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Abstract. We study circle homeomorphisms f ∈ C2(S1
\{xb}) whose rotation number ρ f is irrational, with

a single break point xb at which f ′ has a jump discontinuity. We prove that the behavior of the ratios of
the lengths of any two adjacent intervals of the dynamical partition depends on the size of break and on
the continued fraction decomposition of ρ f . We also prove a result analogous to Yoccoz’s lemma on the
asymptotic behaviour of the lengths of the intervals of trajectories of the renormalization transformation
Rn( f ).

1. Introduction and Statement of Results

One of the modern problems in circle dynamics is the study of the smoothness of the conjugacy between
two circle maps, which a priori are only topologically equivalent. This problem is called the rigidity
problem. It has been intensively studied for circle diffeomorphisms with a break point at which the first
derivative has a jump discontinuity (see [9, 11, 12, 14, 15]). The analysis of the intervals of dynamical
partitions of circle maps plays an important role in establishing C1+β or C1 smoothness of conjugacy for two
C2+ν- smooth circle homeomorphisms with a break point, which provides the exponential convergence of
corresponding renormalizations. In case of critical circle maps, that is circle homeomorphisms which are
smooth everywhere except at one point where the first derivative vanishes, the comparability of adjacent
intervals of dynamical partition hold true for a set of irrational rotation numbers of full Lebesgue measure,
and this property has been used to prove rigidity of the conjugacy (see [4, 15]).

To achieve completeness of rigidity results,there are examples by authors for the absence of a smooth
conjugacy (rigidity) by varying the smoothness conditions or rotation numbers of circle maps ([1, 4, 5, 10, 17,
20, 22]). As we noted above, one of the main tools in proving rigidity results is convergence of corresponding
renormalizations. Our second main result is an analogue of a famous Lemma of Yoccoz which describes the
asymptotic behaviour of the lengths of the intervals of trajectories for the renormalization transformation.
It could be useful in the future construction of conjugacy for C2- smooth circle maps with a break point.
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We proceed with precise definitions and the formulation of the main results. Let S1 = R/Z with
induced orientation, metric, Lebesgue measure and the operation of addition be the unit circle. Every circle
homeomorphism f : S1

→ S1 is defined by the homeomorphism F : R→ Rwith property F(x+1) = F(x)+1,
connected with f by the relation f (x) = F(x)(mod1). The homeomorphism F is called the lift of the
homeomorphism f and is defined up to an integer term.

The most important arithmetic characteristic of the circle homeomorphism f is the rotation number
ρ( f ) = lim

n→∞
Fn(x)/n(mod1), where the limit exists for all x ∈ R and is independent of x. Here and later on Fn

denotes the n-th iterate of F. Let the rotation number ρ( f ) be irrational. Then it can be represented as an
infinite continued fraction, i.e. ρ( f ) = [k1, k2, ..., kn, ...] = 1/(k1 + 1/(k2 + ...+ 1/(kn + ...))). The positive integers
kn are the partial quotients of ρ( f ). They give rise to a sequence of return times for f , recursively defined by
qn+1 = kn+1qn + qn−1, with initial conditions q0 = 1, q1 = k1.

Fix a point x0 ∈ S1 and consider the marked trajectory xi = f i(x0), i ≥ 0. The subsequence {xqn }n≥0
indexed by the denominators of the sequence of rational convergents of the rotation number ρ, will be
called the sequence of dynamical convergents. It follows from the simple arithmetic properties of the rational
convergents that the sequence of dynamical convergents {xqn }n≥0 for the rigid rotation fρ(x) = x + ρ(mod 1)
has the property that its subsequence with n odd approaches x0 from the left and the subsequence with
n even approaches x0 from the right. Since all circle homeomorphisms with the same irrational rotation
number are combinatorially equivalent, the order of their dynamical convergents is the same.

The intervals [xqn , x0] for n odd and [x0, xqn ] for n even will be denoted by ∆(n)
0 and called the n-th

renormalization segment associated to x0. The n-th renormalization segment associated to xi will be denoted
by ∆(n)

i , that is ∆(n)
i = f i∆(n)

0 . We also have the following important property: the only points of the orbit
{xi : 0 < i ≤ qn+1} that belong to ∆(n−1)

0 (x0) are {xqn−1+iqn : 0 ≤ i ≤ kn+1}.
Certain images of ∆(n−1)

0 and ∆(n)
0 under the iterates of f with rotation number ρ cover the whole circle

without overlapping besides the end points and form the n-th dynamical partition of the circle

ξn :=
{
∆(n−1)

i , 0 ≤ i < qn; ∆(n)
j , 0 ≤ j < qn−1

}
The intervals ∆(n)

0 and ∆(n−1)
0 will be called the fundamental intervals for ξn of ranks n and n − 1, respectively.

Obviously the partition ξn+1 is a refinement of the partition ξn: indeed, the intervals ∆(n)
j , 0 ≤ j < qn−1 of

rank n belong to ξn+1 and each interval ∆(n−1)
i ∈ ξn 0 ≤ i < qn, is partitioned into kn+1 + 1 intervals belonging

to ξn+1 such that

∆(n−1)
i = ∆(n+1)

i ∪

kn+1−1⋃
s=0

∆(n)
i+qn−1+sqn

. (1)

This paper concerns circle maps f : S1
→ S1 with a break, i.e. there exists a point xb ∈ S

1 such that:
(i) f ∈ C2(S1

\ {xb});
(ii) inf

x,xb
f ′(x) > 0;

(iii) f has one-sided derivatives f ′(xb − 0) , f ′(xb − 0).
We refer to xb as the break point and to σ :=

√
f ′(xb − 0)/ f ′(xb + 0) , 1 as the size of break. In the following,

we only consider the dynamical partition of the marked point x0 = xb.
Denote byH2(σ, ρ) the class of circle homeomorphisms f , with irrational rotation number ρ = ρ( f ) and

satisfying the conditions (i) − (iii).
From now on we shall denote by C any constant that depend only on f and, with some abuse of notation,

we denote by the same C any sum of a finite number of such constants and when multiplied by a universal
constant.

Denote by |I| the length of the interval I. The intervals I and J are said to be comparable, if the ratio of their
lengths is uniformly bounded, that is, there exists a constant C > 1, such that the relation C−1

|J| ≤ |I| ≤ C|J|
is fulfilled, which will be denoted by |I| � |J|.
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One of the remarkable features of critical circle homeomorphisms is that any two adjacent intervals of
the n -th dynamical partition of a critical point are C-comparable for some C > 1 (see, for instance, [4, 6, 19]).
In this case, one says that f has nearby bounded geometry (see [7]).

We will show that for homeomorphisms of the circle with a break point the behavior of the ratio of
the lengths of adjacent intervals belonging to the dynamical partitions is quite different from the case of a
diffeomorphism or a critical homeomorphism.

Let I and J be any two adjacent intervals of the dynamical partition ξn. If their ranks are the same, then
one of them will be the image of the other one under f qn−1 or f qn and Denjoy’s inequality implies that they
are ev- comparable. If their ranks are different and I, J ⊂ S1

\ Vn(x0), then they will be some images of
fundamental intervals of rank n and n− 1. In the latter case, using Lemma 2.4 it is not difficult to show that

e−2v
|∆(n)

0 |

|∆(n−1)
0 |

≤
|I|
|J|
≤ e2v

|∆(n)
0 |

|∆(n−1)
0 |

. (2)

Next we formulate our first main result.

Theorem 1.1. Let f ∈ H2(σ, ρ). Assume that σ > 1. Then there exists constants C > 1, τ1, τ2 > 0, depending
only on f , such that for n large enough the following inequalities are fulfilled

C−1
≤
|∆(2n−1)

0 |

|∆(2n−2)
0 |

≤ C, (3)

C−1
· e−τ2k2n+1 ≤

|∆(2n)
0 |

|∆(2n−1)
0 |

≤ C · e−τ1k2n+1 . (4)

Suppose 0 < σ < 1. Then for n large enough we have

C−1
≤
|∆(2n)

0 |

|∆(2n−1)
0 |

≤ C, C−1
· e−τ2k2n ≤

|∆(2n−1)
0 |

|∆(2n−2)
0 |

≤ C · e−τ1k2n .

Note that a result analogous to Theorem 1.1 has been obtained in [14] for C2+ν- smooth circle maps with
a break point.

Let l be a positive integer and ∆1, ∆2, ....,∆l+1 be consecutive intervals of the real line or of the circle. By
an almost parabolic map of length l and fundamental domains ∆ j, 1 ≤ j ≤ l, one means a negative-Schwarzian
diffeomorphism

f : ∆1 ∪ ∆2 ∪ .... ∪ ∆l −→ ∆2 ∪ ∆3 ∪ .... ∪ ∆l+1,

such that f (∆ j) = ∆ j+1.
The basic geometric estimate for almost parabolic maps obtained by J.-C. Yoccoz is the following:

Yoccoz’s Lemma. ([4, 21]) Let f : I → J be an almost parabolic map of length l and fundamental domains
∆ j, 1 ≤ j ≤ l. If |∆1| ≥ τ|I| and |∆l| ≥ τ|I|, for some 0 < τ < 1, then

1
Cτ

|I|
min{ j, l − j}2

≤ |∆ j| ≤ Cτ
|I|

min{ j, l − j}2

where the constant Cτ > 1 does not depend on f .
Notice that Yoccoz’s lemma plays an important role in the rigidity theory for critical circle maps (see

for instance [4]). We will prove an analogue of Yoccoz’s result for the renormalizations of a circle homeo-
morphism with a break point. First, we recall a few basic concepts of the renormalization method for circle
maps with irrational rotation number.
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Consider the n−th dynamical partition ξn and the n-th renormalization neighborhood Vn = ∆(n−1)
0 ∪ ∆(n)

0 .
We define the Poincaré map πn = ( f qn , f qn−1 ) : Vn → Vn as follows

πn(x) =

{
f qn (x), if x ∈ ∆(n−1)

0 \ {x0},

f qn−1 (x), if x ∈ ∆(n)
0 .

The main idea of the renormalization method is to study the behavior of the Poincaré map πn as n → ∞.
To this end, usually one uses suitable re-scaled coordinates. So, we define the renormalized coordinate z on
Vn by x = x0 + z(x0 − xqn−1 ) and we denote by an and (−bn) the new coordinates of the points xqn and xqn+qn−1 ,
respectively, i.e.

an =
xqn − x0

x0 − xqn−1

, bn =
x0 − xqn+qn−1

x0 − xqn−1

. (5)

It is clear, that the coordinate z varies from -1 to 0, when x is varying from xqn−1 to x0 and it varies from 0
to an when x is varying from x0 to xqn . With respect to the renormalized coordinate, the Poincaré map πn is
represented by ( fn, 1n), where fn and 1n are defined as follows

fn(z) =
f qn (x0 + z(x0 − xqn−1 )) − x0

x0 − xqn−1

, z ∈ [−1, 0),

1n(z) =
f qn−1 (x0 + z(x0 − xqn−1 )) − x0

x0 − xqn−1

, z ∈ [0, an].

The pair of functions ( fn, 1n) is called the n-th renormalization pair of the initial homeomorphism f at the
point x0 and denoted by Rn( f ). The renormalization Rn( f ) defined for all n ≥ 0 if and only if ρ is irrational;
otherwise, n is less than or equal to the length of the continued fraction expansion of ρ.

Recall that the interval [xqn−1 , x0] is partitioned into intervals belonging to the next partition ξn+1, with
end points x = xqn−1+sqn , 0 ≤ s ≤ kn+1. Denote by z(n)

s the renormalized coordinates of xqn−1+sqn , i.e.

z(n)
s =

xqn−1+sqn − x0

x0 − xqn−1

.

From the construction of the dynamical partition it follows that

z(n)
0 = −1 < z(n)

1 < z(n)
2 < ... < z(n)

kn+1
< 0, where z(n)

s+1 = fn(z(n)
s ), 0 ≤ s ≤ kn+1 − 1.

Put I(n)
s := [z(n)

s−1, z
(n)
s ], s = 1, 2, ..., kn+1, then it is clear that I(n)

s+1 = fn(I(n)
s ), s = 1, 2, ..., (kn+1−1). As mentioned

above, the interval [xqn−1 , x0] is partitioned by the intervals of ξn+1 with end points xqn−1+sqn , 0 ≤ s ≤ kn+1.
The corresponding renormalized coordinates z(n)

s of the points xqn−1+sqn give rise to a partition of the interval
[−1, z(n)

kn+1
] into the intervals I(n)

s = [z(n)
s−1, z

(n)
s ], s = 1, ..., kn+1.

Our second main result concerns the behavior of the lengths of the intervals I(n)
s , which are joining

consecutive points of the fn- orbits of the point z(n)
0 = −1.

Theorem 1.2. Let f ∈ H2(σ, ρ). Assume σ > 1. Then there exist n0 = n0( f ) ∈ N, such that for any n ≥ n0 and for
all 1 ≤ s ≤ k2n − 1, the following inequalities hold true:

C−1

min{s, k2n − s}2
≤ |I(2n−1)

s | ≤
C

min{s, k2n − s}2
.

Suppose 0 < σ < 1. Then for any n ≥ n0 and for all 1 ≤ s ≤ k2n+1 − 1, the following inequalities hold true:

C−1

min{s, k2n+1 − s}2
≤ |I(2n)

s | ≤
C

min{s, k2n+1 − s}2

where the constant C > 1 does not depend on f .
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It is worth to stress that the convexity of the map Rn( f ) plays a crucial role in the proof of this result.
Note that a result analogous to Theorem 1.2 has been used in [5, 20], to restrict the examples of pairs of

infinitely smooth circle maps with a break point, which are C1- smoothly conjugate but not C1+β- smoothly
conjugate for any β > 0.

The paper is organized as follows. In Section 2 we illustrate the basic notions and we collect from the
existing literature a few classical facts about homeomorphisms of the circle with a break point. In Section
3 we present results about the approximation of the renormalization maps of a circle homeomorphism to
certain linear-fractional maps. Then, we will prove the asymptotically linear dependence of the renormal-
ization parameters an, bn, cn, mn as n→∞, a fact that plays an important role in the proof of the first main
Theorem. The last Section is devoted to the proof the two main results.

2. Preliminaries and Notations

Let f be an orientation preserving homeomorphism of the circle with lift F and irrational rotation number
ρ( f ). Consider any point x0 ∈ S1 and its n-th dynamical partition ξn with fundamental intervals ∆(n−1)

0 and
∆(n)

0 . The following Lemma plays a key role for studying the metrical properties of the homeomorphism f :

Lemma 2.1. Suppose that the one-sided derivatives f ′(xb−0), f ′(xb +0) > 0 do exist, that f belongs to C1([xb, xb +1))
and, in addition, assume that var[xb,xb+1) log f ′ = v < ∞. Then, putting

v = v + | log f ′(xb − 0) − log f ′(xb + 0)| = v + 2| log σ|,

the following inequality is fulfilled

e−v
≤

qn−1∏
i=0

f ′(yi) ≤ ev (6)

for any n and for any y0 such that yi , xb, i = 0, 1, 2, ...

The inequality (6) is called the Denjoy’s inequality. We set λ = (1 + e−v)−1/2 < 1.

Lemma 2.2. Let f be a circle maps satisfying the conditions of Lemma 2.1. Then

(a) for any x0 ∈ S1:
|∆(n)

0 (x0)| ≤ λ2k
|∆(n−2k)

0 (x0)|, 0 ≤ 2k ≤ n;

(b) if ∆(n)
∈ ξn, ∆(m)

∈ ξm, n −m ≥ 2 and ∆(n)
⊂ ∆(m), then

|∆(n)
|

|∆(m)|
≤ C · λn−m.

The proofs of Lemma 2.1 and Lemma 2.2 are more or less the same as those of similar assertions in [16].
Recall the following definition introduced in [8]:

Definition 2.3. An interval I = (τ, t) is called qn-small and its endpoints τ, t are qn-close if the system of
intervals f i(I), 0 ≤ i < qn, are disjoint.

One checks easily that the interval I = (τ, t) is qn-small if, depending on the parity of n, either t ≤ τ ≤
f qn−1 (t) or f qn−1 (τ) ≤ t ≤ τ.

Lemma 2.4. Suppose that a circle homeomorphism f satisfies the conditions of Lemma 2.1 and x, y ∈ S1 are qn-close.
Then for any 0 ≤ k ≤ qn, we have

e−v
≤

D f k(x)
D f k(y)

≤ ev. (7)
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Proof. Take any two qn-close points x, y ∈ S1 and 0 ≤ k ≤ qn − 1. Denote by I the open interval with
endpoints x and y. Since the intervals f i(I), 0 ≤ i < qn are disjoint, we obtain

| log D f k(x) − log D f k(y)| ≤
qn−1∑
s=0

| log D f ( f s(x)) − log D f ( f s(y))| ≤ v.

From this, we deduce immediately the inequality (7).

Denote by HKO(σ, ρ) the class of circle homeomorphisms f with irrational rotation number ρ = ρ( f )
satisfying the assumptions (ii) and (iii) stated in the introduction and the further condition

(iv) f ′(x) is absolutely continuous and f ′′/ f ′ ∈ Lp(S1, d`) for some p > 1.

This latter condition is known in the literature as the Katznelson and Ornstein smoothness conditions [8].
Suppose that f ∈ HKO(σ, ρ), then using the dynamical partition ξn, we define a sequence {Φn} of step
functions on the circle by

Φn(x) =
1
|∆(n)|

∫
∆(n)

f ′′(y)
f ′(y)

dy, if x ∈ ∆(n), ∆(n)
∈ ξn(x0), n ≥ 1.

We set Φ0(x) ≡ log σ2, x ∈ S1. Denote by {Ξn} the sequence of algebras generated by the dynamical partitions
ξn. A simple calculation shows that the sequence of {Φn} is a martingale with respect to {Ξn}. Moreover,
using Hölder’s inequality we obtain

‖Φn‖
p
p =

∫
S1

|Φn(x)|pdx =
∑

∆(n)∈ξn

∫
∆(n)

|Φn(x)|pdx

=
∑

∆(n)∈ξn

1
|∆(n)|p−1

∣∣∣∣ ∫
∆(n)

f ′′(x)
f ′(x)

dx
∣∣∣∣p ≤ ∑

∆(n)∈ξn

∫
∆(n)

∣∣∣∣ f ′′(x)
f ′(x)

∣∣∣∣pdx =
∥∥∥∥ f ′′

f ′

∥∥∥∥p

p
.

Hence, {Φn} is an Lp-bounded martingale.
Following Katznelson and Ornstein, one can define the difference of martingales [8], that is hn(x) =

Φn(x) −Φn−1(x), n ≥ 1. From this one can deduce the following

Lemma 2.5. Let f ∈HKO(σ, ρ). Then we have

f ′′

f ′
− 2 log σ =

∞∑
n=1

hn, (in L1 − norm).

The Lemma 2.5 can be proved easily, using the properties of the dynamical partition.

3. Asymptotically Linearly Dependence of Renormalization Parameters

The renormalization behavior of circle diffeomorphisms has been studied by Sinai and Khanin in [13]
and Stark in [18] and plays a key role in their proof of smoothness of the corresponding conjugacy classes.
Now we state Sinai and Khanin’s result.

Theorem 3.1. ([13]) Let f ∈ C2+ν(S1), ν > 0, be a diffeomorphism of the circle with irrational rotation number
ρ = ρ( f ). Then for all n ≥ 1

‖ fn − F̃n‖C1([−1,0]) ≤ C · λnν, ‖1n − G̃n‖C1([0,an]) ≤ C · a−1
n λ

nν,

where F̃n(z) = z + an, G̃n(z) = z − 1 and the constant λ ∈ (0, 1) depends only on f .
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We define two linear-fractional functions Fn and Gn as follows:

Fn(z) :=
an + (an + bnmn)z

1 + (1 −mn)z
, Gn(z) :=

−ancn + (cn − bnmn)z
ancn + (mn − cn)z

, (8)

where an and bn are defined as in (5) and

cn := σ(−1)n−1
, mn := exp

(−1)n−1
qn−1∑
i=0

∫
∆

(n−1)
i

f ′′(y)
2 f ′(y)

dy

 . (9)

The renormalization behavior of the diffeomorphisms of the circle with one break point xb was first
studied by Khanin and Vul in [16]. One of the most significant results proved in [16] is the following

Theorem 3.2. ([16]) Let f ∈ C2+ν(S1
\{xb}), ν > 0 be a circle homeomorphism with a break point x0 = xb and

irrational rotation number ρ = ρ( f ). Then, for all n ≥ 1, we have

‖ fn − Fn‖C2([−1,0]) ≤ C · λnν, ‖1n − Gn‖C2([0,an]) ≤
C · λnν

an
,

where λ ∈ (0, 1) is a constant depending only on f .

Notice that that the proofs of Theorems 3.1 and 3.2 are based on the analysis of the dynamical partitions
ξn. Recently, this result has been extended to the wider classHKO(σ, ρ). It can be formulated as follows

Theorem 3.3. ([2]) Let f ∈HKO(σ, ρ). Then for all n ≥ 1, we have

‖ fn − Fn‖C1([−1,0]) ≤ C · ηn, ‖ f ′′n − F′′n ‖L1([−1,0],d`) ≤ C · ηn,

‖1n − Gn‖C1([0,an]) ≤ C · ηn, ‖1
′′

n − G′′n ‖L1([0,an],d`) ≤ C · ηn,

where the sequence of positive numbers {ηn} belongs to l2 and depends only on f .

Note that in [3] a similar result for circle homeomorphisms f ∈HKO(σ, ρ) with rational rotation numbers
has been proved. It is interesting to note that the proof of Theorem 3.3 makes use of martingales (Lemma
2.5) which in the context of circle dynamics have been used also by Katznelson and Ornstein in [8].

Now we formulate a lemma which will be used in the sequel. Assume n is even. For every 0 ≤ i ≤ qn we
define relative coordinates zi for points x in the intervals ∆(n−1)

i by setting x = xi − zi(xi − xqn−1+i). The point
x ∈ ∆(n−1)

i is mapped by f to the point f (x) ∈ ∆(n−1)
i+1 with relative coordinate zi+1. Next we put for x ∈ ∆(n−1)

i

αi := αi(n) = xi+qn−1 , γi := γi(n) = xi, βi := βi(n) = f i(x) ∈ ∆(n−1)
i , (10)

Ai := Ai(n) = −

1
f ′(αi)(βi−αi)

βi∫
αi

f ′′(y)(y − αi)dy + 1
f ′(αi)(γi−βi)

γi∫
βi

f ′′(y)(γi − y)dy

1 + 1
f ′(αi)(γi−αi)

γi∫
αi

f ′′(y)(γi − y)dy

, (11)

Bi := Bi(n) =

γi∫
αi

f ′′(y)
2 f ′(y)

dy, ψi(z0) := −Bi − log
(

1 + Aizi

1 + Ai(zi − 1)

)
, (12)

m( j) := mn( j) = exp{
j−1∑
i=0

Bi}, τ
( j)(z0) :=

j−1∑
i=0

ψi(z0). (13)

The next Lemma shows that z j is an almost linear-fractional function of z0.
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Lemma 3.4. ([2]) Suppose that the circle homeomorphism f satisfies the conditions of Theorem 3.3. Then, for every
1 ≤ j ≤ qn, we have

z j =
z0m( j)eτ

( j)(z0)

1 + z0(m( j)eτ
( j)(z0)
− 1)

.

In addition, τ(qn) and its derivatives satisfy the following bounds

max
0≤z0≤1

|τ(qn)(z0)| ≤ C · ηn, max
0≤z0≤1

|(z0 − z2
0)

dτ(qn)(z0)
dz0

| ≤ C · ηn,

1∫
0

|
dτ(qn)(z0)

dz0
|dz0 ≤ C · ηn,

1∫
0

|(z0 − z2
0)|

d2τ(qn)(z0)
dz2

0

|dz0 ≤ C · ηn,

where the sequence of positive numbers {ηn} belongs to l2 and depends only on f .

Using Theorem 2.5, Theorem 3.3 and Lemma 3.4 we will prove the following

Theorem 3.5. Let an, bn,mn, cn be the parameters in the linear-fractional functions Fn and Gn defined as in (8).
Suppose that f ∈HKO(σ, ρ). Then for all n ≥ 1 we have

|an + bnmn − cn| ≤ C · an · ηn,

where the sequence of positive numbers {ηn} belongs to l2 and depends only on f .

Proof. We show that the parameters an, bn,mn, cn in Theorem 3.5 get asymptotically linearly dependent as
n→∞. Let us assume n to be odd. We put

Θi :=

xi∫
xi+qn−2

f ′′(y)
2 f ′(y)

dy, Θi :=

xi∫
xi+qn

f ′′(y)
2 f ′(y)

dy, 0 ≤ i ≤ qn−1.

It is easy to see that

exp{
qn−1−1∑

i=0

Θi} ·mn = exp
∫
S1

f ′′(y)
2 f ′(y)

dy = σ, cn = σ

and consequently, mn = cn · exp{−
qn−1−1∑

i=0
Θi}.

We need the following Lemma (see [2], Lemma 5.1).

Lemma 3.6. ([2]) The numbers mn satisfy

mn = cn(1 + anan−1(mn−1 − 1)) exp(χn),

where |χn| ≤ C · anan−1ηn and the sequence {ηn} belongs to l2.

We are now in a position to continue the proof of Theorem 3.5. Put rn := an + bnmn − cn. Using Lemma
3.6 we prove that

rn = −cnanrn−1 + δn, where {δn} ∈ l2. (14)

Actually, the relation

bn =
fn−1(−anan−1)

an−1
=

Fn−1(−anan−1)
an−1

+
νn

an−1
,
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with νn = fn−1(−anan−1) − Fn−1(−anan−1), implies that

rn = an + bnmn − cn = an + cn[1 − (an−1 + bn−1mn−1an) exp(χn)]+

+
νn

an−1
− cn = cn

( 1
cn
− an−1 − bn−1mn−1

)
+

+[cnan(an−1 + bn−1mn−1) − cn](1 − exp(χn)) +
νnmn

an−1
= −cnanrn−1 + δn,

where
δn = [cnan(an−1 + bn−1mn−1) − cn](1 − exp(χn)) +

νnmn

an−1
.

Using Theorem 3.3, we obtain

|
νnmn

an−1
| = mn|

fn−1(−anan−1) − Fn−1(−anan−1)
an−1

| ≤ C · an · ηn, {ηn} ∈ l2.

This implies the relation (14). Iterating the identity (14), we get

rn = −cnanrn−1 + δn = −cnan(−cn−1an−1rn−2 + δn−1) + δn =

= −cnan(−cn−1an−1)rn−2 − cnanδn−1 + δn = r1

n∏
j=2

(−c ja j) +

n∑
i=2

δi

n∏
j=i+1

(−c ja j).

On the other hand, Lemma 2.2 implies that

|

n∏
j=i

(−c ja j)| ≤ C · anλ
n−i,

where λ ∈ (0, 1). Therefore |rn| ≤ C ·an

n∑
i=2
λn−i
|δi|. Put Sn =

n∑
i=1
λn−i
|δi| and k = [ n

2 ]. We estimate Sn as follows:

Sn =

n∑
i=1

λn−i
|δi| =

n−k−1∑
i=1

λn−i
|δi| +

n∑
i=n−k

λn−i
|δi| ≤

≤ max
1≤i≤n−k−1

|δi| · (λn−1 + ... + λk+1) + |δn−k|(λk + ... + 1) ≤ C1

(
λk+1 + |δn−k|

)
≤

≤ C
(
λ[ n

2 ]+1 + |δ[ n
2 ]|

)
≤ ηn,

where we assumed w.l.o.g.δ[ n
2 ] , 0. This completes the proof of Theorem 3.5.

We need the following estimate (see [9] )

max
∆1,∆2∈ξn−k


∑

j: ∆
(n−1)
j ⊂∆1

|∆(n−1)
j |

|∆1|
−

∑
j: ∆

(n−1)
j ⊂∆2

|∆(n−1)
j |

|∆2|

 ≤ Const · λ
√

k
1 , (15)

where 0 < λ1 < 1. The estimate (15) means that one can define an approximate density of the intervals

∆(n−1)
j , 0 ≤ j < qn. This density is equal to pn =

qn−1∑
j=0
|∆(n−1)

j |. It follows that

mn = exp
(
(−1)n−1p̃n

∫
S1

f ′′(y)
2 f ′(y)

)
= e(−1)n−1p̃n log σ, (16)
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where |pn − p̃n| ≤ Const · λ
√

n
2 , 0 < λ2 < 1.

It is easy to see that, there exists a constant p such that the inequality 0 < p < pn holds for n large enough.
Then relation (16) implies that for n large enough:

m2n−1 > 1, and m2n < 1, when σ > 1, (17)

m2n−1 < 1, and m2n > 1, when 0 < σ < 1.

4. Proofs of Main Results

In this section we assume that f ∈H2(σ, ρ). In this case, the estimate for fn−Fn and the relation for an, cn
and mn (see [2]) can be improved as follows

‖ fn − Fn‖C2([−1,0]) ≤ C · ηn, (18)

an + φnan = cn − bnmn, (19)

where |φn| ≤ Cηn, and {ηn} ∈ l2. It is easy to see that the second order derivative of Fn satisfies

F′′n (z) =
2mn(mn − 1)(an + bn)

(1 + (1 −mn)z)3 , z ∈ [−1, 0]. (20)

Relations (18), (17) and (20) imply the following

Corollary 4.1. Let f ∈H2(σ, ρ) and σ > 1. Then for n large enough, the following assertions are fulfilled
• f ′′2n−1(x) > 0, for ∀x ∈ [−1, 0] and consequently f ′2n−1 is increasing on [−1, 0];
• f ′′2n(x) < 0, for ∀x ∈ [−1, 0] and consequently f ′2n is decreasing on [−1, 0].

In the proofs of our main results we use essentially Corollary 4.1.

Proof of Theorem 1.1. We will prove Theorem 1.1 in the case σ > 1. The case 0 < σ < 1 can be treated

analogously. Recall that an =
|∆

(n)
0 |

|∆
(n−1)
0 |

. It is easy to see that

an =
|∆(n)

0 |

|∆(n+1)
0 | ∪

kn+1−1⋃
s=0
|∆(n)

qn−1+sqn
|

=

an+1 +

kn+1−1∑
s=0

|∆(n)
qn−1+sqn

|

|∆(n)
0 |


−1

=

= (an+1 + D f qn−1 (ỹ0) + D f qn−1 (ỹ0) ·D f qn (ỹ1) + ...+

+D f qn−1 (ỹ0) ·D f qn (ỹ1) · ... ·D f qn (ỹkn+1−2))−1 (21)

where ỹs ∈ ∆(n)
qn−1+sqn

, 0 ≤ s ≤ kn+1 − 2. Using Denjoy’s inequality in (21), we get the following inequality for
all n:

an ≥
1

1 + ev + e2v + ... + e(kn+1−1)v
=

ev
− 1

ekn+1v − 1
≥ (ev

− 1)e−kn+1v.

This gives the bound from below in (4). It is easy to see that the relation (21) implies also the upper bound
in (3).

Now we will show the remaining bounds in (3) and (4). Consider the odd level dynamical partition
ξ2n−1 and the renormalization map f2n−1. Due to (17) and (18), for sufficiently large values of n, we obtain

f ′2n−1(0) = F′2n−1(0) + f ′2n−1(0) − F′2n−1(0) ≥
≥ σ + (m2n−1 − 1 − φ2n−1)a2n−1 − C · η2n−1 ≥ σ > 1. (22)
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Suppose that f ′2n−1(−1) < 1. Then there exist ς̃0 ∈ [−1, 0], such that f ′2n−1(ς̃0) = 1. Due to Taylor’s formula
we get

f2n−1(z) = f2n−1(ς̃0) + (z − ς̃0) +
f ′′2n−1(ς̃1)

2
(z − ς̃0)2.

Next, using (18) we obtain

a2n−1 + ψ̃1 = f2n−1(0) = f2n−1(ς̃0) − ς̃0 +
f ′′2n−1(ς̃1)

2
ς̃2

0,

1 − b2n−1 + ψ̃2 = f2n−1(−1) + 1 = f2n−1(ς̃0) − ς̃0 +
f ′′2n−1(ς̃2)

2
(ς̃0 + 1)2,

where |ψ̃i| ≤ C · η2n−1 and ς̃i ∈ (−1, 0), i = 1, 2. The last two equalities together with the relation

1 − b2n−1 = 1 −
x0 − xq2n−1+q2n

x0 − xq2n−2

=
f q2n−2 (xq2n−1 ) − f q2n−2 (x0)

xq2n−1 − x0
a2n−1 = D f q2n−2 ($0)a2n−1,

where $0 ∈ ∆(2n−1)
0 with e−v

≤ D f q2n−2 ($0) ≤ ev imply that

a2n−1
(
1 + D f q2n−2 ($0)

)
= 2( f2n−1(ς̃0) − ς̃0) +

f ′′2n−1(ς̃1)

2
ς̃2

0 +
f ′′2n−1(ς̃2)

2
(ς̃0 + 1)2

− (ψ̃1 + ψ̃2). (23)

Since the rotation number ρ( f ) is irrational, the map f2n−1(z) has no fixed point and we have f2n−1(z) > z.
Hence, the relation (23) and Corollary 4.1 imply that

a2n−1 ≥
C

(1 + D f q2n−2 ($0))
≥

C
(1 + ev)

= C1.

To complete the proof of the bound from below in the inequality (3) it hence suffices to show that for n large
enough the inequality f ′2n−1(−1) < 1 is fulfilled. Actually, assume the contrary, i.e. f ′2n−1(−1) ≥ 1. Then, since
f ′2n−1(z) is increasing, we get f ′2n−1(z) ≥ 1, z ∈ [−1, 0]. Consider the renormalized coordinates z(2n−1)

s of the
points xq2n−2+sq2n−1 , 0 ≤ s ≤ k2n, and the intervals I(2n−1)

s := [z(2n−1)
s , z(2n−1)

s+1 ], where I(2n−1)
s+1 = f2n−1(I(2n−1)

s ). Then

1 ≥
k2n−1∑
s=0

|I(2n−1)
s | = |I(2n−1)

0 |(1 + f ′2n−1 (̃t1) + ... + f ′2n−1 (̃t1)... f ′2n−1 (̃tk2n−1)) ≥

≥ k2n(z(2n−1)
1 − z(2n−1)

0 ) = k2n( f2n−1(−1) + 1) = k2n(D f q2n−2 ($0)a2n−1 + ψ̃2),

where |ψ̃2| ≤ C · η2n and t̃i ∈ I(2n−1)
i−1 , i = 1, 2, ..., k2n − 1.

Using the last relations we get

a2n−1 ≤
1

k2nD f q2n−2 ($0)
−

ψ̃2

D f q2n−2 ($0)
≤

eν

k2n
+ |ψ̃2eν|.

Hence lim
n→∞

a2n−1 = 0, if k2n → ∞. Then we have lim
n→∞

b2n−1 = 1 and lim
n→∞

m2n−1 = σ. For sufficiently large n we
obtain

f ′2n−1(−1) = F′2n−1(−1) + ψ̃2 =
a2n−1 + b2n−1

m2n−1
+ ψ̃2 <

σ + 1
2σ

< 1

But, the last inequality contradicts the assumptions. If on the other hand k2n ≤ C1, then using Denjoy’s
inequality and relation (21), we obtain a2n−1 ≥ C. The inequality (3) is completely proved.

Consider next the even level dynamical partition ξ2n and the renormalization map f2n. First we prove
that

a2n ≤
C

k2n+1
, n ≥ 1, (24)
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where the constant C > 0 doesn’t depend on n and k2n+1. By Corollary 4.1 f ′2n(z) is decreasing on [−1, 0] Here
are possible the following cases:

Then the following three cases can arise:
– either there exists a point ς̃0 ∈ (−1, 0), such that f ′2n(ς̃0) = 1;
– or f ′2n(−1) = 1 respectively f ′2n(0) = 1;
– or f ′2n(z) > 1, ∀z ∈ [−1, 0] respectively f ′2n(−1) < 1, ∀z ∈ [−1, 0].
We prove the estimate (24) for the first case only, the other case can be treated similarly. Put x̃0 =

x0 + ς̃0(x0 − xq2n−1 ). It is obvious that x̃0 ∈ ∆(2n)
q2n−1+lq2n

, for some 0 ≤ l ≤ k2n+1, and D f q2n (x̃0) = 1.
We have D f q2n (xq2n−1 ) > D f q2n (x̃0) = 1 > D f q2n (x̃0). Notice that D f q2n (x) is decreasing on [xq2n−1 , x0].

Consequently, D f q2n (x) > 1 on [xq2n−1 , x̃0) and D f q2n (x) < 1 on (x̃0, x0]. Using these relations we obtain:

|∆(2n)
q2n−1
| < |∆(2n)

q2n−1+q2n
| < ... < |∆(2n)

q2n−1+lq2n
|, (25)

|∆(2n)
q2n−1+(l+1)q2n

| > ∆(2n)
q2n−1+(l+2)q2n

| > ... > |∆(2n)
q2n−1+(k2n+1−1)q2n

|. (26)

Using the Denjoe inequality it is easy to show that

C−1
1 |∆

(2n)
0 | ≤ |∆

(2n)
q2n−1
|, |∆(2n)

q2n−1+(k2n+1−1)q2n
| ≤ C1|∆

(2n)
0 |, (27)

where the constant C1 > 1 depend on f only. Using the last relations we obtain:

a2n =
|∆(2n)

0 |

|∆(2n+1)
0 | ∪

k2n+1−1⋃
s=0
|∆(2n)

q2n−1+sq2n
|

=

a2n+1 +

k2n+1−1∑
s=0

|∆(2n)
q2n−1+sq2n

|

|∆(2n)
0 |


−1

≤

a2n+1 +

k2n+1−1∑
s=0

C−1
1


−1

≤
C2

k2n+1
,

where the constant C2 > 0 doesn’t depend on n and k2n+1. The last relation, together with (18), (19) and (17)
imply that

|b2n − 1| ≤
C3

k2n+1
, |m2n − σ

−1
| ≤

C3

k2n+1
, (28)

where the constant C2 > 0 doesn’t depend on n and k2n+1. It is easy to check that F′ (−1) = a2n+b2n
m2n

and
F′ (0) = (a2n + b2n)m2n. For sufficiently large n and k2n+1, using the obtained estimates for a2n, b2n, m2n and
(18), can be showed

f ′2n(0) <
σ + 1

2σ
< 1, f ′2n(−1) >

σ + 1
2

> 1. (29)

It follows that there exist a point t0 := b̃τ0 ∈ [−1, 0] such that f ′2n (̃τ0) = 1. Thus, one of the intervals
[−1, t0] and [t0, 0] contains more than

[
k2n+1

2

]
intervals of the system {I(2n)

s }
k2n+1
s=1 . Let [−1, t0] be that interval.

Next we take a point t1 ∈ [−1, t0) such that f ′2n(t1) = λ1 > 1. It is clear that

f ′2n(t1) − f ′2n(−1) = f ′′2n(t2)(1 + t1), t2 ∈ (−1, t1).

Hence, according to Corollary 4.1 this implies that the interval [−1, t1] has the length of the order of a
constant.
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Now we consider the interval [−1, t0) = [−1, t1]∪ (t1, t0). Let I(2n)
1 , ..., I(2n)

l1
be the intervals lying on [−1, t1)

and let I(2n)
l1+1 be the interval that contains the point t1. Let I(2n)

l1+2, ..., I
(2n)
l0

be the intervals lying on (t1, t0), where
k2n+1

2 ≤ l0 ≤ k2n+1. Since f ′2n(z) ≥ λ1, z ∈ [−1, t1], we get

1 ≤

l1∑
s=1
|I(2n)

s |

|I(2n)
l1
|

= 1 +
1

f ′2n (̃tl1−1)
+ ... +

1

f ′2n (̃tl1−1) · · · f ′2n(̃t1)
≤

l1−1∑
s=0

λ−s
1 ≤ C.

This means that the intervals I(2n)
l1

and
l1⋃

s=1
I(2n)
s are comparable. Since the length of [−1, t1] is of the order of

a constant, it follows from the comparability of the intervals I(2n)
l1

and
l1⋃

s=1
I(2n)
s , that the interval I(2n)

l1
has the

length of the order of a constant. Since f ′2n(z) is strictly monotone, one can easily show that the number of
intervals lying in (t1, t0) is bounded, i.e. l0 − l1 ≤ C. It is clear that

|I(2n)
l0
| =
| f q2n−1+(l0−1)q2n∆(2n)

0 |

|∆(2n−1)
0 |

=
|∆(2n)

0 |

|∆(2n−1)
0 |

·
| f q2n−1∆(2n)

0 |

|∆(2n)
0 |

·
| f q2n−1+q2n∆(2n)

0 |

| f q2n−1∆(2n)
0 |

· ...·

·
| f q2n−1+(l0−1)q2n∆(2n)

0 |

| f q2n−1+(l0−2)q2n∆(2n)
0 |

= a2n ·D f q2n−1 (ζ0) · f ′2n(ζ1) · ... · f ′2n(ζl0−1),

where ζ0 ∈ ∆(2n)
0 , and ζs ∈ I(2n)

s , s = 1, 2, ..., l0 − 1. Then, using Denjoy’s inequality and f ′2n(z) ≥ λ1, z ∈
[−1, t1], we obtain

a2n ≤ |I
(2n)
l0
| · ev
· λ−(l0−1)

1 . (30)

On the other hand,

|I(2n)
l0
| = |I(2n)

l1
| ·
| f q2n−1+l1q2n∆(2n)

0 |

| f q2n−1+(l1−1)q2n∆(2n)
0 |
· ... ·

| f q2n−1+(l0−1)q2n∆(2n)
0 |

| f q2n−1+(l0−2)q2n∆(2n)
0 |

=

= |I(2n)
l1
| ·D f q2n−1 (ζl1 ) · ... ·D f q2n (ζl0−1),

where ζi ∈ f q2n−1+(i−1)q2n∆(2n)
0 , i = l1, ..., l0−1. Since the interval I(2n)

l1
has the length of the order of a constant and

l0 − l1 ≤ C, Denjoy’s inequality implies that |I(2n)
l0
| ≤ C. Hence, using (30) and the inequality k2n+1

2 ≤ l0 ≤ k2n+1,
we obtain the upper bound in (4). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2. In the proof we focus on the map f2n−1 when σ > 1. The same arguments can be
used to check that the same properties are also true for the map f2n when 0 < σ < 1. By Corollary 4.1, the
function f2n−1 is convex, i.e. f ′′2n−1(z) ≥ C > 0, z ∈ [−1, 0].

We now use the convexity of f2n−1 to squeeze its graph between the graphs of two Möbus functions. Then,
the required estimate for f2n−1 will follow from the corresponding estimate for Möbus transformations,
which we now state and prove.

Consider the function v2n−1(t) = − f2n−1(−t), 0 ≤ t ≤ 1. In what follows, for simplicity we omit the index
of v2n−1. It is clear that

v′′(t) = − f ′′2n−1(−t) ≤ C < 0 (31)

Since the function f2n−1 has no fixed points and f2n−1(−1) = −b2n−1, 0 < b2n−1 < 1, f2n−1(0) = a2n−1, 0 <
a2n−1 < 1, its graph lies strictly above the line y = z. This implies that v(t) < t, 0 ≤ t ≤ 1. It is clear, there
exists a point t0 such that v′(t0) = 1. Since the function v′(t) is decreasing, then v′(t) > 1 on [0, t0) and v′(t) < 1
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on (t0, 1]. The lengths of the intervals [0, t0] and [t0, 1] are of the order of a constant. Using Taylor’s formula
and inequality (31) it is not difficult to show that t0 − v(t0) < t − v(t), for any t ∈ [0, 1].

We put ε = t0 − v(t0) and G(t) = t − v(t), t ∈ [t0, 1]. To be specific, we take the interval [t0, 1]. Since
our further arguments do not depend on the choice of affine coordinates, we may replace without loss of
generality the interval [t0, 1] with [0, 1]. We then have

G(0) < G(t) ≤ t, and 0 < G(0) = ε, G′(0) = 1, ∀t ∈ [0, 1].

We put

χ =
1
2

min
t∈[0,1]

(−G′′(t)), λ0 = max
t∈[0,1]

t − (G(t) − G(0))
t(G(t) − G(0))

,

Aλ(t) =
t

1 + λt
+ G(0), Bµ(t) =

t
1 + µt

+ G(0), λ > 0, µ > 0.

We need the following

Lemma 4.2. (1) For each 0 < µ < χ the following inequality holds true

G(t) ≤ Bµ(t), t ∈ [0, 1]. (32)

(2) For each λ ≥ λ0, we have

Aλ(t) ≤ G(t), t ∈ [0, 1]. (33)

Proof. At first we prove (32). From the inequality

µ = max
0≤t≤1

µ

1 + µt
≤

1
2

min
0≤t≤1

(−G′′(t)) = χ

it follows that for any ξ ∈ [0, 1]

G′′(ξ)
2
≤ −

µ

1 + µt
, for any t ∈ [0, 1].

Thus, using G(t) = G(0) + t +
G′′(ξ)

2 t2, ξ ∈ (0, t), we deduce the inequality (32).
Now we turn to the inequality (33). Take λ ≥ λ0, then

λ ≥
t − (G(t) − G(0))

t(G(t) − G(0))
, for any t ∈ [0, 1].

Hence, from the explicit form of Aλ, we deduce at once the inequality (33). This concludes the proof of
Lemma 4.2.

To finish the proof of Theorem 1.2, we present the proof of the assertions of Theorem 1.2 for Möbus
functions. These results are also presented in [4] which we follow very closely. In [4] the authors use the
negative Schwarzian property of f to squeeze it between two Möbus functions. In our case, we essentially
use the convexity of the renormalizations of the map f .

Consider the fractional linear transformation T(y) =
y

1+y . For given ε > 0, let Tε(y) = T(y) − ε and
yn = Tn

ε (y0), y0 = 1.

Lemma 4.3. ([4]) Let N ≥ 1 be such that yN+1 ≤ 0 < yN for some N ≥ 1. Then we have N � 1/
√
ε and moreover

yn − yn+1 � 1/n2 for n = 0, 1, ...,N.

Let Aλ and Bµ be the Möbus functions defined in Lemma 4.2. For simplicity of notations everywhere
below we omit the indices of Aλ and Bµ.
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Lemma 4.4. ([4]) Let t ∈ [0, 1] and k > 0 be such that A(t) < Bk(t). Then k ≤ 1 + λ/µ.

By construction the points z(2n−1)
s , 0 ≤ s ≤ k2n determine the partition of the interval [−1, z(2n−1)

k2n
] associ-

ated to the orbit of the point z(2n−1)
0 = −1 under the map f2n−1. There is an analogous partition of the interval

[0, 1] determined by the orbit of the map G = G(t) = t − v2n−1(t) with yi = Gi(y0) and y0 = 1. Denote by
∆i = [yi, yi+1] the elements of this partition. In this setting we want to prove that |∆i| � 1/i2 for all i.

Now, let us write αn = An(y0) and βn = Bn(y0). By lemma 4.4, the number of βi’s inside each interval
of the form [αn+1, αn] is bounded independently of n. Moreover, since αn < yn < βn for all n, the number
of yi’s inside each interval of the form [αn+1, αn] is bounded independently n. To prove that |∆i| � 1/i2, we
proceed as follows. Let ` > 0 be such that β`+1 ≤ yi ≤ β` ≤ yi−1. Then Lemma 4.4 says that ` ≤ Ci, and using
Lemma 4.2 we have

|βi+1 − βi| < |B(yi−1) − yi−1| < |yi − yi−1|.

Since by Lemma 4.3 we have |β`+1 − β`| � 1
`2 ≥

1
Ci2 , it follows that |∆i| = |yi − yi−1| ≥ 1/Ci2. To prove an

inequality in the opposite direction, let m be the largest integer such that αm > xi−1. Then, again by Lemma
4.4, we have i ≤ Cm. Since A(t) < G(t) < t for all t, we also have ∆i ⊂ [αm+2, αm]. Using Lemma 4.3 once
more, we deduce that |∆i| ≤

C
m2 ≤

1
i2 . It is clear, that the lengths of intervals |∆i| and I(2n−1)

i are C1−comparable
(the constant C1 > 1 doesn’t depend on i). This completes the proof of Theorem 1.2.
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