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Abstract. In this work, we generalize the concepts of statistically convergent sequence of order α and
statistical Cauchy sequence of order α by using the generalized difference operator ∆m. We prove that a
sequence is ∆m

p −statistically convergent of order α if and only if it is ∆m
p −statistically Cauchy of order α.

1. Introduction

Throughout we denote the space of all complex sequences by w and `∞, c and c0 be the linear spaces
of bounded, convergent and null sequences x = (xk) with complex terms, respectively normed by ‖x‖∞ =
supk |xk|, where k ∈N = {1, 2, 3, ...}, the set of positive integers.

In 1981, the difference sequence spaces X (∆) were introduced by Kızmaz [16] for X = `∞, c and c0 and
the notion was generalized by Et and Çolak [10]. Out of these, using the generalized difference operator
∆m, Ioan [17] introduced and discussed the concept of p−convex sequences. Later on, Karakaş and Altin
[15] defined and studied some basic topological and algebraic properties of the sequence spaces X

(
∆m

p

)
for X = `∞, c, c0, where p,m ∈ N, ∆px =

(
pxk − xk+1

)
, and ∆m

p x =
(
∆m

p xk

)
=

m∑
v=0

(−1)v(m
v
)
pm−vxk+v. In the case

x ∈ X
(
∆m

p

)
(for X = `∞, c and c0), we call ∆m

p − bounded, ∆m
p − conver1ent and ∆m

p − zero, respectively. Let X be
any sequence space, if x ∈X (∆m) then there exists one and only one y = (yk) ∈ X such that

xk =

k−m∑
i=1

(−1)m
(
k − i − 1

m − 1

)
yi =

k∑
i=1

(−1)m
(
k + m − i − 1

m − 1

)
yi−m,

y1−m = y2−m = · · · = y0 = 0 (1)

for sufficiently large k, for instance k > 2m. We use this fact to formulate (2), (3) and (4). Recently the
difference sequence spaces have been studied by many researchers [1],[2],[8],[15],[19],[26].

The idea of statistical convergence goes back to the first edition of monograph of Zygmund [27]. This
notion has firstly been defined for real and complex sequences by Steinhaus [23] and Fast [12]. Schoenberg
[21] has defined from a sequence- to- sequence summability method called D−convergence which, implies
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statistical convergence. Later on, it has been studied by Bhuania et al. [3], Connor [4], Çolak [5], Çolak and
Altin [6], Et et al. [9, 11, 22], Fridy [13], Gadjiev and Orhan [14], Moricz [18], Šalát [20], Tripathy [25], Dutta
and Tripathy [7], and many others.

The concept of statistical convergence depends on the density of subsets of the setN. The natural density
of a subset A of N is defined by δ (A) = limn

1
n |{k ≤ n : k ∈ A}| , if the limit exists, where |.| is cardinality of

set A.
A sequence x = (xk) of complex numbers is said to be statistically convergent to some number L if,

for every positive number ε, δ ({k ∈N: |xk − L| ≥ ε}) has natural density zero. The number L is called the
statistical limit of (xk) and written as S − lim xk = L. We denote the space of all statistically convergent
sequences by S.

2. Some Properties of ∆m
p (X)

In this section, we give some topological properties of ∆m
p (X) and some inclusion relations.

Theorem 2.1. The sequence spaces `∞
(
∆m

p

)
, c

(
∆m

p

)
and c0

(
∆m

p

)
are BK−spaces with norm

‖x‖1 =

m∑
i=1

∣∣∣xi

∣∣∣ +
∥∥∥∆m

p x
∥∥∥
∞

.

Proof. The proof is similar to the proof of Theorem 1.1 of Et and Çolak [10].

Theorem 2.2. Let X be a vector space and let A ⊂ X. If A is a convex set, then ∆m
p (A) is a convex set in ∆m

p (X) .

Proof. Can be established using standard techniques, so omitted.

Theorem 2.3. The following statements hold:
i) `∞ ⊂ `∞

(
∆m

p

)
and the inclusion is strict,

ii) c
(
∆m

p

)
⊂ `∞

(
∆m

p

)
and the inclusion is strict,

iii) c (∆) ⊂ c
(
∆m

p

)
and the inclusion is strict,

iv) The sequence space `∞ (∆) is different from the sequence space `∞
(
∆m

p

)
and `∞ (∆) ∩ `∞

(
∆m

p

)
, ∅.

Proof. i) Let x ∈ `∞. Then

∣∣∣∆m
p x

∣∣∣ =

∣∣∣∣∣∣∣
m∑

v=0

(−1)v
(
m
v

)
pm−vxk+v

∣∣∣∣∣∣∣
≤

(
m
0

)
pm
|xk| +

(
m
1

)
pm−1

|xk+1| +

(
m
2

)
pm−2

|xk+2| + ...

(
m

m − 1

)
p |xk+v| < M

for some M > 0; i.e. ,
(
∆m

p xk

)
∈ `∞ and so x ∈ `∞(∆m

p ). Hence `∞ ⊂ `∞
(
∆m

p

)
.

To show that the inclusion is strict, let us consider the sequence x = (xk) with xk = pk
−

k∑
i=1

pi so that

∆m
p x =

(
p(p − 1)m−1, p(p − 1)m−1, p(p − 1)m−1, ...

)
. Then we obtain

(
∆m

p xk

)
∈ `∞ but (xk) < `∞.

ii) Let x ∈ c
(
∆m

p

)
. Then, we have

(
∆m

p x
)
∈ c ⊂ `∞, that is, x ∈ `∞

(
∆m

p

)
. Therefore, c

(
∆m

p

)
⊂ `∞

(
∆m

p

)
. To

show that the inclusion is strict, define a sequence x = (xk) such that

xk =
(
0, p, 0, p, 0, ...

)
,

then x ∈ `∞
(
∆m

p

)
\c

(
∆m

p

)
.
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iii) If we choose (xk) =
(
p, 2p, 3p, 4p, ...

)
, then we obtain x ∈ c (∆) but x < c

(
∆m

p

)
.

iv) If we choose (xk) = (1, 2, 3, ...) , then x ∈ `∞ (∆) , but x < `∞
(
∆m

p

)
. Let us take the sequence x = (xk) such

that xk = pk
−

k∑
i=1

pi. Then, we get x < `∞ (∆) but x ∈ `∞
(
∆m

p

)
. Since all constant sequences belong to both

`∞ (∆) and `∞
(
∆m

p

)
, the spaces `∞ (∆) and `∞

(
∆m

p

)
are overlapping.

3. Main Results

In this section, we introduce and examine the concepts of ∆m
p −statistically convergent sequence of order

α and ∆m
p −statistically Cauchy sequence of order α.

Definition 3.1. Let x = (xk) ∈ w and 0 < α ≤ 1 be given. The sequence x = (xk) is said to be ∆m
p −statistically

convergent of order α if there exists a complex number L such that

lim
n→∞

1
nα

∣∣∣∣{k ≤ n :
∣∣∣∆m

p xk − L
∣∣∣ ≥ ε}∣∣∣∣ = 0

for every ε > 0. In this case we write stat(α) − lim
k→∞

∆m
p xk → L. The set of ∆m

p −statistically convergent

sequences of order α will be denoted by Sα
(
∆m

p

)
. In case of L = 0, we shall write Sα0

(
∆m

p

)
.

Theorem 3.2. Let 0 < α ≤ 1. If a sequence x = (xk) is ∆m
p −statistically convergent of orderα, then stat(α)− lim

k→∞
∆m

p xk

is unique.

Proof. Suppose that stat(α)− lim
k→∞

∆m
p xk = L1 and stat(α)− lim

k→∞
∆m

p xk = L2. Given ε ≥ 0, consider the following
sets:

K1 (ε) =
{
k ∈N :

∣∣∣∆m
p xk − L1

∣∣∣ ≥ ε
2

}
and

K2 (ε) =
{
k ∈N :

∣∣∣∆m
p xk − L2

∣∣∣ ≥ ε
2

}
.

Therefore, we obtain δα (K1 (ε)) = 0 since stat(α)− lim
k→∞

∆m
p xk = L1 and δα (K2 (ε)) = 0 since stat(α)− lim

k→∞
∆m

p xk =

L2. Now, let K (ε) = K1 (ε) ∪ K2 (ε) . Thus, we get δα (K (ε)) = 0 which implies N/δα (K (ε)) = 0. Now let
Kc (ε) =N/K (ε) , then we get

|L1 − L2| ≤
∣∣∣L1 − ∆m

p xk

∣∣∣ +
∣∣∣∆m

p xk − L2

∣∣∣
<
ε
2

+
ε
2

= ε.

Therefore, we have |L1 − L2| = 0, i.e. L1 = L2.
From Theorem 3.2 we see that the ∆m

p −statistical convergence of order α is well defined for 0 < α ≤ 1.
However, for α > 1 it is not well defined, since stat(α) − lim

k→∞
∆m

p xk is not uniquely defined. To show it, let

x = (xk) be defined as

xk =

{
1, k = 2n ( n = 1, 2, 3...)
0, k , 2n otherwise .

Then we have

∆pxk =

{
p, k = 2n ( n = 1, 2, 3...)
0, k , 2n
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for m = 1. Then both

lim
n→∞

∣∣∣∣{k ≤ n :
∣∣∣∆m

p xk − p
∣∣∣ ≥ ε}∣∣∣∣ ≤ lim

n

n
2nα

= 0

and

lim
n→∞

1
nα

∣∣∣∣{k ≤ n :
∣∣∣∆m

p xk − 0
∣∣∣ ≥ ε}∣∣∣∣ ≤ lim

n

n
2nα

= 0

for α > 1, so that x = (xk) is ∆m
p −statistically convergent of order α both to p and 0.

Since the α−density of a finite set is zero, every ∆m
p −convergent sequence is ∆m

p −statistically convergent
of order α, but the converse is not true in general as can be seen in the following example.

Let x = (xk) be defined as

xk =

{
p, k = n2 ( n = 1, 2, 3...)
0, otherwise .

Then we obtain

∆pxk =


p2, k = n2 ( n = 1, 2, 3...)
−p, k + 1 = n2

0, otherwise
,

for m = 1. It is easy to see that x = (xk) is ∆p−statistically convergent of order α for α > 1
2 , but is not

convergent.

Theorem 3.3. Let 0 < α ≤ β ≤ 1. Then Sα
(
∆m

p

)
⊆ Sβ

(
∆m

p

)
and the inclusion is strict for at least those α and β for

which there is a k ∈N such that α < 1
k < β.

Proof. The inclusion part of proof is trivial. To show the inclusion Sα
(
∆m

p

)
⊆ Sβ

(
∆m

p

)
is strict choose m = 1

and define a sequence x = (xk) by

xk =

{
p, k = n3 ( n = 1, 2, 3...)
0, k , n3

Then we have

∆pxk =


p2, k = n3 ( n = 1, 2, 3...)
−p, k + 1 = n3

0, otherwise
..

and so

lim
n→∞

1
nβ

∣∣∣∣{k ≤ n :
∣∣∣∆m

p xk − 0
∣∣∣ ≥ ε}∣∣∣∣ ≤ lim

n

2 3
√

n
nβ

= 0

hence stat(β) − lim
k→∞

∆m
p xk = 0, i.e x ∈ Sβ

(
∆m

p

)
for 1

3 < β ≤ 1, but x < Sα
(
∆m

p

)
for 0 < α ≤ 1

3 so that the inclusion

Sα
(
∆m

p

)
⊂ Sβ

(
∆m

p

)
is strict. This holds for 1

3 = α < β < 1
2 for example, but there is no a number k ∈ N such

that α < 1
k < β. Therefore, the condition α < 1

k < β is sufficient but not necessary for strictness of inclusion
Sα

(
∆m

p

)
⊂ Sβ

(
∆m

p

)
.

Corollary 3.4. If a sequence is ∆m
p −statistically convergent of order α to L, for some 0 < α ≤ 1, then it is

∆m
p −statistically convergent to L, that is Sα

(
∆m

p

)
⊆ S

(
∆m

p

)
and inclusion is strict at least for 0 < α < 1

2 .
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We state the following theorems without proof, since these can be established using standard techniques.

Theorem 3.5. Let α ∈ (0, 1] and x = (xk), y = (yk) be sequences of real numbers. Then
i) If stat(α) − lim

k→∞
∆m

p xk = L1 and c ∈ C, then stat(α) − lim
k→∞

c∆m
p xk = cL1,

ii) If stat(α) − lim
k→∞

∆m
p xk = L1 and stat(α) − lim

k→∞
∆m

p yk = L2, then stat(α) − lim
k→∞

(
∆m

p xk + ∆m
p yk

)
= L1 + L2.

Theorem 3.6. Let x = (xk) , y =
(
yk

)
and z = (zk) be real sequences such that ∆m

p xk ≤ ∆m
p yk ≤ ∆m

p zk. If
stat(α) − lim

k→∞
∆m

p xk = L = stat(α) − lim
k→∞

∆m
p zk, then stat(α) − lim

k→∞
∆m

p yk = L.

Theorem 3.7. Let α ∈ (0, 1] be arbitrary real number, then Sα
(
∆m

p

)
∩ `∞

(
∆m

p

)
is a closed subset of `∞

(
∆m

p

)
.

Theorem 3.8. The set Sα
(
∆m

p

)
∩ `∞

(
∆m

p

)
is nowhere dense in `∞

(
∆m

p

)
.

Proof. Since every closed linear subspace of an arbitrary linear normed space E different from E is a nowhere
dense set in E, by Theorem 3.7 we only need to show that Sα

(
∆m

p

)
∩ `∞

(
∆m

p

)
, `∞

(
∆m

p

)
. For this, choose

p = 1 and consider a sequence x = (xk) defined by

∆mxk =


√

k, k = n2

n = 1, 2, 3, ...
0, k , n2

, (2)

then x ∈ Sα
(
∆m

p

)
, but x < `∞

(
∆m

p

)
by (1).

Definition 3.9. Let α ∈ (0, 1] be arbitrary real number and q be a positive real number. A sequence x ∈ w is
said to be wq

(
∆m

p

)
−summable of order α (or wα

q

(
∆m

p

)
−summable) if there exists a real number L such that

lim
n→∞

1
nα

n∑
k=1

∣∣∣∆m
p xk − L

∣∣∣q = 0, where p,m ∈N.

In this case we write xk → L(wq

(
∆m

p

)
). The set of all wq

(
∆m

p

)
−summable sequences of order α to L will be

denoted by wα
q

(
∆m

p

)
.

Theorem 3.10. Let αo ∈ (0, 1] and qo be a positive real number. The sequence space wα0
q0

(
∆m

p

)
is a Banach space for

1 ≤ qo < ∞ normed by

‖x‖2 =

m∑
i=1

∣∣∣xi

∣∣∣ + sup
n

 1
nα0

n∑
k=1

∣∣∣∆m
p xk

∣∣∣q0


1

q0

and a complete q−normed space for 0 < qo < 1 by

‖x‖3 =

m∑
i=1

∣∣∣xi

∣∣∣q + sup
n

1
nα

n∑
k=1

∣∣∣∆m
p xk

∣∣∣q0

Proof. The proof has been omitted.

In the next theorem, we give the relationship between ∆m
p −statistically convergent of order α and

wq

(
∆m

p

)
−summable sequences of order α.

Theorem 3.11. Let α, β be fixed real numbers such that 0 < α ≤ β ≤ 1, p,m ∈N and let q be a positive real number,
then wα

q

(
∆m

p

)
⊂ Sβ

(
∆m

p

)
and the inclusion is strict.
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Proof. The inclusion part of proof is easy. Taking p = 1 we show the strictness of the inclusion wα
q

(
∆m

p

)
⊂

Sβ
(
∆m

p

)
for a special case. For this, choose p = 1 and consider the sequence x = (xk) defined by

∆mxk =

{
1, if k = n2

0, if k , n2 n = 1, 2, .... (3)

For every ε > 0 and α ∈
(1

2
, 1

]
we have

1
nα
|{k ≤ n : |∆mxk − 0| ≥ ε}| ≤

√
n

nα
=

1

nα−
1
2

so xk → 0 (Sα (∆m)) for α ∈
(1

2
, 1

]
by (1). On the other hand for α ∈

(
0,

1
2

]
we have

√
n − 1
nα

≤
1

nα
∑

k∈In

|∆mxk|
p =

1
λαn

∑
k∈In

|∆mxk − 0|p ,

and so xk 9 0
(
wα

q (∆m)
)

by (1).

Corollary 3.12. If a sequence x = (xk) is wq

(
∆m

p

)
−summable of order α to L, then it is ∆m

p −statistically convergent
of order α to L.

Even if x = (xk) is a ∆m
p −bounded sequence, the converse of Theorem 3.11 and Corollary 3.12 do not

hold, in general. To show this we must find a sequence that is ∆m
p −bounded ( that is x ∈ `∞

(
∆m

p

)
) and

∆m
p −statistically convergent of order β, but need not to be wq

(
∆m

p

)
−summable of order α, for some real

numbers α and β such that 0 < α ≤ β ≤ 1. For this, choose p = 1 and consider a sequence x = (xk) defined by

∆mxk =


1
√

k
, k , n3

0, k = n3
n = 1, 2, ... . (4)

Then x ∈ `∞
(
∆m

p

)
and x ∈ Sα

(
∆m

p

)
for α ∈ (

1
3
, 1], but x < wα

q

(
∆m

p

)
for α ∈ (0,

1
2

) by (1).

Definition 3.13. Let α ∈ (0, 1] . A sequence x = (xk) is said to be ∆m
p −statistically Cauchy of order α if for

every ε ≥ 0 there exists a number N = N (ε) ∈N such that

lim
n→∞

1
nα

∣∣∣∣{k ≤ n :
∣∣∣∆m

p xk − ∆m
p xN

∣∣∣ ≥ ε}∣∣∣∣ = 0

that is; the set
∣∣∣∣{k ≤ n :

∣∣∣∆m
p xk − ∆m

p xN

∣∣∣ ≥ ε}∣∣∣∣ has α−density zero.

We establish the following theorem with help of the method used by Fridy [13] and Tabib [24].

Theorem 3.14. A real sequence x = (xk) is ∆m
p −statistically convergent of order α if and only if x = (xk) is

∆m
p −statistically Cauchy of order α.

Proof. Let α ∈ (0, 1] be given. Suppose that the sequence x = (xk) is ∆m
p −statistically convergent of order α

to L. Then for every ε > 0 the set

A(ε) =
{
k ≤ n,

∣∣∣∆m
p xk − L

∣∣∣ ≥ ε
2

}
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has α−density zero. Choose positive integer number N such that
∣∣∣∆m

p xN − L
∣∣∣ ≥ ε. Now let us take the sets

Bε =
{
k ≤ n, |∆m

p xk − ∆m
p xN | ≥

ε
2

}
,

Cε =
{
k ≤ n,

∣∣∣∆m
p xk − L

∣∣∣ ≥ ε
2

}
,

Dε =
{
N ≤ n, |∆m

p xN − L| ≥
ε
2

}
.

Then Bε ⊆ Cε ∪Dε and therefore δα (Bε) ≤ δα (Cε) + δα (Dε) = 0. Hence x = (xk) is ∆m
p −statistically Cauchy of

order α.
Conversely let x = (xk) be a ∆m

p −statistically Cauchy sequence of order α, then for every ε > 0, there
exists N0 ∈N such that

δα
({

k ≤ n :
∣∣∣∆m

p xk − L
∣∣∣ < ε}) = 1.

Hence, we obtain

δα
({

k ≤ n : ∆m
p xk < ∆m

p xN0 + ε
})

= 1

and

δα
({

k ≤ n : ∆m
p xN0 − ε < ∆m

p xk

})
= 1.

We define the following sets:

A =
{
a ∈ R : δα

({
k ≤ n : ∆m

p xk < a
})

= 1
}
,

and

B =
{
b ∈ R : δα

({
k ≤ n : ∆m

p xk > b
})

= 1
}
,

then
(
∆m

p xN0 + ε
)
∈ A and

(
∆m

p xN0 − ε
)
∈ B. Let a ∈ A and b ∈ B, then we have

δα
({

k ≤ n : ∆m
p xk < a

})
= 1 and δα

({
k ≤ n : ∆m

p xk > b
})

= 1.

Therefore, we get

δα
({

k ≤ n : b < ∆m
p xk < a

})
= 1.

This implies b < a . We have

∆m
p xN0 − ε ≤ sup B ≤ inf A ≤ ∆m

p xN0 + ε.

Since ε was arbitrary positive number, we get sup B = inf A and sup B = inf A = L. Let ε > 0 be given and
there exists a ∈ A and b ∈ B such that L − ε < b < a < L + ε. The definitions of A and B imply

δα
({

k ≤ n : L − ε < ∆m
p xk < L + ε

})
= 1,

we obtain

δα
({

k ≤ n :
∣∣∣∆m

p xk − L
∣∣∣ < ε}) = 1 or δα

({
k ≤ n :

∣∣∣∆m
p xk − L

∣∣∣ ≥ ε}) = 0.

Therefore, x = (xk) is ∆m
p −statistically convergent of order α.

Theorem 3.15. If x = (xk) is a sequence for which there exists a ∆m
p −statistically convergent of order α sequence y

such that ∆m
p xk = ∆m

p yk for almost all k (α) . Then, x is ∆m
p −statistically convergent sequence of order α.

Proof. The proof has been omitted.
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[5] R. Çolak, Statistical convergence of order α, Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India,

121–129, 2010.
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