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Abstract.
In the present paper, we study a lightlike hypersurface, when the ambient manifold is an (ε)-para

Sasakian manifold endowed with a semi-symmetric non-metric connection. We obtain a condition for such
a lightlike hypersurface to be totally geodesic. We define invariant and screen semi-invariant lightlike
hypersurfaces of (ε)-para Sasakian manifolds with a semi-symmetric non-metric connection. Also, we
obtain integrability conditions for the distributions D ⊥ 〈δ〉 and D′ ⊥ 〈δ〉 of a screen semi-invariant lightlike
hypersurface of an (ε)-para Sasakian manifolds with a semi-symmetric non-metric connection.

1. Introduction

The theory of submanifolds of semi-Riemannian manifolds is one of the most important topics in differ-
ential geometry. In case the induced metric on the submanifold of semi-Riemannian manifold is degenerate,
the study becomes more difficult and is quite different from the study of non-degenerate submanifolds.
The primary difference between the lightlike submanifolds and non-degenerate submanifolds arises due
to the fact that in the first case the normal vector bundle has non-trivial intersection with the tangent vector
bundle, and moreover in a lightlike hypersurface the normal vector bundle is contained in the tangent
vector bundle. Lightlike submanifolds of semi-Riemannian manifolds were introduced by K. L. Duggal
and A. Bejancu in [9] (see also [10]). Since then, many authors have focused to extend their ideas on this
topic (for example, see [1–3, 11, 12, 16]).

The idea of semi-symmetric connection was introduced by A. Friedmann and J. A. Schouten [13] in 1924.
A linear connection ∇̆ on a Riemannian manifold

(
Mn,1

)
is called semi-symmetric, if its torsion T̆ satisfies

T̆(W,Z) = η̆ (Z) W − η̆ (W) Z,

where η is a non-zero 1-form associated with a vector fields δ defined by

η̆ (W) = 1̆ (W, δ) .
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In 1930, E. Bartolotti [5] gave geometrical meaning of such a connection. In 1932, H. A. Hayden [14]
defined and studied semi-symmetric metric connection. In 1970, Yano [24] started the systematic study
of semi-symmetric metric connection and this was further developed by various authors. In 1991, N. S.
Agashe and M. R. Chafle [4] introduced a semi-symmetric connection ∇̆ satisfying ∇̆1 , 0 and called such a
connection as semi-symmetric non-metric connection. They gave the relation between the curvature tensors
of the manifold with respect to the semi-symmetric non-metric connection and the Riemannian connection.

An almost paracontact structure
(
φ̆, δ, η̆

)
satisfying φ̆2 = I−η̆⊗δ and η̆ (δ) = 1 on a differentiable manifold

was introduced by I. Sato [17] in 1976. The structure is an analogue of the almost contact structure [7, 20].
An almost contact manifold is always odd-dimensional but an almost paracontact manifold could be even-
dimensional as well. In 1969, T. Takahashi [22] initiated the study of almost contact manifolds equipped
with an associated pseudo-Riemannian metric. In particular, he studied Sasakian manifolds equipped with
an associated pseudo-Riemannian metric. These indefinite almost contact metric manifolds and indefinite
Sasakian manifolds are also known as (ε)-almost contact metric manifolds and (ε)-Sasakian manifolds [6, 8].
Also, in 1989, K. Matsumoto replaced the structure vector field δ by −δ in an almost paracontact manifold
and associated a Lorentzian metric with the resulting structure and called it Lorentzian almost paracontact
manifold [18]. In a Lorentzian almost paracontact manifold given by K. Matsumoto, the semi-Riemann
metric has only index 1 and the structure vector field δ is always timelike. In [23], the authors introduced
(ε)- almost paracontact structures by associating almost paracontact structure with a semi-Riemannian
metric, where the structure vector field δ is spacelike or timelike according as ε = 1 or ε = −1. Lightlike
hypersurfaces of such an (ε)-para Sasakian manifolds were studied by S. Yüksel Perktaş et al. [26] (see also
[21]).

In 2014, S.K. Pandey et al. [19] studied semi-symmetric non-metric connection in an indefinite para-
Sasakian manifold. They obtained the relation between the semi-symmetric non-metric connection and
Levi-Civita connection in an indefinite para-Sasakian manifold.

In this article, we study a lightlike hypersurface, when the ambient manifold is an (ε)- para Sasakian
manifold with semi-symmetric non-metric connection. We obtain condition for such a lightlike hypersurface
to be totally geodesic. Also, we find integrability conditions for the distributions of some special lightlike
hypersurfaces. The paper is organized as follows. In Section 2, we give a brief account of lightlike
hypersurfaces of a semi-Riemannian manifold, for later use. In Section 3, an (ε)- para Sasakian manifold
with semi-symmetric non-metric connection is given. In Section 4, we investigate lightlike hypersurfaces
of an (ε)- para Sasakian manifold with semi-symmetric non-metric connection. In Section 5, invariant
lightlike hypersurfaces of such manifolds are studied. Finally, in Section 6 screen semi-invariant lightlike
hypersurfaces of such manifolds are investigated and we find some necessary and sufficient conditions for
integrability of distributions.

2. Lightlike Hypersurfaces

Let
(
M̆, 1̆

)
be an (n + 2)-dimensional semi-Riemannian manifold of fixed index q ∈ {1, ...,n + 1} and M a

hypersurface of M̆. Assume that the induced metric 1 = 1̆ |M on hypersurface is degenerate on M. Then,
there exist a vector field ξ , 0 on M such that

1 (ξ,W) = 0,

for all W ∈ Γ(TM).
The radical space of TWM, at each point W ∈M, is defined by

Rad TWM =
{
ξ ∈ TWM : 1 (ξ,W) = 0,W ∈ TWM

}
, (1)

whose dimension is called the nullity degree of 1 and
(
M, 1

)
is called a lightlike hypersurface of

(
M̆, 1̆

)
.

Since 1 is degenerate and any null vector is perpendicular to itself, TWM⊥ is also degenerate and

Rad TWM = TWM ∩ TWM⊥. (2)
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For a hypersurface M, dim TWM⊥ = 1 implies that

dim Rad TWM = 1,
Rad TWM = TWM⊥.

We call Rad TM the radical distribution and it is spanned by the null vector field ξ.
Consider a complementary vector bundle S(TM) of Rad TM in TM. This means that

TM = S(TM)⊥Rad TM, (3)

where ⊥ denotes the orthogonal direct sum. The bundle S(TM) is called the screen distribution on M.
Since the screen distribution S(TM) is non-degenerate, there exists a complementary orthogonal vector
sub-bundle S(TM)⊥ to S(TM) in TM̆ which is called the screen transversal bundle of dimension 2 [10].

Since Rad TM is a lightlike vector sub-bundle of S(TM)⊥, therefore for any local section ξ ∈ Γ (Rad TM)
there exists a unique local section N of S(TM)⊥ such that

1(N,N) = 0 1(ξ,N) = 1. (4)

Hence, N is not tangent to M and {ξ,N} is a local frame field of S(TM)⊥.Moreover, we have a 1-dimensional
vector sub-bundle ltrTM of TM̆, namely lightlike transversal bundle, which is locally spanned by N. Then
we set

S(TM)⊥ = Rad TM ⊕ ltrTM,

where the decomposition is not orthogonal. Thus we have the following decomposition of

TM̆ = S(TM)⊥Rad TM ⊕ ltrTM = TM ⊕ ltrTM. (5)

From the above decomposition of a semi-Riemannian manifold M̆ along a lightlike hypersurface M, we
may consider the following local quasi-orthonormal field of frames of M̆ along M :

{W1, ...,Wn, ξ,N} ,

where {W1, ...Wn} is an orthonormal basis of Γ(S(TM)). According to the decomposition given by (5), we
have the following the Gauss and the Weingarten formulas, respectively:

∇̆WV = ∇WV + B(W,V)N, (6)
∇̆WN = −ANW + τ (W) N, (7)

where B is a symmetric (0, 2) tensor which is called the second fundamental form and A is an endomorphism
of TM which is called the shape operator with respect to N and τ is a 1-form on M.

For each W ∈ Γ (TM) , we can write

W = SW + α (W) ξ, (8)

where S is projection of TM on S(TM) and α is a 1-form given by

α (W) = 1̆(W,N). (9)

From (7), for all W,V,U ∈ Γ (TM) , we get(
∇W1

)
(V,U) = B(W,V)α (U) + B(W,U)α (V) ,

which implies that the induced connection ∇ is a non-metric connection on M.
From (3), we have

∇WS = ∇
∗

WS + C(W,S)ξ (10)
∇Wξ = −A∗ξW − τ (W) ξ (11)



F.E. Erdoğan, S.Y. Perktaş / Filomat 32:16 (2018), 5767–5786 5770

for all W ∈ Γ (TM), S ∈ Γ (S(TM)) , where C, A∗ξ and ∇∗ are the local second fundamental form, the local
shape operator and the induced connection on S(TM), respectively. Note that ∇∗WS and A∗ξW belong to
Γ (S(TM)). Also, we have the following

1
(
A∗ξW,V

)
= B(W,V), 1

(
A∗ξW,N

)
= 0, B(W, ξ) = 0, 1 (ANW,N) = 0. (12)

Moreover, from the first and third equations of (12) we have [9]

A∗ξξ = 0. (13)

3. (ε)-para Sasakian Manifolds with a Semi-Symmetric Non-Metric Connection

Let M̆ be an almost paracontact manifold equipped with an almost paracontact structure
(
φ̆, δ, η̆

)
con-

sisting of a tensor field φ̆ of type (1, 1), a vector field δ and 1-form η̆ satisfying

φ̆2 = I − η̆ ⊗ δ, (14)
η̆ (δ) = 1, (15)
φ̆ (δ) = 0, (16)
η̆ ◦ φ̆ = 0. (17)

Let M̆ be an n-dimensional almost paracontact manifold and 1̆ be a semi-Riemannian metric with index
(
1̆
)

=
v, such that

1̆
(
φ̆W, φ̆V

)
= 1̆ (W,V) − εη̆ (W) η̆ (V) , (18)

where ε = ±1. In this case, M̆ is called an (ε)-almost paracontact metric manifold equipped with an (ε)-almost
paracontact structure

(
φ̆, δ, η̆, 1̆

)
[23].

In view of equations (15),(16) and (18), we have

1̆
(
φ̆W,V

)
= 1̆

(
W, φ̆V

)
(19)

and

1̆ (W, δ) = εη̆ (W) , (20)

for all W,V ∈ Γ(TM̆). From equation (20), it follows that

1̆ (δ, δ) = ε, (21)

i.e. the structure vector field δ is never lightlike. An (ε)−almost paracontact metric manifold
(
M̆, φ̆, δ, η̆, 1̆, ε

)
is said to be spacelike (ε)-almost paracontact metric manifold, if ε = 1 and M̆ is said to be a M̆ timelike
(ε)-almost paracontact metric manifold if ε = −1.

An (ε)-almost paracontact metric structure is called an (ε)-para Sasakian structure [23] if(
∇̆Wφ̆

)
(V) = −1̆

(
φ̆W, φ̆V

)
δ − δη̆ (V) φ̆2W, ∀W,V ∈ Γ(TM̆), (22)

where ∇̆ the Levi-Civita connection. A manifold M̆ endowed with an (ε)-para Sasakian structure is called
an (ε)-para Sasakian manifold.

In an (ε)-para Sasakian manifold, we have

∇̆Wδ = εφ̆, (23)
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Ω (W,V) = ε1̆
(
φ̆W,V

)
=

(
∇̆Wη̆

)
V, (24)

for all W,V ∈ Γ(TM̆), where Ω is the fundamental 2-form.

The
≈

∇ on a semi-Riemannian manifold
(
M̆, 1̆

)
is called semi-symmetric connection, if its torsion tensor

≈

T satisfies
≈

T (W,V) = η̆ (V) W − η̆ (W) V, (25)
η̆ (W) = 1̆ (W, δ) . (26)

Let
≈

∇ be a linear connection and ∇̆ be a Levi-Civita connection of an (ε)-para Sasakian manifold M̆ such

≈

∇WV = ∇̆WV + F(W,V), (27)

where F is a tensor of type (1, 2).

For a semi-symmetric non-metric connection
≈

∇ in M̆ , we have

F(W,V) =
1
2

[
≈

T (W,V) +
≈

T∗ (W,V) +
≈

T∗ (V,W)
]

+ 1̆ (W,V) δ, (28)

where
≈

T∗ (W,V) = η̆ (V) W − 1̆ (W,V) δ. (29)

Using (25) and (29) in equation (28), we get

F(W,V) = η̆ (V) W. (30)

Hence in view of equations (27) and (30), a semi-symmetric connection on an (ε)-para Sasakian manifold
M̆ is given by

≈

∇WV = ∇̆WV + η̆ (V) W. (31)

Also, we have(
≈

∇W1̆

)
(V,Z) = −η̆ (V) 1̆ (W,Z) − η̆ (Z) 1̆ (W,V) . (32)

In a lightlike hypersurface, we have(
≈

∇W1̆

)
(V,Z) = B(W,V)1 (N,Z) + B (W,Z) 1 (V,N) (33)

−η̆ (V) 1 (W,Z) − η̆ (Z) 1 (V,W) .

In view of equations (25) and (32), we conclude that the connection
≈

∇ is a semi-symmetric non-metric
connection. Thus equation (31) gives the relation between the Levi-Civita connection ∇̆ and semi-symmetric

connection
≈

∇ on an (ε)-para Sasakian manifold M̆.
In view of equation (31), we have(

≈

∇Wφ̆
)

(V) =
≈

∇Wφ̆ (V) − φ̆
(
≈

∇WV
)
,

i.e., (
≈

∇Wφ̆
)

(V) =
(
∇̆Wφ̆

)
(V) − η̆ (V) φ̆ (W) . (34)
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Replacing W and V by φ̆W and φ̆V and using equation (17), we find(
≈

∇φ̆Wφ̆
) (
φ̆V

)
=

(
∇̆φ̆Wφ̆

) (
φ̆V

)
= −1̆

(
φ̆2W, φ̆2V

)
δ, (35)

for all W,V ∈ TM̆ [19].

Example 3.1. Let us assume the manifold R2m+1
q with

η̆ =
1
2

dz −
m∑

i=1

yidxi

 ,
δ = 2∂z,

1̆ = η̆ ⊗ η̆ +
1
4

−
q
2∑

i=1

dxi
⊗ dxi + dyi

⊗ dyi +

m∑
i= q

2 +1

dxi
⊗ dxi + dyi

⊗ dyi

 ,
φ̆

 m∑(
Xi∂xi + Yi∂yi

)
+ Z∂z

 =

m∑
i=1

(
Yi∂xi + Xi∂yi

)
+

m∑
i=1

Yiyi∂z,

where
(
xi, yi, z

)
are the cartesian coordinates on R2m+1

q . Then
(
R2m+1

q , 1̆, φ̆, η̆, δ
)

is a usual para-Sasakian
manifold [21].

Example 3.2. Let R3 be the 3-dimensional real number space with a coordinate system
(
x, y, z

)
. We define

η̆ = dz,

δ =
∂
∂z
,

φ̆(
∂
∂x

) =
∂
∂x
, φ̆(

∂
∂y

) = −
∂
∂y
, φ̆(

∂
∂z

) = 0

1̆ = e−2z(dx)2 + e2z(dy)2
− (dz)2.

Then
(
φ̆, 1̆, η̆, δ

)
is an (ε)-para Sasakian structure. Let ∇̆ and

≈

∇ denote the Levi-Civita connection and a linear
connection on R3, respectively. Then we have

∇̆ ∂
∂x

∂
∂x

= −e−2z ∂
∂z
, ∇̆ ∂

∂x

∂
∂y

= 0, ∇̆ ∂
∂x

∂
∂z

= −
∂
∂x
,

∇̆ ∂
∂y

∂
∂x

= 0, ∇̆ ∂
∂y

∂
∂y

= e2z ∂
∂z
, ∇̆ ∂

∂y

∂
∂z

=
∂
∂y
, (36)

∇̆ ∂
∂z

∂
∂x

= −
∂
∂x
, ∇̆ ∂

∂z

∂
∂y

=
∂
∂y
, ∇̆ ∂

∂z

∂
∂z

= 0.

If we define
≈

∇ ∂
∂x

∂
∂x

= −e2z ∂
∂z
,
≈

∇ ∂
∂x

∂
∂y

= 0,
≈

∇ ∂
∂x

∂
∂z

= 0,

≈

∇ ∂
∂y

∂
∂x

= 0,
≈

∇ ∂
∂y

∂
∂y

= e2z ∂
∂z
,
≈

∇ ∂
∂y

∂
∂z

= 2
∂
∂y
, (37)

≈

∇ ∂
∂z

∂
∂x

= −
∂
∂x
,
≈

∇ ∂
∂z

∂
∂y

=
∂
∂y
,
≈

∇ ∂
∂z

∂
∂z

=
∂
∂z
.

then by using (36) and (37) we see that

≈
T(W,V) = η̆(V)W − η̆(W)V,

which implies that
≈

∇ is a semi-symmetric non-metric connection.
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4. Lightlike Hypersurfaces of an (ε)- para Sasakian Manifold with a Semi-Symmetric Non-Metric Con-
nection

Let M be a lightlike hypersurface of an (ε)- para Sasakian manifold with a semi-symmetric non-metric
connection. In this case, if we take into account the fact that ∇̆ is a Levi-Civita connection, we can write
the Gauss and Weingarten formulas as given by (6) and (7), respectively, where ∇ denotes the induced
connection on M from Levi-Civita connection ∇̆.

Assume that
≈

∇ is a semi-symmetric connection on M̆. If we denote the induced connection from
≈

∇ on
TM by ∇̊, we can write

≈

∇WV = ∇̊WV + m(W,V)N, (38)
≈

∇WN = −ÅNW + w (W) N. (39)

Therefore, from (31) and above equations, we find

∇̊WV = ∇WV + η̆ (V) W, (40)
m(W,V) = B(W,V), (41)

w (W) = τ (W) . (42)

Since ∇ is not a metric connection, then from (40), we obtain(
∇̊W1

)
(V,Z) = B(W,V)θ (Z) + B (W,Z)θ (V) − (43)

η̆ (V) 1 (W,Z) − η̆ (Z) 1 (V,W) ,

which implies that ∇̊ is a non-metric connection. Also, we have

T̊ (W,V) = η̆ (V) W − η̆ (W) V. (44)

As an adaptation of [25], we have:

Proposition 4.1. Let M be a lightlike hypersurface of an (ε)- para Sasakian manifold M̆ with a semi-symmetric
non-metric connection. Then M have a semi-symmetric non metric connection. Hence,

T̊ (W,V) = η̆ (V) W − η̆ (W) V,

∇̊WV = ∇WV + η̆ (V) W,

(
∇̊W1

)
(V,Z) = B(W,V)θ (Z) + B (W,Z)θ (V)

−η̆ (V) 1 (W,Z) − η̆ (Z) 1 (V,W) .

Now, replacing the Levi-Civita connection ∇̆ by semi-symmetric non-metric connection
≈

∇ in (22), the
equation is reformed to(

≈

∇Wφ̆
)

(V) =
(
∇̆Wφ̆

)
(V) − η̆ (V) φ̆ (W) , (45)

(
≈

∇Wφ̆
)

(V) = −1̆
(
φ̆W, φ̆V

)
δ − εη̆ (V) W (46)

+εη̆ (V) η̆ (W) δ − η̆ (V) φ̆ (W) .
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Replacing V by δ in (46) and using (16), η̆
(
∇̆Wδ

)
= 0, we find

≈

∇Wδ = W + εφ̆ (W) . (47)

Let
(
M, 1

)
be a lightlike hypersurface of

(
M̆, 1̆

)
. For local sections ξ and N of Rad TM and ltrTM, respectively,

in view of (26) and (14),we have

η̆ (ξ) = 0, η̆ (N) = 0, (48)

φ̆2ξ = 0, φ̆2N = 0. (49)

For W ∈ Γ (TM), we can write

φ̆W = φW + h(W)N, (50)

where φW ∈ Γ (TM) and

h(W) = 1(φ̆W, ξ) = 1(W, φ̆ξ). (51)

Proposition 4.2. Let
(
M̆, φ̆, δ, η̆, 1̆, ε

)
be an (ε)- para Sasakian manifold with a semi-symmetric non-metric connec-

tion and M be a lightlike hypersurface of M̆, such that structure vector field δ is tangent to M. Then we have

1(φ̆ξ, ξ) = 0, (52)

1
(
φ̆ξ,N

)
= 1

(
ξ, φ̆N

)
= ε1 (δ,ANξ) , (53)

where ξ is a local section of Rad TM and N is a local section of ltrTM.

Proof. From (47) and (13), we get

1(φ̆ξ, ξ) = ε1
(
≈

∇ξδ − ξ, ξ
)

= −ε1
(
δ,∇ξξ

)
= 0,

and

1
(
φ̆ξ,N

)
= ε1

(
≈

∇ξδ − ξ,N
)

= −ε1
(
δ,
≈

∇ξN
)

= ε1 (δ,ANξ) = 1
(
ξ, φ̆N

)
.

Also, we find

1
(
φ̆ξ, φ̆N

)
= 1.

This completes the proof.

From the proposition above, we can say that there is no component of φ̆ξ in ltrTM, thus φ̆ξ ∈ Γ (TM) .
Moreover, there may be a component of φ̆ξ in Rad TM.

Therefore, for any lightlike hypersurface M of (ε)- para Sasakian manifolds with a semi-symmetric
non-metric connection M̆, from the decomposition

D = S(TM) ⊥ Rad TM ⊥ φ̆ (Rad TM)
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and

D′ = φ̆ (ltrTM) ,

we have

TM = D ⊕D′. (54)

Consider two null vector field H and K and their 1-forms h and k, such that

H = φ̆N, h (W) = 1 (W,K) , (55)
K = φ̆ξ, k (W) = 1 (W,H) . (56)

Denote the projection morphism of TM on D by S. Any vector field W on TM is expressed by

W = SW + h (W) H. (57)

Applying φ̆ to the both sides of the last equation, we have

φ̆W = φ̆SW + h (W) φ̆H,
φ̆W = φW + h (W) N, (58)

where φ is a tensor field of type (1, 1) globally defined on M by φW = φ̆SW.
If we apply φ̆ to (58) and using (14)−(17) with (55) and (56), we get

φ̆2W = φ̆φW + h (W) φ̆N,
W − η̆ (W) δ = φ2W + h (W) H,

which imply

φ2W = W − η̆ (W) δ − h (W) H + h
(
φW

)
N. (59)

Using (32), (25), (19) and (58), we obtain(
∇̊W1

)
(V,Z) = B(W,V)1(N,Z) + B(W,Z)1(V,N) (60)

−η̆ (V) 1(W,Z) − η̆ (Z) 1(V,W).

Also, we have

T̊ (W,V) = η̆ (V) W − η̆ (W) V, (61)

for W,V ∈ Γ (TM) .

Proposition 4.3. Let
(
M̆, φ̆, δ, η̆, 1̆, ε

)
be an (ε)- para Sasakian manifold with a semi-symmetric non-metric connec-

tion and M be a lightlike hypersurface of M̆, such that structure vector field δ is tangent to M. Then we have

B(W,V) − B(V,W) = −ε
(
η̆ ⊗ h

)
(W,V) 1 (δ,ANξ) , (62)

B(W,V) = 1
(
A∗ξW,V

)
+ η̆ (V) h(W), (63)

C(W,PV) = 1(PV,ANW) + η̆ (PV) k (W) , (64)

1 (ANW, δ) = − (1 + ε) k (W) . (65)
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Proof. For all W,V, δ ∈ Γ (TM) , using (38) and (57), we obtain

η̆ (V) 1 (W, ξ) − η̆ (W) 1 (V, ξ) = B(W,V) − B(V,W),
ε
[
η̆ (V) h(W) − η̆ (W) h (V)

]
1 (δ,ANξ) = B(W,V) − B(V,W),

which imply

B(W,V) − B(V,W) = −ε
(
η̆ ⊗ h

)
(W,V) 1 (δ,ANξ) .

Also using (38) and (41), we find that the local second fundamental forms are related to their shape operators
by

B(W,V) = 1

(
≈

∇WV, ξ
)

= −1 (V,∇Wξ) + η̆ (V) h(W)

= 1
(
A∗ξW,V

)
+ η̆ (V) h(W).

For a projection morphism P to S(TM) from M, we get

C (W,PV) = 1

(
≈

∇WPV,N
)

= −1
(
PV, ∇̆WN

)
+ η̆ (PV) k (W)

= 1 (PV,ANW) + η̆ (PV) k (W) .

Applying
≈

∇W to 1(δ,N) = 0 and using (60), (47), (56) and (39), we have

1
(
W + εφ̆W,N

)
= 1 (δ,−ANW + τ (W) N) ,

k (W) + εk (W) = −1 (ANW, δ) ,
1 (ANW, δ) = − (1 + ε) k (W) .

This completes the proof.

Now, applying
≈

∇W to (50), we obtain
≈

∇Wφ̆V =
≈

∇WφV +
(
≈

∇Wh
)

(V) N + h (V)
≈

∇WN, −1 (W,V) δ + 2εη̆ (W) η̆ (V) δ − εη̆ (V) W
−η̆ (V)φW − η̆ (V) h (W) N + h (∇WV) N

+B(W,V)H

 =


(
∇Wφ

)
V + B(W, φV)N + η̆

(
φV

)
W(

≈

∇Wh
)

(V) N − h(V)ANW − h(V)τ (W) N

 .
Then, we have(

∇Wφ
)

V = −1 (W,V) δ + 2εη̆ (W) η̆ (V) δ (66)

−εη̆ (V) W − η̆ (V)φW + η̆
(
φV

)
W

+h(V)ANW + B(W,V)H(
≈

∇Wh
)

(V) = h(V)τ (W) − η̆ (V) h (W) + h (∇WV) − B(W, φV). (67)

From (33), we have(
≈

∇Wh
)

(V) = εB (W,V) 1 (δ,ANξ) − η̆ (V) h (W) . (68)

If we use (68) in (67), we arrive at

h (∇WV) = h(V)τ (W) − B(W, φV) − εB(W,V)1 (δ,ANξ) . (69)
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Theorem 4.4. A lightlike hypersurface M of an (ε)- para Sasakian manifold with a semi-symmetric non-metric
connection is totally geodesic if and only if(

∇Wφ
)

V = −1 (W,V) δ + 2εη̆ (W) η̆ (V) δ (70)

−εη̆ (V) W − η̆ (V)φW + η̆
(
φV

)
W,

ANW =
(
∇Wφ

)
H + 1 (W,H) δ, (71)

where V ∈ Γ (D).

Proof. For any V ∈ Γ (D), we have h (V) = 0. Then, (66) is reduced to(
∇Wφ

)
V = −1 (W,V) δ + 2εη̆ (W) η̆ (V) δ

−εη̆ (V) W − η̆ (V)φW

+η̆
(
φV

)
W − B(W,V)H.

On the other hand, replacing V by H in (66), we also obtain(
∇Wφ

)
H = −1 (W,H) δ + 2εη̆ (W) η̆ (H) δ (72)

−εη̆ (H) W − η̆ (H)φW + η̆
(
φH

)
W

+h(H)ANW − B(W,H)H,

where

η̆ (H) = 0, (73)
h(H) = 1, (74)

η̆
(
φH

)
= 0. (75)

If taking into account (73)-(75) with (72), we find(
∇Wφ

)
H = −1 (W,H) δ − B(W,H)H + ANW,

which yields

ANW =
(
∇Wφ

)
H + 1 (W,H) δ + B(W,H)H. (76)

As a result, if we assume that M is totally geodesic, then (76) is reduced (71). The converse is clear. Thus,
we complete the proof.

Proposition 4.5. Let M be a lightlike hypersurface of an (ε)- para Sasakian manifold M̆ with a semi-symmetric
non-metric connection . Then, for any W ∈ Γ (TM),

i) if the vector field H is parallel, then we have

ANW = η̆ (ANW) δ + h (ANW) H,

ii) if the vector field K is parallel, then we have

A∗ξW − η̆
(
A∗ξW

)
δ = 0,

τ (W) = 0,

h
(
φA∗ξW

)
+ h

(
A∗ξW

)
= 0.
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Proof. i) Applying φ to (76) and using (59), we find

φANW = φ
((
∇Wφ

)
H
)

+ 1 (W,H)φδ + B(W,H)φH

= φ
[
∇WφH − φ (∇WH)

]
+ 1 (W,H)

[
φ̆δ − h(δ)N

]
+B(W,H)

[
φ̆H − h(H)N

]
= −φ2 (∇WH)

= −∇WH + η̆ (∇WH) δ + h (∇WH) H + h
(
φ∇WH

)
N,

for all W ∈ Γ (TM). If H is parallel, i.e. ∇WH = 0, then this equation reduced to

φANW = 0.

From this equation and (58), we get

φ̆ (ANW) = h (ANW) N.

Applying φ̆ to this equation and using (14), we obtain

ANW = η̆ (ANW) δ + h (ANW) H.

ii) Suppose that the vector field K is parallel. Replacing V by ξ in (66) and using (12), we have(
∇Wφ

)
ξ = 0.

Hence, we find(
∇Wφ

)
ξ = ∇Wφξ − φ (∇Wξ)

0 = −∇WK + φ
(
A∗ξW

)
+ τ (W) K

φ
(
A∗ξW

)
= −τ (W) K.

Applying φ to this equation and using (59), we get

φ2
(
A∗ξW

)
= −τ (W)φK

h
(
φA∗ξW

)
N + A∗ξW − η̆

(
A∗ξW

)
δ − h

(
A∗ξW

)
H = −τ (W)φK,

which completes the proof.

Theorem 4.6. Let M be a lightlike hypersurface of an (ε)-para Sasakian manifold M̆ with a semi-symmetric non-
metric connection. Then, the screen distribution of M is integrable if and only if

C(W, δ) = C(δ,W),

C(W, δ) = ε1
(
φW,N

)
,

1
(
φW,N

)
= 1

(
W, φN

)
.

Proof. For all W,V ∈ Γ (S(TM)) , N ∈ Γ (ltrTM) the screen distribution is integrable if and only if

1 ([W,V] ,N) = 0

1 (W,N) + ε1
(
W, φ̆N

)
− 1 (∇δW,N) = 0

C(W, δ) = ε1
(
W, φ̆N

)
C(W, δ) = ε1

(
φW,N

)
.
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Also we can write screen distribution is integrable if and only if

1 ([W,V] ,N) = 0

1

(
≈

∇Wδ −
≈

∇δW − η̆ (δ) W − η̆ (W) δ,N
)

= 0

1 (∇Wδ,N) − 1 (∇δW,N) = 0
C(W, δ) − C(δ,W) = 0

C(W, δ) = C(δ,W)

1
(
φW,N

)
= 1

(
W, φN

)
.

This completes the proof.

5. Invariant Lightlike Hypersurfaces of an (ε)-para Sasakian Manifold with a Semi-Symmetric Non-
Metric Connection

Definition 5.1. Let
(
M̆, φ̆, δ, η̆, 1̆, ε

)
be an (n + 2)-dimensional (ε)-almost paracontact metric manifold en-

dowed a semi-symmetric non-metric connection and M be a lightlike hypersurface of M̆. If

φ̆ (S(TM)) = S(TM)

then, M is called an invariant lightlike hypersurface of M̆ [26].

Theorem 5.2. Let
(
M̆, φ̆, δ, η̆, 1̆, ε

)
be an (n + 2)-dimensional (ε)-almost paracontact metric manifold endowed semi-

symmetric non-metric connection. Then M is an invariant lightlike hyprsurface of M̆ if and only if

φ̆(Rad TM) = Rad TM,
φ̆(ltrTM) = ltrTM.

Proof. Let M be an invariant lightlike hyprsurface of M̆. From φ̆E = φE = PφE+θ(φE)E, for any W ∈ Γ(TM),
we get

1̆
(
φ̆E,W

)
= 1̆

(
E, φW + h(w)N

)
= h(w), (77)

1̆
(
φ̆E,W

)
= 1̆

(
φ̆E,PW + h(w)H

)
= 1̆

(
φ̆E,PW

)
+ h(w). (78)

From (77) and (78), we find

1̆
(
φ̆E,PW

)
= 0,

namely, there is not any component of φ̆E in S(TM) and φ̆(Rad TM) = Rad TM. For any local section N of
ltrTM, we can write

φ̆N = PφN + 1̆
(
φ̆N,N

)
E + 1̆

(
φ̆N,E

)
N.

Then, for any W ∈ Γ(TM), we have

1̆
(
φ̆N,W

)
= 1̆

(
φ̆N,PW + h(w)H

)
= 1̆

(
φ̆N,PW

)
= 1̆

(
N, φ̆PW

)
,

where PW ∈ S(TM). Since M is an invariant lightlike hypersurface, φ̆PW ∈ S(TM), then we get

1̆
(
φ̆N,W

)
= 1̆

(
N, φ̆PW

)
= 0.
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Hence, there is no component of φ̆N in S(TM).
Also if we apply φ̆ to φ̆N = PφN + 1̆

(
φ̆N,N

)
E + 1̆

(
φ̆N,E

)
N, then we find that PφN = 0. Therefore we

have

φ̆N = 1̆
(
φ̆N,N

)
E + 1̆

(
φ̆N,E

)
N.

which implies

1̆
(
φ̆N,N

)
= 1̆

(
φ̆N,E

)
= 0.

Since ker φ̆ = Span{δ},we find 1̆
(
φ̆N,N

)
= 0. Thus φ̆N = 1̆

(
φ̆N,E

)
N, that is φ̆(ltrTM) = ltrTM.

Conversely, let φ̆(Rad TM) = Rad TM and φ̆(ltrTM) = ltrTM. For any W ∈ S(TM), we have

1̆
(
E, φ̆W

)
= 1̆

(
φ̆E,W

)
= 0.

Thus there is no component of φ̆W in ltrTM. Similarly, we get

1̆
(
φ̆N,W

)
= 1̆

(
N, φ̆W

)
= 0,

which implies that there is no component of φ̆W in Rad TM. This completes the proof.

Example 5.3. Let
(
R5

2, 1̆, φ̆, η̆, δ
)

be an (ε)-para Sasakian manifold given in Example 3.1., where 1̆ is of sig-
nature (−,+,−,+ + )with respect to the canonical basis

{
∂x1, ∂x2, ∂y1, ∂y2, ∂z

}
. Suppose M is a hypersurface

of R5
2 given by

−x1 = y1 = u1,

x2 = u2,

y2 = u3,

z = u4.

Then Rad TM = span
{
E = −2∂x1 − 2∂x2 + 2∂y1 + 2∂y2 −

(
y1 + y2

)
∂z

}
and ltr(TM) is spanned by

N =
1
2

(
∂x1 − ∂x2 − ∂y1 + ∂y2 +

(
y1
− y2

)
∂z

)
.

It can be easily checked that φ̆E = −E, φ̆N = −N.Thus M is an invariant lightlike hypersurface of R5
2.

Theorem 5.4. Let
(
M̆, φ̆, δ, η̆, 1̆, ε

)
be an (ε)-almost paracontact metric manifold endowed semi-symmetric non-metric

connection and M be an invariant lightlike hypersurface of M̆. Then (M, φ, δ, η̆, 1, ε) is an (ε)-almost paracontact
metric manifold with a semi-symmetric non-metric connection.

Proof. Let M be an invariant lightlike hypersurface of M̆ and W,V ∈ Γ (TM). From (58) and φW = φ̆SW,
where S denotes the projection morphism of TM on D, we have

φ̆W = φW = φ̆SW. (79)

If we apply φ̆ to (79), we can write

φ2W = W − η(W)δ. (80)

Also from (79), it follows that

φ̆δ = φδ = 0. (81)
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In view of (80) and (81), we can see that

η̆ ◦ φ̆ = η̆ ◦ φ (82)
η̆ (δ) = 1. (83)

Moreover, from (19), we find

1
(
φW,V

)
= 1(W, φV), (84)

and from (18), we obtain

1
(
φW, φV

)
= 1(W,V) − εη̆ (W) η̆ (V) . (85)

Therefore from (80)-(85), we completes proof.

Proposition 5.5. Let M be an invariant lightlike hypersurface of an (ε)-para Sasakian manifold
(
M̆, φ̆, δ, η̆, 1̆, ε

)
endowed with a semi-symmetric non-metric connection. Then we have

1 (δ,ANPW) = θ (W) (1 + ε),

for W ∈ Γ(TM).

Proof. Since 1̆ (δ,N) = 0 and using (47), we write

1̆ (W,N) + ε1̆
(
φ̆W,N

)
= 1̆ (δ,ANW) . (86)

For any W ∈ Γ(TM), from (86), we find

1̆ (PW + θ (W) ,N) + ε1̆
(
W, φ̆N

)
= 1̆ (δ,ANPW)

θ (W) (1 + ε) = 1 (δ,ANPW) .

Corollary 5.6. Let M be an invariant lightlike hypersurface of a timelike (resp., spacelike) (ε)-para Sasakian manifold(
M̆, φ̆, δ, η̆, 1̆, ε

)
endowed with a semi-symmetric non-metric connection. Then we have 1 (δ,ANPW) = 0 (resp.,

1 (δ,ANPW) = 2θ (W)).

Theorem 5.7. An invariant lightlike hypersurface of an (ε)-para Sasakian manifold with semi-symmetric non metric
connection is also an (ε)-para Sasakian manifold endowed with a semi-symmetric non-metric connection. Furthermore,
we have

B(W, φV)N − B(W,V)φN = 0, (87)

φ (ANW) = AφNW − θ (W) δ, (88)

for any W,V ∈ Γ(TM).

Proof. From (38) and (41) , we find(
≈

∇Wφ̆
)

(V) = ∇̊Wφ̆V + B(W, φ̆V)

−φ̆∇̊WV − B(W,V)φ̆N.

From the definition of an invariant lightlike hypersurface, we have(
≈

∇Wφ̆
)

(V) =
(
∇̊Wφ̆

)
V + B(W, φV)N − B(W,V)φ̆N.
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Using (46), we get(
−1̆

(
φW, φV

)
δ − εη̆ (V) W

+εη̆ (V) η̆ (W) δ − η̆ (V)φ (W)

)
=

( (
∇̊Wφ̆

)
V + B(W, φV)N
−B(W,V)φ̆N

)
.

Equating tangential parts of above equation provides(
∇̊Wφ̆

)
V = −1̆

(
φW, φV

)
δ − εη̆ (V) W + εη̆ (V) η̆ (W) δ − η̆ (V)φ (W) .

which implies that M is an (ε)-para Sasakian manifold with semi-symmetric non metric connection via
Theorem 5.1. Also, equating transversal parts of above equation gives equation (87).

Next using (46) and (39) with (34), we obtain(
≈

∇Wφ̆
)

N =
≈

∇Wφ̆N − φ̆
(
≈

∇WN
)
,

which implies (88) and τ (W) = 0. This completes the proof.

6. Screen Semi-Invariant Lightlike Hypersurfaces of an (ε)-para Sasakian Manifold with a Semi-Symmetric
Non-Metric Connection

Definition 6.1. Let
(
M̆, φ̆, δ, η̆, 1̆, ε

)
be an (n + 2)-dimensional (ε)-almost paracontact metric manifold en-

dowed with a semi-symmetric non-metric connection and M be a lightlike hypersurface of M̆. If

φ̆(Rad TM) ⊂ S(TM),
φ̆(ltrTM) ⊂ S(TM),

then M will be called a screen semi-invariant lightlike hypersurface of M̆. (see also

Example 6.2. Let
(
R5

2, 1̆, φ̆, η̆, δ
)

be an (ε)-para Sasakian manifold given in Example 3.1., where 1̆ is of sig-
nature (−,+,−,+ + )with respect to the canonical basis

{
∂x1, ∂x2, ∂y1, ∂y2, ∂z

}
. Suppose M is a hypersurface

of R5
2 given by

x2 = y2 = u2,

x1 = u1,

y1 = u3,

z = u4.

Then Rad TM = span
{
2∂x1 +

√
2∂x2 − 2∂y1 +

√
2∂y2 +

(
2 + 2y1 +

√
2y2

)
∂z

}
and ltr(TM) is spanned by N =

√
2∂x1 +

√
2∂y1 +

(
2 +
√

2y1
)
∂z. We easily check that

φ̆E = −2∂x1 +
√

2∂x2 + 2∂y1 +
√

2∂y2 +
(
2y1 +

√

2y2
)
∂z ∈ Γ(S(TM)),

φ̆N =
√

2∂x1 +
√

2∂y1 +
√

2y1∂z ∈ Γ(S(TM)),

thus M is a screen semi invariant lightlike hypersurface of R5
2.

Proposition 6.3. A screen semi-invariant lightlike hypersurface of an (ε)-para Sasakian manifold with semi-symmetric
non-metric connection is (ε)-para Sasakian manifold, if(

≈

∇Wφ̆
)

(V) = −1̆
(
φW, φV

)
δ − η̆ (V)φ2W − η̆ (V)φW.
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In view of (55) and (56), we can find

1̆ (H,K) = 1. (89)

Therefore 〈H〉 ⊕ 〈K〉 is a non-degenerate vector bundle of S(TM) with rank2. Since δ belong to S(TM) and
1̆ (H, δ) = 1̆ (K, δ) = 0. Hence, there exists a non-degenerate distribution D◦ of rank n − 3 on M such that

S(TM) = D◦ ⊥ {〈H〉 ⊕ 〈K〉} ⊥ 〈δ〉 ,

we note that D◦ is invariant distribution with φ̆, that is φ̆D◦ = D◦. Denoting

D = D◦ ⊥ Rad TM ⊥ 〈K〉

and

D′ = 〈H〉

then, we have

TM = D ⊕D′ ⊥ 〈δ〉 .

Thus, every W ∈ Γ (TM) can be expressed as

W = RW + QW + η̆ (W) δ,

where R and Q are projections of TM into D and D′, respectively. Hence, we may write

φW = φ̆RW, (90)

W ∈ Γ (TM) . If we use (15), (50) and (51), we obtain

φ̆2W = φ2W + h
(
φW

)
N + h (W) H. (91)

By comparing the tangential and transversal parts above equation, we find

φ2 = I − η̆ ⊗ δ − h ⊗H, (92)
h ⊗ φ = 0, (93)
φδ = 0, (94)

h (δ) = 0, (95)

as well as

η̆ (H) = 0, η̆ (δ) = 1 (96)
η̆ ◦ φ = 0. (97)

Therefore we have

Proposition 6.4. Let M be a screen semi-invariant lightlike hyprsurface of an (ε)-almost paracontact metric manifold
with semi-symmetric non-metric connection. Then M possesses a para

(
φ, δ, η̆,H, h

)
-structure, namely, equations

(92)-(97) are provided.

Now, using equation (45), we write(
≈

∇Wφ̆
)

(V) =
(
∇̆Wφ̆

)
(V) − η̆ (V) φ̆ (W) .

Then, if we use (90) and (91), we have
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Proposition 6.5. A screen semi-invariant lightlike hypersurface of an (ε)-para Sasakian manifold with semi-symmetric
non-metric connection is an (ε)-para Sasakian manifold, if(

≈

∇Wφ̆
)

(V) = −1̆
(
φW, φV

)
δ + h(V)1̆

(
φW,N

)
δ

+h(W)1̆
(
φV,N

)
δ − εη̆ (V)φ2W

−εη̆ (V) h(φW)N − εη̆ (V) h(W)H
−η̆ (V)φW − η̆ (V) h(V)N.

Also, we have

Theorem 6.6. Let M be a screen semi-invariant lightlike hyprsurface of an (ε)-para Sasakian manifold with a semi-
symmetric non-metric connection

(
M̆, φ̆, δ, η̆, 1̆, ε

)
. Then, we have

∇̊WK + φ (ANW) − τ (W) K = 0,

B(W,K) = −h(ANW).

Proof. From (46), we have
(
≈

∇Wφ̆
)

(N) = 0. Further, from the Gauss and Weingarten formulas and (58), we

find (
≈

∇Wφ̆
)

(N) =

(
∇̊WK + B(W,K)N + φ (ANW)

+h (ANW) N − τ (W) K

)
= 0.

which completes the proof.

6.1. Integrability of D ⊥ 〈δ〉

Theorem 6.7. Let M be a screen semi-invariant lightlike hyprsurface of an (ε)-para Sasakian manifold with a semi-
symmetric non-metric connection. Then, the distribution D ⊥ 〈δ〉 is integrable if and only if

B(φW,V) = B(W, φV),

for all W,V ∈ Γ(D).

Proof. We note that W ∈ Γ (D ⊥ 〈δ〉) if and only if h (W) = 1 (W,K) = 0.Now from (52), (65) and (69), we have

h [W,V] = h(V)τ (W) − h(W)τ (V)
+h (W) η̆ (V) − h (V) η̆ (W)
−B(W, φV) + B(V, φW).

In view of h (W) = h(V) = 0, we obtain

h [W,V] = B(φW,V) − B(W, φV),

for all W,V ∈ Γ (D ⊥ 〈δ〉) .Hence, we complete the proof.

6.2. Integrability of D′ ⊥ 〈δ〉

Theorem 6.8. Let M be a screen semi-invariant lightlike hyprsurface of an (ε)-para Sasakian manifold with a semi-
symmetric non-metric connection. Then the distribution D′ ⊥ 〈δ〉 is integrable if and only if

ANδ + εH = 0.
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Proof. W ∈ D′ ⊥ 〈δ〉 if and only if φW = 0. For all W,V ∈ Γ(TM) and in view of (66), we have(
∇Wφ

)
V = −1 (W,V) δ + 2εη̆ (W) η̆ (V) δ

−εη̆ (V) W − η̆ (V)φW + η̆
(
φV

)
W

+h(V)ANW + B(W,V)H.

Then, we can write

φ [W,V] = φ∇WV − φ∇VW − εη̆ (V) W

+εη̆ (W) V + η̆
(
φV

)
W − η̆

(
φW

)
V

+h(V)ANW + h(W)ANV
+B(W,V)H + B(V,W)H.

In particular from φW = φV = 0, for W,V ∈ D′ ⊥ 〈δ〉 , we have

φ [W,V] = −εη̆ (V) W + εη̆ (W) V + h(V)ANW + h(W)ANV.

Hence D′ ⊥ 〈δ〉 integrable if and only if

φ [H, δ] = 0,

namely

ANδ + εH = 0.

This completes the proof.
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