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Abstract. In this paper we first prove a new lemma for differentiable mapping via a fractional integral
operator. Then, using lemma, we establish some new Hermite-Hadamard-Fejer type results for convex
functions via fractional integral operators. The results presented here would provide extensions of those
given in earlier works.

1. Introduction and Preliminaries

If £ : [a,b] — R is a convex function, then

f(“zb)_b ff()d ALl M

is known as the Hermite-Hadamard inequality.
Fejér [12] gave a generalization of the inequalities (1) as the following: If f : [4,b] — R is a convex
function, and g : [2,b] — R is nonnegative, integrable and symmetric about %, then

b b b
7(452) s [ o i [ s < L0 [ g @

For some results which generalize, improve, and extend the inequalities (1.1) and (1.2) see [21, 25].

In [29], Sarikaya et al. generalized the Hermite-Hadamard type inequalities via Riemann-Liouville
fractional integrals. Then in [17], Iscan extended Sarikaya’s results to Hermite-Hadamard-Fejér type
inequalities for fractional integrals. Some other results related to those inequalities involving fractional
integrals can be found in the literature, for example, in [23, 24, 26, 29] and the references therein.

The Gronwall inequality and Lyapunov inequalities have been an important role in the field of differen-
tial equations. Typical applications involve bounds for eigenvalues, stability criteria for periodic differential
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equations, and estimates for intervals of disconjugacy. Recently, the Gronwall inequality has been general-
ized for the study of fractional differential equations, with dependence on the Riemann-Liouville fractional
derivative and for the Hadamard fractional derivative. Several papers have been presented to give general
versions of the Gronwall inequality that is proper for the Katugampola fractional derivative. Several new
results, generalizations and improvements can be found in the papers [6, 7, 13-16, 31].

Nowadays fractional calculus is dynamic area of research in mathematics. Various types of fractional
integrals were introduced: Riemann-Liouville, Hadamard, conformable and Katugampola are just a few to
name [3, 8, 18, 19, 28].

In the following, we will give some necessary definitions and preliminary results which are used and
referred to throughout this paper.

Definition 1.1. Let f € Ly[a, b]. The Riemann-Liouville integrals J7, f and J;f of order a > 0 witha > 0 are
defined by

1 x _
arf(X) = mﬁ (x—1" 1f(t)dt, x>a

and
b
I ) = ﬁ f (=0 fBdt, x <b

respectively where I'(a) = fow e'u*du. Hereis J, f(x) = J)_f(x) = f(x).
This function E,(z) defined by

E,(z) = kZ:O‘ T (z € C;R(p) > 0),

was introduced by Mittag-Leffler [20] and is, therefore, known as th Mittag-Leffler function. More detailed
information about this function may be found in the book by Erdélyi et al. ([11], Vol. 3, Section 18.1) and
Dzhrbashyan ([9], Chapter III and in [10]).

In [27], Raina introduced a generalized class of Mittag-Leffler functions defined formally by

N SR w I (O N ,
F o) = Fo O () = kzz;‘ Tk m© (A Okl <R), 3)

where the coefficients o(k) (k € N = IN U {0}) is a bounded sequence of positive real numbers and R is the
set of real numbers. With the help of (3), Raina [27] and Agarwal et al. [5] defined the following left-sided
and right-sided fractional integral operators respectively, as follows:

(T )0 = [ =ty = Pl (x> ) @

b
(7 ;’,A,b_;wq)) () = f (t =) 'F ) [w(t - x)Plp(hdt (x <b), )
where A, p > 0, w € R and ¢(¢) is such that the integral on the right side exits. In recently some new integral

inequalities this operator involving have appeared in the literature (see, e.g., [5, 22, 30]).
It is easy to verify that 7" ;)7 NarP @) and T g A h_,w(p(x) are bounded integral operators on L(a, b), if

M= FO,,[w(b - a)’] < oo, (6)
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In fact, for ¢ € L(a, b), we have

(N} Z,A,a+;zu(P(x)II1 < MG - a)llplh 7)
and
TS 3 pe @)l < M — )Mol 8

where

' :
gl = ( f Iqo(t)l’”dt) |

Here, many useful fractional integral operators can be obtained by specializing the coefficient o(k). For

1nstance the classical Riemann-Liouville fractiona integrals J;, and J_ of order a follow easily by setting
=a,0(0) =1and w = 0in (4) and (5).

If f is defined on an interval [g, b], then the action of the Q— operator is defined as (Qf)(t) = f(a+ b —t)
(see, e.g., [4]). Being symmetric about %£ of a function is related to the well-known Q- operator used
extensively in fractional calculus for example it has been used recently in [1, 2, 4]. Namely, the meaning
of symmetric about %2 of f function is (Qf)(t) = £( t) or f : [a,b] - R is symmetric to % if and only if

(Qf)(%) f(‘”b) Hence if f(t) is symmetric about %> b then QIZ f(t) = I} f(#).
The following identity is proved by Iscan:

Lemma 1.2. ([17]) Let f : [a, b] — R be differentiable mapping on (a,b) witha < band f’ € L[a,b]. If g : [a,b] —» R
is integrable and symmetric to %52, then the following equality for fractional integrals holds

(f(a) - )Uﬁg(b) 9@ =Un )0 + I (f9)@)]

1 b
= m ﬁ |:jﬂ‘ (b - S)Ué—lg(s)ds - jt‘ (S — a)a—lg(s)ds] f’(t)dt (9)

with a > 0.
Iscan established Fejér type inequalities for convex functions via Lemma 1.2 as follows:

Theorem 1.3. ([17]) Let f : I € R — R be a differentiable mapping on I° and f' € L[a,b] with a < b. If |f'| is
convex on [a,b] and g : [a,b] — R is continuous and symmetric to %52, then the following inequality for fractional
integrals holds

b
(P2 50+ 100 - 00+ R G
(b —a)™llglls (
(@+DI(a+1)
with a > 0.
Theorem 1.4. ([17]) Let f : I € R — R be a differentiable mapping on I° and ' € Lla, bl witha <b. If |[f'|1, g > 1,

is convex on [a,b] and g : [a,b] > R is continuous and symmetric to %2, then the following inequality for fractional
integrals holds

b
‘(M) [J2.9(0) + Ji_g@] = U (F)®) + Ji_(f9)@)]

)@+ 1o (10)

2(b = a)**Mlgllo 1 [|f’(a)|q + |f'b|vf]$
= ; TS | s e— 11
(b—a)ﬂ(a+1)r(a+1)( 2“) 2 (11)

where o > 0 and % + %
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Theorem 1.5. ([17]) Let f : I C R — R be a differentiable mapping on I° and f’ € L[a, bl witha < b. If|f'1, g > 1,
is convex on [a, bl and g : [a,b] > R is continuous and symmetric to “22, then the following inequality for fractional

integrals holds

b
‘(M) U2,9(0) + Ji_g@)] ~ U, (F)®) + Ji_(f)(@)]

% _ e+l % 4 4 %
200 (1) [—'f @ +1f b"’] (12)

(ap+1)iT(a+1) " 27 2
with a > 0, where % + % =1

The purpose of this paper is to derive generalizations of Hermite-Hadamard-Fejér type inequalities
obtained by Iscan using the fractional integral operators.

2. Main Results

Throughout this section, let ||gllc = SUPye( 6] |g(x)], for the continuous function g : [4,b] — R.

Lemma 2.1. If g : [a,b] — R is integrable and symmetric to 52 with a < b, then

(4 (4 1 (4 (%
p,a,a+;wg(b) = p,a/b—;wg(a) = E [ p,a,a+;wg(b) + jp,a,b—;wg(a)]

with a > 0.

Proof. Since g is symmetric to ‘%h, we have g(a + b — x) = g(x), for all x € [2,b]. Hence, in the following

integral setting x = a + b — f and dx = —dt gives

b
T et ®) f (b — )" [ao(b — 1) lg(x)dx
b

f (t—a)* ' F o [w(t —a))g(a + b — t)dt

b
(t —a)* 'F I [w(t — a)Plg(t)dt

P
a

jg,a,b—;wg(a)'

This completes the proof. [

Lemma 2.2. Let f : [a,b] — R be differentiable mapping on (a,b) witha < band f’ € L[a,b]. If g : [a,b] — R is

integrable and symmetric to %L, then the following equality for fractional integrals holds:

2 4
b
(f(a) ; f( )) [jg,a,a+;wg(b) + j{‘?j,a,b—;wg(a)] - [jgra/ﬂ‘*';w(fg)(b) + jg,a,b—;w (f_l])(ﬂ)]

b ot b
= f [f (b- s)“‘l‘f‘;a[w(b —5)Plg(s)ds — f (s - a)"‘_lﬂ"’a[w(s - a)p]g(s)ds] f(bdt
a a t

with a > 0.
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Proof. It suffices notice that

K

b ot b
f [f b- s)“‘lﬁfa[w(b —5)P]g(s)ds — f (s— a)“‘l?';’,a[w(s —a)Plg(s)ds| f'(t)dt

= f b ( f t(b —5)Fy Jw(b - s)P]g(s)ds) f'(t)dt
b b
+f (—f (s - a)“‘lﬂ‘fa[w(s - a)P]g(s)ds) f'(t)dt
- K \ K. t
By integration by parts and Lemma 2.1, we get
K

1
t
( [ -9t~ s)P]g(s)ds) £t
b

b
( [ o= - s)ﬂ]g(s)ds) f0 - [ @0l - 0
f(b)jg,a,a+;wg(b) - jg,a,a-%—;w(fg)(b)
b
O Tt ® + T2 0@ = Tl N,

b b
- [ 60l - 0 lgt0 o

and similarly

K

b
= (—f (s —a)* ' F o lw(s - a)P]g(s)ds) JiG)

b

b
- f (t —a)* 7' F . [w(t — a)1g(t) f(H)dt

a

b b
( [ (s—a)“1?;fia[w<s—amg<s>ds)f<a>— [ =gt - or ko
F@OT 8@ =Ty (D@
= PO a0 0)+ T 9@) - T (D@,

Thus, we can write

_ (f(a) + f(b))[

TP eI ® + T @] = [T e FDO) + T (@)

This proof is completed. [

Theorem 2.3. Let f : I C R — R be a differentiable mapping on I° and f’ € Lla,b] with a < b. If |f’| is convex
on [a,b] and g : [a,b] — R is continuous and symmetric to %, then the following inequality for fractional integrals
holds:

‘(f @+ (b)) [T ® + T2 0@ = [T FDO) + T2 ()]
< lgllelb - A 0l(b - 2P 1 @1 + £ O] (13)
witha >0
a1k = o) pk)(()]; Tk +1) (1 B za1+pk)‘
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Proof. From Lemma 2.2 we have

(14)
b
‘(M) [T ®) + T @) = [T O + T, (@)
b| ot b
< f f ®- s)“‘lﬁfa[w(b —5)P]g(s)ds — f (s— a)"‘_l?'p(fa[w(s —a)Plg(s)ds| |f' ()|dt.
a a t
Since |f’| is convex on [a, b], we know that for t € [a, b]
SN P t—a b-t t—a,
Fol=|f (b—aa+ b—ab) < T If @I+ 2 If O) (15)
and since g : [4,b] — R is symmetric to % we can write
b +b—t
f (s— a)“‘lﬂfp‘fa[w(s —a)Plg(s)ds = f” - s)“‘lfga[w(b —s)Plg(a+ b —s)ds
t a
+b—t
= f ®- s)“‘l?';fa[w(b —5)Plg(s)ds,
then we have
¢ b
f (b= 8)* 7' F galw(b — 5)P1g(s)ds ~ f (s = @) Fy[w(s — a) Tg(s)ds
a t
+b—t
= f ®- s)‘**l?’;a[w(b —s)Plg(s)ds
ftﬁb_t v- ) F y[w(b — sIlgs)|ds, te [a, ‘%b]
< (16)
Loy |6 =9 F [ — s)Plg(s)|ds, €[22, 0]

By a combination of (14), (15) and (16), we get

b
‘ f(a) ; f( )) [jg,a,a+;zug(b) + jgra,h—;wg(u)] B [jg/a/”*'}w(fg)(b) + jf(’jr"‘/h_?w(f‘q)(a)]

% +b—t - ~
: f ( f |<b—S>“‘1ﬁ§falw<b—s)P]g(s)lds)(ﬁlf’(an+;—_‘;V'(bn)dt

b ¢ L bt e
+ﬁ (fﬂ‘ | -s) 17—‘p,a[w(b—s)f’]g(S)|ds)(m|f(a)|+m|f(b)|)dt

b +b—t

atb
2



IN

E. Set et al. / Filomat 32:16 (2018), 55375547

T e _o®kk . , ,
x{f [f v l[kzo Tk~ o) e || (O =DIF @) + (¢ =l f B dt

[ - a(k)fwl* ’ :
; f [ fmt 9 1[2 Fofea s Pkds]][(b—t)|f (a)|+(t—a)|f(b)|]dt}
gl [ (2 ( 7 ens ) ol , ,
T a{f kz;‘(f (b — 5k 1d5) Fok s o 0= DIF @1+ G =alf @1

k
f Z(f I 1d)r<g;<)lfla) [(b‘”'f’(ﬂ)I+<t—a>|f'<b>|]dt}

2 k=0 ‘Y4
Ilgllm
b-

a(k)lwl a+t a+ ’ ,
{f Z‘F(pk+a+1) == (=) [0 - lf @] + (¢ - a)lf O)] e

okl . . , ,
f+b Z r(pk +a+ 1) t ll) ok — (b - t) Pk] [(b - t)lf (ﬂ)l + (t - a)lf (b)l] dt}

|I9I|o<,

a(k)lwl*

{ [ 2z a+pk (t - (Z)M—pk] G-dIf @+ ¢t —-a)lf ®I]d ]m

Y ar - , , o(k)lwl*
+§U [t =y = b = ] [(6 - DI @) + (¢ - )l (b)l]dt]m},

By integration by parts, we get

and

Hence, if we use (18) and (19) in (17), we obtain the desired result. This completes the proof.

b a+pk+2 1
- ( 2 ) (a+ pk+1)(a + pk +2)

fz [(b _ t)a+pk —(t- a)a+pk] (b _ f)dt

f bb [(t = )**7% = (b — ™ 7] (¢ - a)at

2

_\atpk+2
(bT) (a + pk + 1)1(a Tkt 2) @752 — 1)@+ pk + 1) = (a + pk + 3)]
fz [(b — )Pk (- a)a+pk] (t — a)dt

b
f R (G R (B e [CRO

z

[@*#%2) - 2(a + pk +2)].

O

5543

(17)

(18)

(19)
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Remark 2.4. In Theorem 2.3, if we take 0(0) = 1 and w = 0, then the inequality (13), becomes the inequality

(10) of Theorem 1.3.

Theorem 2.5. Let f : I € R — R be a differentiable mapping on I° and f' € L[a, b] witha < b. If |f’'|, ¢ > 1, is
convex on [a,b] and g : [a,b] — Ris continuous and symmetric to 52, then the following inequality for fractional

integrals holds:
‘(M) T8 04209 ®) + T3 9@ = [T s FDO) + T2 (F)(@)]
R (M)
(b-a)'
where &> 0, 1 + 1 and
01(k) = 0t pk)(; k) (- 5

Proof. Using Lemma 2.2, Holder’s inequality, (16) and the convexity of |f’l, it follows that

b
‘(M) [jg,a,a+;zug(b) + jg,a,b—;wg(ﬂ)] - [jg,a/g+;zu(fg)(b) + jg,a,b—;w(fg)(a)]
b +b—t 1_%
= ( f f (b= 57" F o [w(b - 5)°1g(s)ds dt)
b +b—t %
% (fa f (b= 5)* ' Fy,lw(b = 5)P1g(s)ds |f’(t)|'7)
# a+b—t
- U f (b= s Falw® = ) g(e) ds] dt
b t 1_%
s ([ Jo=9 7t - sp1a]as)a
(f f = 8)* T2, [w(b - 5)P1g(s)| ds] F/(1)dt
+ j;b (f N |(b - 5)06—1 o [w(b - s)p]g(s)|ds) |f,(t)|th]q
llgll a(l)lwl* +b-t ) .
- (b—a)r {\L‘ Zl’(pkﬂx)(f (b=9)" (b —s) dS)dt

1-1

o)l ( o i
ﬁw Z T(pk + ) (fa;h—t(b — )Pk —s) 1ds) dt}

k k +b—t
[ f Z r‘z[()k) 'f'oé) ( f (b —s)P*(b - s)“ds) [ = DIf @) + (t —a)lf/ (b))"] dt

1
q

k t
f 2 r?é?'f loz) ( f b= (b - S>“ds) [(6 = DIf @I + (¢t - a)lf D)) at

+b—t

(20)
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i Ty G(k el . a+pk-1
) (b—ai{f F(pk+a)(f (b—s)*" ds)dt o
o®lwl ( (" e -5
+ﬁ+b2m fbt(b—s) P=ds | dt

a+h 00

k +b—t
f ZFCZSZ% (f (b_s)wk_lds)[(b ~Df @F + (¢ - a)lf )] dt

ol ( (* gk , , '

where it is easily seen that

a+b b

b +b—t t
f ( f (b—s)‘”Pklds)dt+ f ( f (b—s)‘””klds) dt
a t atb a+b—t

B Z(b _ a)a+pk+1 [1 ~ 1 ]
~ (a+ph)(a+pk+1) ar+pk |

Hence, if we use (18) and (19) in (21), we obtain the desired result. This completes the proof. [J

Remark 2.6. In Theorem 2.5, if we take ¢(0) = 1 and w = 0, then the inequality (20), becomes the inequality
(11) of Theorem 1.4.

Theorem 2.7. Let f : I € R — R be a differentiable mapping on I° and f’ € L[a, b] witha < b. If |f’'|, ¢ > 1, is
convex on [a,b] and g : [a,b] — Ris continuous and symmetric to 52, then the following inequality for fractional
integrals holds:

b
‘(f(a) ; f( )) [jg,a,m;wg(b) + jg,a,b—;wg(a)] B [jg/ﬂrﬂﬂw(fg)(b) + jg/“/b‘?w(fg)(a)]

F @ +1f O\
2

< lglleo(b - @)y (Fo ol - a)ﬂ])( (22)

where a2 > 0, % + % and

1 2 Ly
k)=o) |(a +pkjp + 1 (1 2l )} '

Proof. Using Lemma 2.2, Holder’s inequality, (16) and the convexity of |f’|7, it follows that

b
‘(M) [T o)+ Ty o8@)] = [T FDO) + T (@)

b t b
([[@=9 st - v1gs = [ 6oyl - o o) o
a a t
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IA

b
f (b—-s)* 1?"" [w(b — s)P1g(s)ds — f (s —a)* IF [w(s —a)Plg(s)ds||f’ (t)dt]

k f k b
s [ wwwxémiwwww

" (E)ldt

i

b oo k k +
fa l"ac(x )+|a;)|k) f ¢ _s)wk_lg(s)ds‘ft (s = )™ g(s)ds| (B

k k b a+b—t
5t [ o

) k k b +b—t P
5 ([ s

o(k)lwl*
9o Z‘ T(a+ pk+1)

Al =19 — =y T e+ [ [ —ayrs— o= o] x|
[l Fas ],

Z

by - _ g
([ (o s =2ror)a) |

(o9

vy oWl (b = a)*
= llgll(b = a) 120 T+ ol 1)

|f (E)ldt

b H
dt] ( f If’(t)lth)

IN

IA

1

x{[ f : [ = pesek — k]t + f 1 [e+k — (1 = peeet]” dt)p
0 %

y (If’(a)l" ; |f'(b>|4)3 }

IN

lglle0 = ) (Frallelo = 1) (1= 5 5

1 )% (If’(a)lq + |f'<b>|q)3

where it is easily seen that

1 1
f ’ [(1 — f)arpbp _ t(a+pk)17] dt = f [t(a+pk)P -1- t)(a+pk)v] dt
0 3

)(a+pk)p+l _ (l)(a+pk)p+1
2

(a+pkp+1

1-(3

Here we use
[(1 — £)**PK — pa*Pk]P < (1 — p)@rplp — glatplp

forte [O, 1] and
[ta+pk _ (1 _ t)a+pk]p < t(a+p)p _ (1 _ t)(a+p)p
forte [%, 1], which follows from
(A-B)T < AT—B1,
for any A > B > 0 and q > 1. Hence the inequality (22) is proved. [
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Remark 2.8. In Theorem 2.7, if we take ¢(0) = 1 and w = 0, then the inequality (22), becomes the inequality
(12) of Theorem 1.5.
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