Filomat 32:16 (2018), 5691-5705
https://doi.org/10.2298/FIL1816691K

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Inverse Problem for Euler-Bernoulli Equation
with Periodic Boundary Condition

Fatma Kanca?, Irem Baglan®

“Faculty of Engineering and Architecture, Fenerbahce University, Istanbul, Turkey
hDepartment of Mathematics, Kocaeli University, Kocaeli 41380,
Turkey

Abstract. In this work the inverse coefficient problem for Euler-Bernoulli equation with periodic boundary
and integral addition conditions is investigated. Under some natural regularity and consistency conditions
on the input data the existence, uniqueness and continuously dependence upon the data of the solution
are shown by using the generalized Fourier method. Numerical tests using the implicit finite difference
scheme combined with an iterative method are presented and discussed. Also an example is presented
with figures.

1. Introduction

Inverse problems is a research area dealing with inversion of models or data. An inverse problem is a
mathematical framework that is used to obtain information about a physical object or system from observed
measurements. It is called an inverse problem because it starts with the results and then calculates the
causes. This is the inverse of a direct problem, which starts with the causes and then calculates the results.
Thus, inverse problems are some of the most important and well-studied mathematical problems in science
and mathematics because they provide us about parameters that we cannot directly observe. There are many
different applications including, medical imaging, geophysics, computer vision, astronomy, nondestructive
testing, and many others. For example, if an acoustic plane wave is scattered by an obstacle, and one
observes the scattered field far from the obstacle, or in some exterior region, then the inverse problem is
to find the shape and material properties of the obstacle. Such problems are important in identification of
flying objects (airplanes missiles, etc.), objects immersed in water (submarines, paces of fish, etc.) and in
many other situations. In geophysics one sends an acoustic wave from the surface of the earth and collects
the scattered field on the surface for various positions of the source of the field for a fixed frequency, or
for several frequencies. The inverse problem is to find the subsurface inhomogeneities. In technology
one measures the eigenfrequencies of a piece of a material, and the inverse problem is to find a defect
in this material, for example, a hole in a metal. In geophysics the inhomogeneity can be an oil deposit,
a cave, a mine. In medicine it may be a tumor or some abnormality in a human body. If one is able to
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find inhomogeneities in a medium by processing the scattered field on the surface, then one does not have
to drill a hole in a medium. This, in turn, avoids expensive and destructive evaluation. The practical
advantages of remote sensing are what make the inverse problems important.

Mathematical modeling is advantage point to reach a solution in an engineering problem, so the accurate
modeling of nonlinear engineering problems is an important step to obtain accurate solutions. Most
differential equations of engineering problems do not have exact analytic solutions so approximation and
numerical methods must be used. Recently some different methods have been introduced to solving these
equations, such as Finite difference method, Finite Element method, Keller Box method, Boundary Element
Method, etc.[1, 14, 15].

Mathematical modeling of sound wave distribution problems and also the vibration, buckling and
dynamic behavior of various building elements widely used in nano-technology are formulated with
following Euler-Bernoulli equations

u  du
W + w = f(x, t,u).

Due to the new and exceptionally its electronic and mechanical properties, carbon nanotubes are con-
sidered to be one of the most useful material in future. Nowadays, nanotubes are used as atomic force
microscopy, nanofillers for composite materials, nanoscale electronic devices and even frictionless nanoac-
tuators, nanomotors, nanobearings and nanosprings [8, 13, 16]. These elements are tackled by different
boundary conditions depending on different loading conditions. Therefore, investigation of existence and
uniqueness of the solution of Euler-Bernoulli equations with different boundary conditions used in the
mathematical modeling of the structural components of nano-materials continues to be a focus of interest
amongst mathematicians.

The main goal of this study is to investigate the solution of the unknown function in Euler-Bernoulli
equation equation with periodic boundary conditions and integral overdetermination condition. We first
obtain the formal solution of this problem using Fourier method. As the next step, we find the existence,
uniqueness and continuous dependence of the solution using iteration method. Finally, we investigate the
numerical solution of the inverse problem using linearization and finite difference method.

Let T > 0 be fixed number and denote by Q1 := {0 < x < 7,0 <t < T}. Consider the problem of finding a

pair of functions {r(t), u(x, t)} satisfying the following equations

?;—t]: + % —a(tyu =r(t)f(x,t,u), (x,t)€Q (1)
u(0,t) = u(m,t)
ux(0,t) = uy(m,t)
Un(0,8) = un(m,t) ()
uxxx(o/ t) = uxxx(n/ t)/ te [O/ T]
u(x/ 0) = (p(x)r ut(x/ 0) = l,D(X), x € [O/ ﬂ] (3)

Tt

E(t) = f u(x, t)dx, t € [0, T] 4)

0
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for a quasilinear parabolic equation with the nonlinear source term F = F(x, t,a, u) = a(t)u(x, t) + r(t) f(x, t, u),
where f(x,t,u), p(x), P(x) and E(t) are known functions which are positive and continuous. Determination
of the pair of functions {r(t), u(x, t)} is called the inverse problem.

Many problems of modern physics and technology can be effectively described in terms of nonlocal
conditions. Also, these problems have many important applications in chemical diffusion, thermoelasticity,
heat conduction processes, population dynamics, vibration problems, nuclear reactor dynamics, control
theory, medical science, biochemistry and certain biological processes. For example, in the study of the heat
conduction with in linear thermoelasticity, [4, 5] investigated a heat equation subject to nonlocal boundary
conditions. Over the last years, considerable efforts have been put in to develop either approximate
analytical solution and numerical solution to non-local boundary value problems. Cannon et al. [3]
implemented implicit finite difference scheme to obtain numerical solution of the one dimensional non-
local boundary value problems. [6, 7] studied non-local boundary value problems and concluded that
the presence of integral terms in boundary conditions can greatly complicate the application of standard
numerical techniques such as finite difference schemes, finite element techniques etc.[2, 11, 12]

The periodic conditions are used on lunar theory [9]. In heat propagation in a thin rod in which the law
of variation E(t) of the total quantity of heat in the rod is given in [10].

Nomenclature

@(x) Initial function

r(t) Unknown coefficient

a(t) Unknown functions

E(t) Energy

u(x, t) Temperature distribution

f(x,t,u) Source function

uo(t), uc(t), u(t) Fourier coefficients

M Arbitrary constant

Ni,N,, N3, N4, N5, Ny Dimensionless constants
Q:={0<x<mn, 0<t<T}Domain of x,

2. Solution of the Inverse Problem

Definition 2.1. Determination of the pair of functions {r(t), u(x, t)} is called the inverse problem.

Definition 2.2. o(t,x) € C(Q) is refered test function that gives following conditions:
o(T,x) = v(T,x) = 0,0(0,t) = v(1, £), 0x(0, ) = Vx(7T, 1), Vxx(0, £) = Vxx(T, 1), V2xx (0, £) = Vax (77, 1), t€ [0, T

Definition 2.3. u(x, f) € C(Q) is named generalized solution that gives following equation:

T = i n

ff({% + 3472 - a(t)v} u— r(t)fv) dxdt — fv(x, 0)(x)dx + fvt(x, 0)p(x)dx = 0.

0 0 0 0

Consider the following assumptions:
(A1) E(t) € C?[0, T].

(A2)¢(x) € C*[0, 7], Y(x) € C'[0, 7], EQ0) = [ p(x)dx,
0
(A3) Let the function f(x, t, u) provide the following conditions in Q X (oo, co)

1)

I f(x, t,u) M f(x, t, i)
ox" B ox"

<b(x,t)lu—i ,n=0,1,2,
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where b(x, t) € Ly(D), b(x,t) >0,
(2) f(x, t,u) € Cl[O,

) <M
3) fnf(x, t,uydx #0, Yt e [0, T].
0

By Fourier method, we obtain

t
@o + Yot + % ff(t —1)F(&, t,a,u)dédr,
0

Uy =

0
Ug = Qg cos(2k)’t + (;]b]z’)(z sin(2k)*t + 2k)2 f f F(&, T, a,u) sin(2k)?(t — 7) cos 2kEdEdT,
Uk = Qsk cos(2k)*t + (lzl’k)2 sin(2k)*t + (2k)2 ffl—"(é, 7,4, u) sin(2k)?(t — 7) sin 2k&déEdr.

Let F(x,t,a,u) =a(tyu(x, t) +r(t)f(x,t,u).

t m
u(x, t) = % Qo + Yot + % ff(t = 1) (a(t)u(&, ) + r(H) f (&, T, 1)) dédT]
0 0

I;bck

" 22

cos 2kx [qock cos(2k)*t + sin(Zk)zt}

+ cos 2kx

2k)2

ff(a(’[)u E 1) +rt)f(E, T u) sin(2k)?(t — 1) cos 2k£d5d’[} (5)

wsk
(2k)2

el ne il nt

+ sin 2kx | Qsk cos(2k)*t +

sin(Zk)zt]

P
]
—_

+ Z sin 2kx l 2k)2 f(a(”f)u(é, T) + () f(&, T, u)) sin(2k)?(t — 7) sin 2k§d£d1] ,

where @ = 2 f P)dx, oo = 2 f @(x) cos 2kxdx, g = 2 f @(x) sin 2kxdx,
0 0 0
o = 2 [P(x)dx, e = 2 [1P(x) cos 2kxdx, Py = 2 [ (x) sin 2kxdx,
0 0 0

fot,u) = %f fx, t,u)dx, falt,u) = 2 ff(x t,u) cos 2kxdx, fu(t,u) = 2 [ f(x,t,u)sin2kxdx, k = 1,2,3, ...
0
Under the condltlon (A1)-(A3), dlfferentlatmg (4), we obtain

T

futt(x, Hdx =E"(£),0<t<T. (6)

0



F. Kanca, 1. Baglan / Filomat 32:16 (2018), 5691-5705 5695
From (5) and (6)

() = D7 AOEW) @)

f f&tu)dé
0
Definition 2.4. Denote the set

Let {u(t)} = {ug(t) ug(t), ug(t), k = 1,...,n} is satisfied that

max'"”z(t + Z (max [t ()] + max Iusk(t)l) < o0, by B;.
0<t<T

luo ()l .
u(t)|| = max=%= + (max U (t)] + max |ug(t ), be the norm where B, is Banach space.
Iu(®)l = max4% + ¥, (max k()] + max us(0) : p

Theorem 2.5. If the conditions (A1)-(A3) be ensured, then the Euler-Bernoulli problem has a unique solution.

Proof. An iteration for (5) :

ugNH)(t) = (0)(1‘) += ff(t - 1) zz(’c)u WM& 1) + N f(E, T, M(N))) dédr, (8)
(N+1)(t) _ (0)( b + ff N)(’r u™N(E, ) + (DfE, T u™ )s1n(2k)2(t — 1) cos 2k&dédt
(2k)2 7 vr 4

uy e = uo+

(2k)2 f f N)(T u™(&, 1) + r'N(7) f(E, T,u<N>)) sin(2k)?(t — 1) sin 2k& dédr,

¢ck
(2k)?

¢sk
(2k)?

ul’ () = @o + Pot, u(t) = Qo cos(2Kk)?t + sin(2k)%t, ul)(t) = @y cos(2Kk)t + sin(2k)>?t.

E”(t) — a(HE(t)
fn F(E L uMN)dE
0

7’<N+1)(t) —
From condition of the theorem, u¥)(t) € By, t € [0, T].

t n
ul’(t) = u () + % f f (t =) (a(@uO(, 1) + (D) f(€, T, 1)) dédr
(V]

I m
Adding and subtracting f f rO(1)f(&, t,0)dédr after applying Cauchy, Bessel, Lipschitz inequalities
00

consecutively, we get

[T 1,0
(1)1251)%)14 (t)| |<p0| + T|17b0‘ +2 i Hu (f)”B1 lla(®)llcro,

T3 T3
+2 \3x ””(O)(t)“qo,ﬂ “”(0)(75)”131 [16Cx, DIz, py + 2 \ 3% H”(O)(t)”qo,T] ||f(x, t, O)||L2(D)'
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uS{)(t) = ”S?(t) + n(Zk 7 ff T)u(o)(cf T) + r(o)(’c)f(é 7, u® )) sin(2k)?(t — 1) cos 2k&EdEd.
0

0

t
Adding and subtracting f f rO(1)f(&, 7,0)dédr, after applying Cauchy, Bessel, Lipschitz, Holder in-
00

equalities, we have

00 °° 2 =
Yol = Yloul+ 5 Lo
=) k=1 k=1
T T
+% ”“(O)UL)HB1 lla(®llcgo,ry + nl\é_ ”r(o)(t)”qo,ﬂ ””(O)(t)”z;1 16Cx, Ly

\NT
% ”r(O)(t)”C[O,T] ”f (x t, 0)||L2(D) ’

and from the same approaches,

) ) 5
Z maX )(f)| < Z |(Psk) + ;_4 Z |¢sk|
k=1 k=1 k=1

T
Ol 1O+ "3 OO [, 16 Do

\T
+% ””(o)(t)“c[o,ﬂ ||f(x, t, 0)||L2(D) ’

Finally we have the following inequalities:

1) 00
ool = a5 3 leio] o]

0<t<T 0<t<T
k=1

ol , -l + bl + 55 X 1+ o)
k=1

T3

+(2 lﬁ + RT) ||u(0)(t)HB1 ||ﬂ(t)||C[o,T]
T3

2 /?; A ) )], 16, Dl

T nNT
sayff S

From the conditions of the theorem u((t) € B;.

IA
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Same estimations for the step N,

ol = et K a0l i)
- '%' X+ o)+ 35 X o+ o)
+@vﬁf HVFW‘MWMJMﬂan
+2 £+E§5wwwmﬂwmewmmmm
N L G I T

According to u™(t) € By and from the conditions of the theorem, we have u™N*V(¢) € By,

{u(®)} = {uo(t), ua(t), us(t), k=1,2,...} € By.

For N — oo, ulN*D(¢), ¥N*1 are converged.
After applying Cauchy, Bessel, Lipschitz, Holder inequalities consecutively, we have

[T =T
A = (2 %+T(T)Hu(o)(t)”Bl||11(t)||c[o,T]"‘

T3 T
@3+ %> IO Ollego @, 100 Dy + 1], 0

31

+

|[E"(t) - a(E(t)|
P A

[FOe) - r(o)(t)qu,n < o

[[1®) = u| . 1oGx, )l

where

< My,

ff@tm%
0

3
[ - uVf, < @ \ 3T_n " RT\/T) 12 ) = 4| cgo 1y la®lcro

T8 nNT
+2\[5= + D [ [t -,
[T 7T
+(2 3.t RT) [V - r(O)HC[O,T] ”fHLz(D) ’

_E'®-amE®)
com M

120 - r)| [[14®) = u®|[, 1Mo, O,y
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3
||u<2><t>—u<”(t)1|31ﬂ%(zx/T ”\F>M lu® = @[], o, Bl

where

T3
M., = 1—(2\/3:77 n\/_)Hﬂ(f)”qu

|E"(t) — a(HE(®)|

M, = Hr(l)(t)”Ble M, ” “LZ(D)

E"(t) — a(H)E()

M = ], + EO Oy
E"(t) — a(t)E(t)

M = o], + OOy

For the step N :

|[E"(t) - a(HE(t)|
< e —

||r(N+1)(t) _ r(N)(t)” ||u(N+1)(t) - M(N)”B1 16(x, Ol oy -

cor My
[« ) - u®p), < @ | T . ﬂﬁ)(Ml.ML..MN) A b, DI )
B1 = 37T 6 M,(. \/ﬁ 4 LZ(D) :

uN+) — 4N N — oo, then rN*D) — N N — oo,
Let us show the following limits

Jlim U™ = u(p), Jlim NI = 1),

| T3 T
||u - u(NJrl)”B1 < (2 g_n + %) ||u(t) - M(N“)(t)“c[o,n lla()llcpo,ry

T3 nNT
12 lﬁ i T) ”u(N“)(t) _ “(N)(t)“c[o,ﬂ lla(®)ll o,y

3
+24 T—n + “—ﬁ) [0 = w1, L ) (10)
2
( ‘2/;: ”) 150 = ]| ol 16 Dl
23T +
o(REEE o - o

. |E"(#) - a(hE(®)| .
||ty =+ 1)(f)“qoﬂ e Ve [ty = u®™ 1)”B1 16, DIz, o) -
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Let us consider (9) in (10) and apply Gronwall’s inequality to (10) and taking maximum of both side of

the last inequalities, we find the following inequalities

utt) = ™[5
2

[T3  nNT AMM,..My N
2[(2 % + 6 ) M. \/ﬁ ||b(x,t)||L2(D)
2

3 E"(t) — a(HE(t
Xexpz[a\/i LF)[n O, + Wllﬂlwﬂ -

We obtain u®™+D — ¢, yN+D 5 ¢ N - oo.

For the uniqueness, we assume that the problem (1)-(4) has two solution pair (u,7), (v,q). Apply-
ing Cauchy inequality, Holder Inequality, Lipschitzs condition and Bessel inequality to |u(f) — v(t)| and
(r(t) - , therefore we have

[lue(t) — Z)(t)||Bl < (2 \/g i) [u(t) — 'U(t)”B1 ||ﬂ(t)||c[0 7]

’TB 7[
2 -—
+( 3 +

122 ”‘F [ f f POR(E, ) (o) - (1) dadr],

- ﬂl(t)”qm If ||L2(D)
37‘(

|[E"(t) - a(HE(t)|
||r(t) - q(t)”qo,ﬂ < M, [le(t) = o()llg, IO, Ol )/

1(2 T_3 n\/_
M. 3n

|E”(t>—a<t>£<t)| ~
[||r(t)||qm+T||f||LZ(D)] Of Of V(& 7) lu(t) — o(t)* dédr |,

applying Gronwall’s inequality to the last equations, we have
u(t) = v(t). Hence r(t) = q(t).
The theorem is proved. [

llu(t) —o(®llp, < —)

[N

3. Continuous Dependence of (r,u) Upon the Data

Theorem 3.1. Under assumptions (A1)-(A3) the solution (r,u) of the problem (1)-(4) depends continuously upon
the data ¢, E.

Proof. Let® = {p, ¢, fland ® = {@, Vv, f } be two sets of the data, which satisfy the assumptions (A1) —(A3) .
Suppose that there exist positive constant N; such that

lEllctpo,r) < N1, <N

E“O [0,T]
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Let us denote ||®|| = (“q0”c3[0 at HI,DHCS[O at ”f”cw(ﬁ)). Let (r, u) and (7, u) be solutions of inverse problems
(1)-(4) corresponding to the data ® = {¢, ¥, fland ® = {@, U, f } respectively. According to (5), we have

_ ~70) (Wo-vo)t &
u—u = (9o 3 o) + ( 5 ) + Z €08 2kx (Pck — Pek) cos(2k)*t + 2 sin 2kx (@sk — Psk) sin(2k)*t

k=1
+% ff(t—’[ ) u(t) — u(T) (T)dédv:]

2
= (t — (1) [f(E, T ulE, 1) — f(& 1,u(, 1)] chdTJ

[
+% %ff(t—’r)(r(’c)—@)f(é,”[,ﬁ(él’f))déd’f]

0o

+ kz_: 1(2k)2 ff u(t) - u(’[)) a(t) sin(2k)?(t — 1) cos 2k&Edédt

8

+; nék)z ffr(r) [£(& T, u(&, 7)) — f(E, 7, u(E, 7)] sin(2k)*(t — 7) cos 2kEdEdT
00

8

t T
+ kz; n(jk)z ff(r(’[) - @) f(&, T, ul, ) sin(2k)?(t — 1) cos 2kédEdt
0 0

8

t n
+;‘ ﬂ(zzk)Zf f (1) = u(r)) a(r) sin(2K%(t — 1) sin 2kedéd

8

+; T ffr(”c) [f(&, T, u(&, 1) - f(& T, u(&, 1)] sin(2k)?(t — 1) sin 2k&dédt

8

+kz; - ék)z f f (r(x) = (1)) £(&, 7, 1(E, 7)) sin(2K)(t - 1) sin 2kEdEdr,
0 0

By using same estimations as in Theorem 2.5, we obtain

-0 - 3
Juy -], < o (’)HAZ”‘b ¢||+(2\/T: ”‘F>|| Ol luth - 7o),

3
+(2 \/YT & \/_)M “T(t) r(t)“qo K

lIE— E]|
My

e = 7| gy < IbCx, Ol [|u®) =105 + Na,
[0,T] 1
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where

N, = 2MN; ||ﬂ(t)|| + 2MN;.

t n %
[ut) = 5|, < |- @ +Ns { -7 P&, T)déd’[] :
(]

0

where
3
AI:—42 T+_Jcnum

Applying Gronwall’s inequality to (11), we obtain

luy - < 2|o-3

t m
XepoNé fsz(é,’[)déd’[],
0 0
where
- le = 2l| + [l - ¢
o-g] - =

1 [1* VT [E-E|
MmNt 5 ) M
Ns = max{N3, Ny}.

For ® — ® then u — . Hence r » 7. [

4. Numerical Method for the Problem (1)-(4)

We construct an iteration algorithm for the linearization of the problem (1)-(4):

a%n) + agx —a(®u™ = r(t) f(x, t,u" V), (x,t) € Q,
u™0,t) = u"(m,t)

(n>(0 H = (”)(n,t)

(”)(0 H = (”)(n,t)

ul(0,8) = ull(mb),te0,T],

u™(x,0) = p(x), ui”)(x, 0) = ¥(x),x€[0,7],

5701

(11)

(12)

(13)

(14)
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Tt

E@®) = f u™(x, )dx, t € [0, T]

0

5702

(15)

Let u™(x, ) = v(x,t) and f(x,t,u™ D) = f(x,t). Then the problem (12)-(15) can be written as a linear

problem:
v v -~
2 + Fvie alyo =r()f(x, 1), (x,t) € Q,
v(0,t) = o(m,t)
vx(0,f) = vum, 1)
Ux(0,1) = vn(m,t)
Uax(0,1) = Uu(m, ), t€[0,T],

v(x,0) = @(x), v:(x,0) = P(x), x € [0, ],

T

E(t) = fv(x, tdx, t €[0,T]

0

We use finite-difference approximation for discretizing problem (16)-(19):

1 . . - 1 , , . . . L —_
[y A S| ]1) _(] 4] J_ 4 ])_]J ® ;7
) (vi 20; + v, +h4 Vp—4v,  + 60, —4dv,  +0_,)=dv +1Vff]

U{) = U{\&Jrl’
v{ = v{\fx+2’
o o,
vé - vj;z = U{vﬁs - U;\IX—l’

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

The domain [0, ] X [0, T] is divided into an N, X N; mesh with the spatial step size h = 7/N, in x direction

and the time step size T = T/Nj, respectively.
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Grid points x;, t; are defined by

xi=1ih;i=0;1;2;..;Ny;

t]-.= it = 0;1;2; .;;Nt;

ol = u(xi, b)), f| = f(xi, b)), @l = aty), v = r(t)).

Let us integrate the equation (12) respect to x from 0 to 7 and use (13) and (15), we obtain

[E"(t) —a(HED]

r(t) = —
fo f(x, t)dx

(25)

The finite difference approximation of (25) is

[(EF* - 2B/ + EY) j22) - oI

(" Fax)

1=

where E/ = E(t)), @/ = a(t;), j = 0,1, ...,N;. We mention that the integral is numerically calculated using
Simpson’s rule of integration.

In order to illustrate the behavior of our numerical method, an example is considered.

Example 4.1. This example investigates finding the exact solution

for

{r(t), u(x,t)} = {exp(t), (1+ sin2x)exp(t)}.

the given functions

o(x) (1 +sin2x), E(t) = mexp(t),
flx, t,u) = (1-exp(3)u+16sin2xexp(t).

The step sizes are h = 0.0393, T = 0.005.
The comparisons between the exact solution and the numerical finite difference solution are shown in

Figures 1 and 2 when T = 2.
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Figure 1: The exact and approximate solutions of r(t). The approximate solution is shown with dashed line.
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Figure 2: The exact and approximate solutions of u(x,2). The approximate solution is shown with dashed line.



