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The Quaternionic Expression of Ruled Surfaces

Süleyman Şenyurta, Abdussamet Çalışkana
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Abstract. In this paper, firstly, the ruled surface is expressed as a spatial quaternionic. Also, the spatial
quaternionic definitions of the Striction curve, the distribution parameter, angle of pitch and the pitch are
given. Finally, integral invariants of the closed spatial quaternionic ruled surfaces drawn by the motion of
the Frenet vectors {t,n1,n2} belonging to the spatial quaternionic curve α are calculated.

1. Introduction

What algebraic structure plays an analogous role for rotations in the space? The answer was discovered
in 1843 by William Rowan Hamilton, [6]. Quaternions arose historically from Hamilton’s essays in the
mid nineteenth century to generalize complex numbers in some way that would be applicable to three-
dimensional (3D) space. A feature of quaternions is closely related to 3D rotations, a fact apparent to
Hamilton almost immediately but first published by Hamilton’s contemporary Arthur Cayley in 1845 [3].
He struggled for years attempting to make sense of an unsuccessful algebraic system containing one real
and two imaginary parts. Hamilton had a brilliant stroke of imagination, and invented in a single instant
the idea of a three-part imaginary system that became the quaternion algebra [7]. The technology did not
penetrate the computer animation community until the landmark Siggraph 1985 paper of Ken Shoemake
[13]. The importance of Shoemake’s paper is that it took the concept of the orientation frame for moving
3D objects and cameras, which require precise orientation specification, exposed the deficiencies of the
then-standard Euler-angle methods, and introduced quaternions to animators as a solution. The Serret-
Frenet formulae for a quaternionic curves in IR3 and IR4 are introduced by K. Bharathi and M. Nagaraj
[2]. There are lots of studies that investigated quaternionic curves by using this study. One of them is
Karadağ and Sivridağ’s study whose they gave many characterizations for quaternionic inclined curves in
IR4 [9]. Şenyurt et al. calculated curvature and torsion of spatial quaternionic involute curve according to
the normal vector and the unit Darboux vector of Smarandache curve [12].

A surface is said to be ruled if it is generated by moving a straight line continuously in Euclidean
space E3. Ruled surfaces are one of the simplest objects in geometric modeling. One important fact
about ruled surfaces is that they can be generated by straight lines. A practical application of ruled
surfaces is that they are used in civil engineering.The result is that if engineers are planning to construct
something with curvature, they can use a ruled surface since all the lines are straight. Among ruled surfaces,
developable surfaces form an important subclass since they are useful in sheet metal design and processing

2010 Mathematics Subject Classification. Primary 53A04; Secondary 53A05
Keywords. Quaternion, spatial quaternion, ruled surface, closed ruled surface, distribution parameter, angle of pitch, the pitch
Received: 26 September 2017; Revised: 07 March 2018; Accepted: 10 March 2018
Communicated by Ljubiša D.R. Kočinac
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[1, 11]. Every developable surface can be obtained as the envelope surface of a moving plane under a
one-parameter motion. Developable ruled surfaces are well-known and widely used in computer aided
design and manufacture. A developable ruled surface is a surface that can be rolled on a plane, touching
along the entire surface as it rolls. Such a surface has a constant tangent plane for the whole length of each
ruling [11]. It is well known from H.R. Müller [10] that a closed ruled surface generated by oriented line of
a rigid body has two real integral invariants; the pitch and the angle of pitch [8, 10].

In recent years there have been many studies on ruled surfaces. In some studies, the dual expression of
the ruled surface has been investigated. However, the ruled surface was not studied as a quaternionic. In
this study, we investigate the ruled surface as spatial quaternionic. We quaternionally calculate the integral
invariants of the ruled surface.

2. Preliminaries

Real quaternion is defined by the 1, e1, e2, e3. 1 is real number, e1, e2, e3 are vectors with the following
properties:e1

2 = e2
2 = e3

2 = e1 × e2 × e3 = −1, e1, e2, e3 ∈ IR
3

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.
(1)

The 4-dimensional real Euclidean space IR4 is identified with the space of real quaternions

K =
{
q = d + ae1 + be2 + ce3|a, b, c, d ∈ IR,~e1, e2, e3 ∈ IR

3
}

in [2, 5].
Let q1 = Sq1 + Vq1 = d1 + a1e1 + b1e2 + c1e3 and q2 = Sq2 + Vq2 = d2 + a2e1 + b2e2 + c2e3 be two quaternions

inK, the quaternion multiplication of q1 and q2 is given by

q1 × q2 = d1d2 − (a1a2 + b1b2 + c1c2) + (d1a2 + a1d2 + b1c2 − c1b2)e1

+ (d1b2 + b1d2 + b1a2 − a1b2)e2 + +(d1c2 + c1d2 + a1b2 − b1a2)e3.

When inner and cross products inE3 are taken into consideration, this quaternion multiplication gives way
to

q1 × q2 = Sq1 Sq2 − 〈Vq1 ,Vq2〉 + Sq1 Vq2 + Sq2 Vq1 + Vq1 ∧ Vq1 . (2)

The symmetric real-valued bilineer form h which is defined as

h : K ×K→ IR

h(q1, q2) =
1
2

(q1 × q̄2 + q2 × q̄1) (3)

is called quaternion inner product [2]. Let q be a real quaternion. Its conjugate is q̄ = Sq − Vq. Norm of real
quaternion is a real number in the form of

N(q) =
√

h(q, q) =
√

d2 + a2 + b2 + c2. (4)

If N(q) = 1, q is called a unit quaternion. Inverse of real quaternion is q−1 =
q̄

N(q)
. Quaternion division is

noncommutative, and is defined by the (order-dependent) relations r1 = q1 × q2
−1, r2 = q2

−1
× q1.Where r1 is

right division, r2 is left division [5]. The three-dimensional real Euclidean space IR3 is identified with the
space of spatial quaternions

Q = {q ∈ K | q + q̄ = 0}

in obvious manner [2, 14]. In this case, the elements of Q are q = ae1 + be2 + ce3. As a result, the quaternion
multiplication of the two spatial quaternions is [5]

q1 × q2 = −〈q1, q2〉 + q1 ∧ q2. (5)
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Definition 2.1. Let s ∈ I = [0, 1] be the arc parameter along the smooth curve

α : [0, 1] → Q

α(s) =

3∑
n=1

αi(s)ei.

This is called a spatial quaternionic curve [2, 14].

Let α : [0, 1]→ Q be a spatial quaternionic curve parametrized by arc length s ∈ I. Frenet vectors of this
curve are given by [2, 14].

t(s) = α′(s), n1(s) =
α′′(s)

N(α′′(s))
, n2(s) = t(s) × n1(s).

Let α : [0, 1] → Q be a spatial quaternionic curve given by arbitrary parameter s∗ ∈ I. Frenet invariants of
this curve are given by [14].

t(s∗) =
α′(s∗)

N(α′(s∗))
, n1(s∗) = n2(s∗) × t(s∗), n2(s∗) =

α′(s∗) × α′′(s∗) + N(α′(s∗)) ×N′(α′(s∗))
N(α′(s∗) × α′′(s∗) + N(α′(s∗)) ×N′(α′(s∗)))

,

k(s∗) =
N(α′(s∗) × α′′(s∗) + N(α′(s∗)) ×N′(α′(s∗)))

N3(α′(s∗))
, r(s∗) =

h(α′(s∗) × α′′(s∗), α′′′(s∗))

N(α′(s∗) × α′′(s∗) + N(α′(s∗)) ×N′2(α′(s∗)))
·

Let α(s) be a curve parametrized by arclength function s. Then for the unit speed spatial quaternionic curve
α with frame vectors the following Frenet equations are given by [14]

t′(s) = k(s)n1(s), n1
′(s) = −k(s)t(s) + r(s)n2(s), n2

′(s) = −r(s)n1(s). (6)

Definition 2.2. A ruled surface in IR3 is a surface which contains at least one 1-parameter family of straight
lines. Thus a ruled surface has a parametrization in the form

ϕ : I × IR → IR3

(s, v) →
−→ϕ (s, v) = −→α (s) + v

−→
X(s). (7)

where we call α the anchor curve, X the generator vector of ruled surface [4].

The instantaneous Pfaffian vector is given by

d
−→
X = XTΩa = −→w ∧

−→
X . (8)

Here
−→
X generator vector of ruled surface, Ω skew-symmetric matrix. Also, the relation between a and Ω is

da = Ωa (9)

from which, a = (~a1, ~a2, ~a3). The Steiner rotation vector of the closed motion is given by
−→
D(s) =

∮
(α)

−→w(s)ds

where the integration is taken along the closed curve α. Also, the Steiner translation vector of the closed

motion is
−→
V (s) =

∮
(α)

d−→α (s)ds. If α is a closed curve, then this surface is called closed ruled surface.

Moreover the distribution parameter (drall), the pitch LX, and the angle of pitch λX of the closed ruled
surface, respectively, are defined by [5]

PX =
〈X × X′, α′〉
‖X′‖2

, LX = 〈V,X〉, λX = 〈D,X〉.
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3. The Quaternionic Expression of Ruled Surfaces

In this study, firstly, the ruled surface is expressed as a spatial quaternionic. Also, the spatial quaternionic
definitions of the Striction curve, the distribution parameter, angle of pitch and the pitch are given. Finally,
geometrical properties and integral invariants of closed ruled surface which is given as a spatial quaternionic
are calculated.

Parametric expression of the spatial quaternion expression of a ruled surface is

ϕ : I × IR → Q

(s, v) →
−→ϕ (s, v) = −→α (s) + v

−→
X(s),

where α spatial quaternionic curve and X quaternionic vector. In the present text, spatial quaternionic ruled
surface term will be used instead of the spatial quaternionic expression of ruled surface.

O

(α)

X

−→
X (s)

−→ϕ (s, v)

−→α (s)

Figure 1: The spatial quaternionic expression of ruled surface

Theorem 3.1. Let α : I ⊂ IR → Q be spatial quaternionic curve on the spatial quaternionic ruled surface, t be
tangent vector field of α, X be generator vector and N be normal vector field of the surface. Also t,X,N are the vectors
which are satisfying (1). Then, {t,X,N} establishes an orthonormal frame field along the curve α and variation of this
frame along the curve is t′

X′

N′

 =

 0 σ β
−σ 0 −γ
−β γ 0


 t

X
N

 (10)

where γ, β and σ are real valued functions.

Proof. Let α : I ⊂ IR→ Q be differentiable unit speed spatial quaternionic curve and
−→
X(s) be unit vector. Let

X be perpendicular with t. Thus, the {t,X,N} system establishes an orthonormal system. (1) is considered

h(t,X) = h(t,N) = h(X,N) = 0,
t × t = N ×N = X × X = −1, (11)

t × X = N,N × t = X,X ×N = t.

Since t is a unit vector, we can write

N(t(s))2 = h(t, t) = 1⇒
1
2

(t × t̄ + t̄ × t)⇒ t × t̄ = 1. (12)

By differentiating (12) with s, we have t′ × t̄ + t × t̄′ = 0.
So, t and t′ are h− orthogonal. That is, h(t′, t) = 0⇒ t′ × t̄ + (t′ × t̄) = 0. Then, t′ × t̄ is spatial quaternion.
Let us find the variation of the system {t,X,N} along the curve.
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Considering t′(s) ∈ Sp{t,X,N}, we can write

t′ = ηt + σX + βN. (13)

From the above equation, η = h(t′, t) = 0, σ = h(t′,X), β = h(t′,N) are found. If these values are written in
(13), t′ is found in the form of

t′ = σX + βN. (14)

Since N(s) is a unit vector, we can write

N(N(s))2 = h(N,N) = 1⇒
1
2

(N × N̄ + N̄ ×N) = 1⇒ N × N̄ = 1. (15)

If the derivative is taken from (15),

N′ × N̄ + N × N̄′ = 0. (16)

By definition of quaternionic inner product, we have h(N′,N) = 0. From the equation (11), it can be written
t ×N = −X. If it is derived from the last equation and written in place of t′, we get

−X′ = t′ ×N + t ×N′ = σt − β + t ×N′. (17)

Considering N′(s) ∈ Sp{t,X,N}, it follows that

N′ = µt + γX + νN. (18)

Taking the quaternionic inner product of both sides with N, we obtain h(N′,N) = ν = 0. Left-multiplying
both sides of (18) by t gives

t ×N′ = −µ + γN. (19)

From the equations (17) and (19), X′ may be written as

X′ = −σt + β + µ − γN. (20)

Since X is a spatial quaternion, X′ is also a spatial quaternion. Therefore, the following equation is obtained

X′ + X̄′ = 0⇒ µ = −β. (21)

Considering equations µ = −β and ν = 0, it can be written the following the equation

N′ = −βt + γX (22)

and implicit in the equations (20) and (21) is that

X′ = −σt + β + µ − γN = −σt − γN. (23)

The proof is complete.

Definition 3.2. A plane, which passes through point of the spatial quaternionic ruled surface ϕ and is
perpendicular to the surface normal, is called the tangent plane of the this surface.

Theorem 3.3. Let ϕ be a spatial quaternionic ruled suarface. Tangent planes along a ruling coincide⇔ γ = 0.
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(ϕ(v))

(α)
t

A = t+ vX ′v

Figure 2: ϕ(v) curve

Proof. If we fix the parameter v, then the spatial quaternionic curve

ϕ(v) : I × {v} → Q

can be obtained in ϕ. The tangent vector of this curve is

A = t + vX′ = t + v(−σt − γN) = (1 − σv)t − γvN.

It can be written A ⊥ X. To have the tangent planes coincide, N must be constant. Because, in this case,
each tangent plane has mutual lines and normals are the same. Then {A, t} is linear dependent, so γ = 0.

Definition 3.4. A spatial quaternionic ruled surface is developable surface, If its all tangent planes remains
the same along a fixed generator.

Lemma 3.5. A spatial quaternionic ruled surface is developable if and only if

h(X × X′, α′) = 0.

Proof. Considering Theorem 3.3 and equation (18), we can write

γ = h(N′,X) = 0.

On the other hand, from the equation (11) we know that h(N,X) = 0. If the derivative of this equation is
taken, we obtain the following

γ = −h(N,X′).

Normal of spatial quaternionic ruled surface is N = ϕs ∧ ϕv. Also it can be written

ϕs × ϕv = −〈ϕs, ϕv〉 + ϕs ∧ ϕv = −〈t + vX′,X〉 + ϕs ∧ ϕv = ϕs ∧ ϕv.

Thus, we have N = ϕs ∧ ϕv = ϕs × ϕv. Using (3) and (10), we can write

γ = −h(X′,N) = −h(X′, ϕs × ϕv) = −h(X′, (t + vX′) × X)

= −
1
2

[
X′ × (t × X + vX′ × X) + (t × X + vX′ × X) × X′

]
= −

1
2

[
X′ × (t × X) + (t × X) × X′ + v

(
(X′ × (−σt − γN) × X) + ((−σt − γN) × X) × X′

)]
= −h(X′, t × X) −

1
2

v
[
(−σt − γN) × (σN − γt) + (−σN + γt) × (σt + γN)

]
= −h(X′, α′ × X). (24)

Similarly, it can be written

h(X × X′, α′) = h(X × X′, t) =
1
2

[
(X × X′) × t + t × (X × X′)

]
= −γ. (25)

From the equations (24) and (25), the equality h(X′, α′ × X) = h(X × X′, α′) is found.
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This lemma is closely related to distribution parameter of spatial quaternionic ruled surface.

Definition 3.6. Distribution parameter ofϕ is defined as the ratio of the shortest distance between successive
generators X,X + dX to the angle between successive generators.

Lemma 3.7. Distribution parameter of ϕ is

PX =
h(X × X′, α′)

N(X′)2 =
1
2

(
(X × X′) × α′ + α′ × (X × X′)

)
N(X′)2 ·

Proof. Common perpendicular of spatial quaternionic ruled surface is

X ∧ (X + dX) = X ∧ X + X ∧ dX = X ∧ dX.

〈X,X〉 = 1 ⇒ 〈X, dX〉 = 0, then we can write X × dX = −〈X, dX〉 + X ∧ dX = X ∧ dX. Then, common
perpendicular can be written as X × dX.

α(s)

X(s) + dX(s)

X ∧ (X + dX) = X × dX

θ

(α)

O

α(s) + dα(s)

X(s)

k

d−→α

dst

Figure 3: Distribution parameter of spatial quaternionic ruled surface

Using the figure (3), we get

cosθ =
k

N(dα)
=

h(X × dX, dα)
N(X × dX)N(dα)

and from the norm property of the quaternion multiplication N(X × dX) = N(X)︸︷︷︸
=1

N(dX), k is found as

k =
h(X × dX, dα)

N(dX)
=

h(X × X′, dα)
N(X′)

· (26)

The length of an arc of the spherical indicatrix curve formed by (X) and subtending an angle between
successive generators X,X + dX equals. Thus,

αX(s) = X(s)⇒
dαX

dsX

dsX

ds
= X′(s)⇒ tX

dsX

ds
= X′(s),⇒

dsX

ds
= N(X′(s))⇒ dsX = N(X′)ds. (27)

From the definition of distribution parameter, we get

PX =
k

dsX
=

h(X × X′, α′)
N(X′)2 =

1
2

(
(X × X′) × α′ + α′ × (X × X′)

)
N(X′)2 · (28)

Theorem 3.8. A spatial quaternionic ruled surface is developable if and only if its distribution parameter is zero.

Proof. Taking into consideration Lemma 3.5 and Lemma 3.7, it can be seen easily.

Definition 3.9. If there is a curve which meets quaternionally perpendicular to each one of the rulings, then
this curve is called an orthogonal trajectory of a spatial quaternionic ruled surface.
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3.1. Position Vector of the Striction Curve Belonging to Spatial Quaternionic Ruled Surface
The striction point on a spatial quaternionic ruled surface ϕ is the foot of the common perpendicular

between two successive generators (or ruling). Striction curve is the set of all striction points.

(α)

P

P ′

Q

Q′

(r)

O

−→α
−→r

X

X + dX

Striction curve

Figure 4: Spatial quaternionic striction curve

Let r be position vector of the striction curve. From the figure (4), it can be written

−→r (s) = −→α (s) + u
−→
X(s) (29)

Let us find u in this equation:
P,P′ and Q,Q′ are the feet of the common perpendicular between successive generators. The common
perpendicular between X and X + dX was X × X′ds. In case of limit,

−−→
PQ and

−−→
PP′ will overlap and will be

tangent of the striction curve. Thus, h(X,PQ) and h(X + X′ds,PQ) equal to zero, that is,

h(X + X′ds,PQ) = 0 ⇒
1
2

[
(X + X′ds) × PQ + PQ × (X + X′ds)

]
= 0

⇒
1
2

[
X × PQ + PQ × X

]
︸                     ︷︷                     ︸

=0

+
1
2

ds
[
X′ × PQ + PQ × X′

]
= 0⇒ h(X′,PQ) = 0.

Also, if it is derived from (29) to s, r′(s) can be written instead of PQ,

h(X′,PQ) = h(X′, r′) = 0⇒ h(X′, t + uX′) = 0⇒
1
2

[
X′ × (t + uX′) + (t + uX′) × X′

]
= 0

⇒
1
2

[
X′ × t + t × X′

]
︸                ︷︷                ︸

h(X′,t)

+u X′ × X′︸  ︷︷  ︸
N(X′)2

= 0⇒ u = −
h(X′, t)
N(X′)2 ,

h(X′,PQ) = h(X′, r′) = 0⇒ h(X′, t + u′X + uX′) = h(X′, t + uX′) = 0⇒ u = −
h(X′, t)
N(X′)2 ·

If this value is substituted in the equation (29), the following result is obtained

−→r (s) = −→α (s) −
h(X′, t)
N(X′)2

−→
X(s). (30)

3.2. The Integral Invariants of Closed Spatial Quaternionic Ruled Surface
In this subsection, the spatial quaternionic definitions of the angle of pitch and the pitch are given. We

express vectorial moment as a spatial quaternionic. Integral invariants of the closed spatial quaternionic
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ruled surfaces drawn by the motion of the Frenet vectors belonging to the spatial quaternionic curve α are
calculated.

An orthogonal trajectory of closed spatial quaternionic ruled surface is defined by differential equation

h(X, dϕ) = 0⇒ h(X, dα + dv X + v dX) = 0⇒ −h(X, dα) = dv.

Definition 3.10. For given closed spatial quaternionic ruled surface, the magnitude of

LX = −

∮
(α)

h(dα,X) =

∮
(α)

dv

is called the pitch of this surface.

Definition 3.11. Let ϕ be a closed spatial quaternionic ruled surface and let V1(s) denote the unit tangent
vector of orthogonal trajectory at α(s) . The angle between V1(s) and V1(s + p) is called the angle of pitch
of ϕ where V1(s + p) is the tangent vector of the orthogonal trajectory at α(s + p) and p is the period of the
closed spatial quaternionic curve α and denoted by λX.

Theorem 3.12. Letϕ, X and X∗ be the spatial quaternionic ruled surface, the directrix of this surface and the vectorial
moment of X, respectively. Then there exists a point Z, such that

−→
X∗ = −→z ×

−→
X.

Z P Y

−→z −→m −→y
δ

−→
X

−→
X∗

O

Figure 5: Vectorial moment

Proof. The vectorial equation of the generatrix to the spatial quaternionic ruled surface given by

(−→m − −→y ) ∧
−→
X = 0⇒ −→m ∧

−→
X − −→y ∧

−→
X = 0.

The vectorial moment
−→
X∗ is

−→m ∧
−→
X = −→y ∧

−→
X =

−→
X∗.

If
−→
X∗ is independent of the choice of point P, Z can be taken as the foot of the perpendicular which is drawn

from the point O to the generator. From the equation (5), it can be written

−→z ×
−→
X = −〈−→z ,

−→
X〉︸    ︷︷    ︸

=0

+−→z ∧
−→
X︸ ︷︷ ︸

−→
X∗

.

Thus,
−→
X∗ = −→z ×

−→
X .

Theorem 3.13. The angle of pitch and the pitch of the closed spatial quaternionic ruled surface, λX and LX , are equal
to the projection of the generator X on the Steiner rotation vector D and the Steiner translation vector V

λX = h(
−→
D,
−→
X), LX = h(

−→
V ,
−→
X).
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P1

P2

P1

P2

X = a1 = b1

a2
a3

b2

b3θ

Figure 6: The pitch of the closed spatial quaternionic ruled surface

Proof. Let ϕ, a1 = X and a2 be the spatial quaternionic ruled surface, the directrix of this surface and with
perpendicular a1, respectively. Let us take {−→a1 ,

−→a2 ,
−→a3 } orthogonal system. The first and last positions of

generator after a full rotation are the same. Therefore,
−→
b1 = −→a1 .

From the figure (6), we can write

−→a2 =
−→
b2 cosθ −

−→
b3 sinθ, −→a3 =

−→
b2 sinθ +

−→
b3 cosθ.

Here {
−→
b1 ,
−→
b2 ,
−→
b3 } is fixed orthonormal system. If derivative is taken from the above equations according to s

and dθ are solved, it becomes

da2 = db2 cosθ − db3 sinθ +

−a3︷                   ︸︸                   ︷
(−b2 sinθ − b3 cosθ)dθ,

da3 = db2 sinθ + db3 cosθ + (b2 cosθ − b3 sinθ︸                ︷︷                ︸
a2

)dθ

and

h(da2 , a3 ) = −h(a3 , a3 )dθ⇒ h(da2 , a3 ) = −dθ, h(da3 , a2 ) = h(a2 , a2 )dθ⇒ h(da3 , a2 ) = dθ,
−dθ = h(da2 , a3 ) = −h(da3 , a2 ). (31)

From the equations (31), the angle of pitch of closed spatial quaternionic ruled surface is found as

λX = −

∮
dθ =

∮
h(da2 , a3 ) = −

∮
h(da3 , a2 ).

Using the equation (9), we obtain

h(da2 , a3 ) =
1
2

(
da2 × a3 + a3 × da2

)
, da2 = −w3 a1 + w1 a3

=
1
2

(
(−w3 a1 + w1 a3 ) × a3 + a3 × (−w3 a1 + w1 a3 )

)
=

1
2

(
2w1 (a3 × a3 ) + w3 (a1 × a3 ) + w3 (a3 × a1 )

)
=

1
2

[
2w1 (a3 × a3 ) + w3 (− 〈a1 , a3〉︸ ︷︷ ︸

0

+ a1 ∧ a3︸ ︷︷ ︸
−a2

) + w3 (− 〈a3 , a1〉︸ ︷︷ ︸
0

+ a3 ∧ a1︸ ︷︷ ︸
a2

)
]

= w1
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and

−h(da3 , a2 ) = −
1
2

(
da3 × a2 + a2 × da3

)
, da3 = w2 a1 − w1 a2

= −
1
2

(
(w2 a1 − w1 a2 ) × a2 ) + a2 × (w2 a1 − w1 a2 )

)
= w1 .

Therefore, the angle of pitch is obtained as

h(da2 , a3 ) = −h(da3 , a2 ) = w1 ⇒ λX =

∮
w1 . (32)

On the other hand, it is known that
−→
D = a1

∮
w1 + a2

∮
w2 + a3

∮
w3 and h(D,X) = h(D, a1 ), thus we get

h(D, a1 ) =
1
2

(
D × a1 + a1 ×D

)
=

1
2

[(
a1

∮
w1 + a2

∮
w2 + a3

∮
w3

)
× a1 + a1 ×

(
a1

∮
w1 + a2

∮
w2 + a3

∮
w3

)]
=

1
2

[
(a1 × a1 )

∮
w1 + (a2 × a1 )

∮
w2 + (a3 × a1 )

∮
w3 + (a1 × a1 )

∮
w1

+(a1 × a2 )
∮

w2 + (a1 × v3 )
∮

w3

]
= (a1 × a1 )

∮
w1 =

∮
w1 . (33)

From the equation (32) and (33), we can write λX = h(D,X). It is also clear that the Steiner translation vector
is LX =

∮
h(dα,X) = h

( ∮
dα,X

)
= h(V,X).

Theorem 3.14. Let α and {t,n1,n2} be the spatial quaternionic curve and the Frenet vectors of spatial quaternionic
curve α, respectively. Then the instantaneous pfaffian vector of motion is given by

w = n1 × n′
1

= rt + kn2 . (34)

Proof. Let the instantaneous pfaffian vector of motion be

w = t1 t + t2 n1 + t3 n2 . (35)

Right-multiplying both sides of (35) by t gives

w × t = −t1 − t2 n2 + t3 n1 . (36)

On the other hand, it can be written

w × t = −〈w, t〉 + w ∧ t = −t1 + dt = −t1 + kn1 . (37)

Then, t2 = 0 and t3 = k are found. Similarly, right-multiplying both sides of (35) by n1 gives

w × n1 = t1 n2 − t2 − t3 t. (38)

On the other hand, it can be written

w × n1 = −〈w,n1〉 + w ∧ n1 = −t2 − kt + rn2. (39)
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From the equations (38) and (39), t2 = r, t3 = k are found. If these values are used in (35), we obtain
w = rt + kn2. Also, it becomes

n1 × n′
1

= n1 × (−kt + rn2 ) = rt + kn2 . (40)

And so, by considering the equation (40), the instantaneous pfaffian vector is found as
−→w = n1 × n′

1
= rt + kn2 .

Let us choose H moving space as H = Sp{t,n1,n2} in H/H′ movement. In this case, the Steiner rotation
and Steiner translation vectors become

−→
D =

∮
−→wds =

∮
(rt + kn2 )ds = t

∮
rds + n2

∮
kds

and

−→
V =

∮
dα =

∮
tds,

respectively.

Theorem 3.15. The angles of the pitch, pitches, and distribution parameters of the closed spatial quaternionic ruled
surfaces drawn by the Frenet vectors t,n1,n2 are

1)...


λt =

∮
rds

λn1 = 0

λn1 =

∮
kds.

2)...


Lt =

∮
ds

Ln1 =

∮
0

Ln2 =

∮
0.

3)...


Pt = 0

Pn1 =
r

r2 + k2

Pn2 =
1
r
.

Proof. 1) According to Theorem 3.13 and the equation (11), the angles of pitch of the closed spatial quater-
nionic ruled surfaces drawn by the motion of the Frenet vectors {t,n1,n2} belonging to the spatial quater-
nionic curve α are as follws:

λt = h(D, t) =
1
2

(
D × t + t ×D

)
=

1
2

(
− (t

∮
rds + n2

∮
kds) × t + t × (−t

∮
rds − n2

∮
kds)

)
=

1
2

(
− (t × t)

∮
rds − (n2 × t)︸ ︷︷ ︸

n1

∮
kds − (t × t)

∮
rds − (t × n2 )︸ ︷︷ ︸

−n1

∮
kds)

)
=

∮
rds,

λn1
= h(D,n1 ) =

1
2

(
D × n1 + n1 ×D

)
=

1
2

(
− (t

∮
rds + n2

∮
kds) × n1 + n1 × (−t

∮
rds − n2

∮
kds)

)
= 0,

λn2
= h(D,n2 ) =

1
2

(
D × n2 + n2 ×D

)
=

1
2

(
−D × n2 + n2 ×D

)
=

1
2

(
− (t

∮
rds + n2

∮
kds) × n2 + n2 × (−t

∮
rds − n2

∮
kds)

)
=

∮
kds.
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2) According to Theorem 3.13 and the equation (11), the pitches of the closed spatial quaternionic ruled
surfaces drawn by the motion of the Frenet vectors {t,n1,n2} belonging to the spatial quaternionic curve α
are as follows:

Lt = h(
∮

dα, t) = h(
∮

tds, t) =
1
2

(
t
∮

ds × t + t × t
∮

ds
)

=

∮
ds,

Ln1
= h(

∮
dα,n1 ) = h(

∮
tds,n1 ) =

1
2

(
t
∮

ds × n1 + n1 × t
∮

ds
)

= 0,

Ln2
= h(

∮
dα,n2 ) = h(

∮
tds,n2 ) =

1
2

(
t
∮

ds × n2 + n2 × t
∮

ds
)

= 0.

3) Using Lemma 3.7, the distribution parameter of the closed spatial quaternionic ruled surface drawn
by the motion of the tangent vectors t belonging to the spatial quaternionic curve α is

Pt =
h(t × t′, α′)
N(t′(s))2 · (41)

Considering the equation (6), we can write

h(t × t′, t) =
1
2

(
(t × t′) × t + t × (t × t′)

)
=

1
2

(
− (t × t′) × t + t × (t′ × t)

)
=

1
2

(
− (t × kn1 ) × t + t × (kn1 × t)

)
=

1
2

(
− k(n2 × t) − k(t × n2)

)
= 0

Thus, Pt = 0 is found.
Taking consideration Lemma 3.7, the distribution parameter of the closed spatial quaternionic ruled

surface drawn by the motion of the vector n1 belonging to the spatial quaternionic curve α is

Pn1
=

h(n1 × n′
1
, α′)

N(n′
1
(s))2 . (42)

Using the equation (6), we obtain

h(n1 × n′
1
, t) =

1
2

(
(n1 × n′

1
) × t + t × (n1 × n′

1
)
)

=
1
2

(
− (n1 × (−kt + rn2 )) × t + t × ((−kt + rn2 ) × n1 )

)
=

1
2

(
(k(n1 × t) − r(n1 × n2 )) × t − t × ((kt − rn2 ) × n1 )

)
= r

and

N(n′
1
(s))2 = h(n′

1
,n′

1
) =

1
2

(
n′

1
× n′

1
+ n′

1
× n′

1

)
= n′

1
× n′

1
= k2 + r2.

If these values are substituted in equation (42), Pn1
=

r
k2 + r2 is found.

From Lemma 3.7, the distribution parameter of the closed spatial quaternionic ruled surface drawn by
the motion of the vector n2 belonging to the spatial quaternionic curve α is

Pn2
=

h(n2 × n′
2
, α′)

N(n′
2
(s))2 · (43)

Considering the equations (6), we get

h(n2 × n′
2
, t) =

1
2

(
(n2 × n′

2
) × t + t × (n2 × n′

2
)
)

=
1
2

(
− (n2 × n′

2
) × t + t × (n′

2
× n2 )

)
=

1
2

(
− (n2 × (−rn1 )) × t + t × (n′

2
× n2 )

)
=

1
2

(
r − rt × (n1 × n2 )

)
= r
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and

N(n′
2
(s))2 = h(n′

2
,n′

2
) = n′

2
× n′

2
= −rn1 × rn1 = r2.

If these values are substituted in equation (43), Pn2
=

1
r

is found.
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