm || - ||, = p(-) + All-ll has
the FPP for affine || - ||,-nonexpansive self-mappings.

Proof. First of all, let us define for any k € IN and for any x = (&;);en € Co,

P \r
4
Si(x) = hm [2 TJ and pr(x) := p(x) + AyiSk(x). (6)
]_
Note that it is clear that for every x € cy, [|x|]| = sup Sk(x) and due to Lemma 3.7, for every weakly null
k
sequence (x,),, there exists a subsequence (x,,), such that for every x € ¢y and for all k € IN,

i j
. 1
lim sup py [7 Z X, + x] =lim sup Pk [ Z x,,l] +p (7)

] =1 =1

~. =

Now, by contradiction, assume that (co, [ - ||p) fails the fixed point property for affine || - ||,-nonexpansive

self-mappings. Let T and D be as in Corollary 3.5 and 7 be the weak (a(I*, I'))-topology in ¢y that we will
denote by w.
Define

m

%an—x

n=1

M :=inf{limsup

:(X0)y €D, (x4),is an afps, x, = x3.
m w

p

Note that M > 0. Assume that A(D) is the set of all (x,), C D such that (x,), is an afps converging weakly
Z Xp— U

(w) to some x € ¢y and such that lim p( Z X — ), lim [||2 7
k=1

and lim Sy (]. Y, xe — u) exist for any
j j

j k=1

u € cp and for all k € IN.
Now, due to separability of ¢y, we can say that

1 m
LY o

n=1

M = inf{lim

m

s (xy), CAD), x, =X
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Without loss of generality we can assume that M = 1 and from the equivalence of the norms, we can obtain
that

c:=inf{ldl = p(x)=A}>0andd = inf{lll : llxll, = A} > 0. (8)

Choose 61 > 0 such that 111‘11 + 2061 < 1 an afps (x),, € A(D) such that weak-lim x,, = x and

m
lim ||+ ¥ x, —x|| < 1+ 6. Without loss of generality we can assume that x = 0. Now, note that K :=
m n=1
p
m
{z €D : lim % Y. x, —z|| <2426 ;isanonempty closed, bounded, convex and T-invariant subset and
m n=1
p
there exists 19 € IN such that for every n > ng, x, € K.
Define

Q :=inf{lim :(Yn), CKNAD), yp =y

1 m
lazyn—y

n=1

and note that

1<Q<lim <1+06;. )

Define A(K) := {(yn)n CAD): yp €K VneN } and pick an arbitrary afps (v,), € A(K) with y, — v.

Then, for every k € IN, without loss of generality, by passing to the appropriate subsequence of (x,), if
nexessary, we have

2+26; = limsuplim len—l Yn
§ " m n=1 S n=1 p
. ' 1 m 1 s
= hmssuphrﬂnpk{az_;xn—g . yn]
= limsup [l lzm: + 1 S by (7)
= SS p lmnf’up Pl L™ | TP Yn y
n=1 n=1
1 v 1y
= limsuppk[aan]+limsuppk(g yn—y]+pk (y) by (7)
m n=1 s n=1
= lim lix + Ay lim S L 3 Xy |+ lim li —y|+ Ay lim S 12 —y|+pr(y)
= umn=1n Vil kmnzln SPSn=1_‘/n y Vil kSn=1yn y{t Py
= lim lix + Ayli lzm“ +1i li —y |+ Apeli li =yl + px (v)
= ample n yiamo\ e 7 X mpy < Yn—Yy Vi< Yn = Y||| P Y
n=1 n=1 n=1 n=1
> li li +1i 15 - + ok ()
z yk(hm - _1xn mi 13/n y Py
n= I n= I
2 2k + e (Y) -

Thus, if (y,), € A(K) is an afps with y, — y, we have
w
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P (1) < 2(1 = i) + 261 < 2+ 261. 10)
Now, we choose s such that % <201 <5 < 1and note that from (8) , for all u € ¢y, p(u) < % Thus,

m
Lim |1 Y x,
m m o [|™ 2
lim p le,, < - p<1+(51
m m e 1+c 1+¢c

But recalling we took x = 0,

: Iy | 1y : Iy |- 1y
hmksup Pk [n_o an] = p(n—o an] + /\hmksup VkSk [71_0 an] = p[n—o Zx,,].

n=1 n=1 n=1

Therefore, there exists kg € IN such that for all k > ky,

1 1+6
pk[ﬂ_o;x"]< 1+c ()
and
Gk = 1115; +2(1 -y +20 <s<1<Q. (12)

Since K is a bounded set, 3H > 0 such that p(x) < H for all x € K. Thus,

Pk [nlo Z x,,] <H, VkeN. (13)

n=1
Now, let us define sp := 1 — M(1 — y4,). Note that sy < 1. Define also

h:=H + 2 + 201 and note that by (9), h > Q > s0Q (14)

Now, choose a € (0, 1) that satisfies a < %{)‘S’) ;hence, 2 — a)Q + as =20 — a(Q —s) < 2Q and

(2 = a)spQ + ah = 250Q + a(h — s9Q) < 250Q + 2Q(1 —sg) = 2Q.
Thus, we can find 6, > 0 such that

2 - a)(Q+6) +as < 2Q (15)
and

2 = @)so(Q + 62) + ah < 20Q. (16)
Note that for

W :=max{(2 —a)(Q+ 02) + as, (2— a)so(Q + 02) + ah} , W < 2Q. (17)
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Now, let (v,,), € A(K) be an afps with y, % f Yn — < Q+ . Then, AN € IN such that
w n=1 P
Ym > PJo,
1 m
aZ{yn—y <Q+ 6. (18)
n= P
Also,
. 1 v . 1 v . 1 v
hnI;npk[EZyn —y] = hnrqnp[aZyn —y] + Aykhrﬁnsk[anyn —y]
n=1 n=1 n=1
1 m 1 m
= 11mp[a L Yn —y]+)\ykllr{1n ‘a;}/n -y
1 m 1 m
= 11nr1n p” Vo —yl| —Q=y)A 11'1nn Ha Z Yn — ym
n=1 o n=1
< [1-@1-ypd] hm Z Yn — by definition of d from (8)
< [1-1-ydl(Q +02)

and we can find N; > Nj such that for all m > N; and for all k < kg

[ Z Yn = ] = (1 =yl (Q + 82) < 50(Q + 62). (19)

1o Ni
Now, define zj := ar}—o Y, x,+ (1 - a)Ni] Y. yn and note that since K is convex, zg € K. Now, we show that
n=1 n=1

m

W.
First, we need to take the equation % Y. Yn—20 = % Yyn—y—(1- 0()( Z Yn — ) (no Z X, — y)
n=1

n=1 n=1

m % Y. Yn —20|| < Wand to prove that we will observe forallk € N and forallm > N, p (% Y Yn— Zo) <
n=1 n=1

p

into consideration.
We will have two cases to see this for m > Nj.

Case 4.2. k> ko :

m m N 1o
1 1 1 1
Pk[a;yn—zo] < pk[a;yn—y]‘ﬂl—“)f?k[ﬁl;yn—y]"‘“[Pk[n_O;xn]‘FPk(]/)}
1 1 W 1y
< Ezl‘yn—y +(1-a) mzfyn_?/ +0‘[Pk(n_0 1xn]+pk(y)l
n= p n= P n=

< 2-a)(Q+6)+a [pk [nlo xn] + Pk (y)l by (18)
n=1

< 2-a)Q+b)+a [1116; 21—y + 251] by (10) and (11)
= RQ-a)Q+0)+ag <2—-a)Q+ ) +asby (12)
< W from (17).
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Case 4.3. k<ky:

m m Ny Mo
1 1 1
Pk{a;yn—m] < Pk[az_;yn— ]+(1 a)pk [N Z_{ ]+0‘[Pk[ fon]ﬂ?k(y)l
< s02-a)(Q+62) +a [Pk( Z xn] + Pk (y)} by (19)
< s02—a)(Q+62) +a[H+2+201] by (13) and (10)
< 502 —a)(Q + 02) + ah by (14)
< W from (17).
Then, pk(% f Yn —zo) < Wfor all k € N and for all m > N;. Thus, % f; yn—y|| < Wforallm > N; and
=1 =1 )
o n n p
. 1y
hmmsup EZyn—y <W.
n=1 p
Now, we can say that there exists a nonempty subset K := {z € K : limsup,, ||+ f Yn—2z|| < W} and an
n=1 p

afps (), € Ko N A(D) with u,, = u € ¢y. Then, for every k € IN,
w
m S

1 1
w5 Lt

n=1 n=1

W

[\

lim sup lim sup

p

1 m 1 s
li li - n— n
1mssup lmjuppk[mnz_;y SZH ]

v

S

, 1y . 1
11;1npk[a E yn—y]+h§npk[g E un—u]+pk(y—u) by (7)
n=1

n=1
li l y —y|+ Ayl
imp|— 2-1 Yn =y |+ Ayilim

Thus, by taking limits as k approaches to infinity, we obtain that

v,
o Yn—VY

n=1

1y .
+h§np EZun—u}+/\ykh§n -

n=1

[\

m

1
EZV"_y

n=1

S

%Zun—u

n=1

W > lim + lim
m S

>0+Q=20

p

p

which contradicts the definition of W by (17). Therefore, (co, -1l p) has the fixed point property for affine
Il - ll,-nonexpansive self-mappings. [

1 1
Remark 4.4. Since ||x]|,, = lim (Z %k'p) lim (Z 'ék‘ ) Vx = (&)ien € co, one can conclude the following

result using the equivalent norm constructed by the first author in his recent study [18] that is actually
prepared after this paper.
For x = (&), € co, define

e

lxll™ = hm sup)/ [Z ] where Y Tk 3, ykis strictly increasing with yx > 2, Yk € IN,
k
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then (co, [I-II”) has the fixed point property for affine [|-||”-nonexpansive self-mappings and if p~(-) is an
equivalent norm to the usual norm on ¢y such that

n n

. 2|1 o -1 -
hmnsupp EZ X+ x| = hmnsupp . Z Xm |+ p~(X)

m=1 m=1

for every weakly null sequence (x,), and for all x € ¢y, then for every A > 0, ¢y with the norm || - - =

p~ () + Allll” has the FPP for affine || - [|,--nonexpansive self-mappings.
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