<

Filomat 32:16 (2018), 5595-5609
https://doi.org/10.2298/FIL18165955

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Some New Generalizations of Ostrowski Type Inequalities
for s—Convex Functions via Fractional Integral Operators
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Abstract. Remarkably a lot of Ostrowski type inequalities involving various fractional integral operators
have been investigated by many authors. Recently, Raina [34] introduced a new generalization of the
Riemann-Liouville fractional integral operator involving a class of functions defined formally by Tp i’ (x) =

- k
Z %x" . Using this fractional integral operator, in the present note, we establish some new fractional
k=0

integral inequalities of Ostrowski type whose special cases are shown to yield corresponding inequalities
associated with Riemann-Liouville fractional integral operators.

1. Introduction

In 1938, A. Ostrowski [28], proved the following interesting and useful integral inequality concerning
the distance between the integral mean blfa fu ’ f(H)dt and the value f(x),x € [a,b].

Theorem 1.1. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) such that f : (a,b) — Ris
bounded on (a,b), i.e., ||f'llo := sSUpic@plf’ ()| < co. Then

Lo (=Y
<7+ 5= |1~

b
f0- 5 [ s

or all x € [a,b] and the constant L is the best possible.
1 p

Ostrowski inequality is playing a very important role in all the fields of mathematics, especially in the
theory of approximations [2, 14, 15, 24, 26]. Thus such inequalities were studied extensively by many
researches and numerous generalizations, extensions and variants of them for various kind of functions
like bounded variation, synchronous, Lipschitzian, monotonic, absolutely, continuous and n-times differ-
entiable mappings efc. appeared in a number of papers (see [3, 4, 6, 12, 13, 22, 23, 25, 29-31, 33, 43, 44, 46]).
In recent years, one more dimension has been added to this studies, by introducing a number of integral
inequalities involving various fractional operators like Riemann-Liouville, Erdelyi-Kober, Katugampola,
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conformable fractional integral operators efc. by many authors (see, e.g., [1, 8-11, 19, 20, 32, 35, 39]).
Riemann-Liouville fractional integral operators are the most central between these fractional operators.

The overall structure of the study takes the form of four sections including introduction. The remaining
part of the paper proceeds as follows: In Section 2, the generalized version of fractional integral operator
are summarized, along with the needed definitions. In Section 3, firstly, an integral identity for generalized
fractional integral operators are proved. Then, some new Ostrowski type inequalities for functions whose
first derivatives in absolute value are s— convex functions in the second sense utilizing this integral identity
are presented and some corollary and remarks for theorems are given. Some conclusions of research are
discussed in Section 4.

2. Preliminaries

In this section, we will give some previously known concepts which will be used in the proof of our
main results. First of all let set of real numbers be denoted by R. Let [4, 5] be an interval in R. We follow
these notations throughout the paper unless otherwise specified.

A function ¢ : I € R — Ris said to be convex if the inequality

ptx+ (1 - y) < tp(x) + (1 - He(y)

holds for all x,y € I and ¢ € [0, 1].
In [7], the class of functions which are s—convex in the second sense has been introduced by Breckner
as the following:

Definition 2.1. A function ¢ : [0, 00) — R is said to be s-convex in the second sense if

ptx+ (1= t)y) < o)+ (1 -t p(y).

forallx,y € [0, 0), t € [0, 1] and for some fixed s € (0, 1]. This class of s-convex functions is usually denoted
by K2.

It can be easily seen that for s = 1, s—convexity reduces to ordinary convexity of functions defined on
[0, 00). Also, connections between s-convexity in the first sense and s-convexity in the second sense were
discussed in paper [18].

In [17] Dragomir and Fitzpatrick proved a variant of the Hermite-Hadamard inequality which holds for
s-convex functions in the second sense.

Theorem 2.2. Suppose that ¢ : [0, 00) — [0, o) is an s-convex function in the second sense, where s € (0, 1] and let
a,b e€[0,00),a <b.If p € Lla, b], then the following inequality hold:

b
ST Gl P f p@+e®
2 (p( > )Sb—a ] @ (x)dx < 1 (1)
The constant k = - is the best possible in the second inequality in (1). For more study related to

s-convexity in the second sense (see, e.g., [4, 5, 16]).
In [34], Raina introduced a class of functions defined formally by

o _ (0,0 _ . ok) & +.
@) = T () = kZa Tkt (AR <), @

where the coefficients o(k) (k € IN = IN U {0}) is a bounded sequence of positive real numbers. With the help
of (2), Raina [34] and Agarwal et al. [6] defined the following left-sided and right-sided fractional integral
operators respectively, as follows:

(T8 ) @) = f (0= 1T [wl - P kot (x> a), ©
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b
(Trsmu) @ = [ =0 e -2l <), @

where A, p > 0, w € R and ¢(t) is such that the integral on the right side exits.
It is easy to verify that 7" g/ A +;w(p(x) and " g/ Albﬁw(p(x) are bounded integral operators on L(a, b), if

M= F ) [wb - a)] < co. (5)
In fact, for ¢ € L(a, b), we have

1T o 2 4409 < Wb — a)lglh (6)
and

T3 1o ® ) < M=) g, "
where

; :
lell, := ( f I(p(t)lpdt) .

The importance of these operators stems indeed from their generality. Many useful fractional integral
operators can be obtained by specializing the coefficient o(k). For instance the classical Riemann-Liouville
fractional integrals J, and ]} of order a defined by (see, e.g., [37]).

Jarp(x) = ﬁf (x—£)*! p(Hdt, x>a 8)

and

b
Jp-p(x) = ﬁ f (t—x)* " (t)dt, x<b ©)

follow easily by setting A = @, 0(0) = 1 and w = 0 in (3) and (4), and the boundedless of (8) and (9) on L(a, b)
is also inherited from (3) and (4), (see [6]). Here I'(@) is the familiar Gamma function (see, e.g., [42, Section
1.1]). In the case of a = 1, the Riemann-Liouville fractional integral reduces to the classical integral. Some
recent results and properties concerning this operators can be found in [8-11, 21, 27, 36, 38, 40, 41].

We recall the Beta function B(a, ) defined by

1
f (1 - ftdt (R(a) > 0; R(B) > 0)
0

Bla, p) = (10)
(@) I'(B)

) (peCrE)

and the incomplete Beta function B,(a, ) defined by

B(x;a, B) := fo ) 11 -pftdt (Re) > 0), (11)

where C and Z are the sets of complex numbers and non-positive integers, respectively, (see, e.g., [42,
Section 1.1]). Throughout this paper, the a, § in B(a, ) and B,(a, ) are assumed to be real numbers.

Motivated by the recent results given in [6, 34, 45], in the present note, we obtain here new Ostrowski
type inequalities for s—convex functions in the second sense via generalized fractional integral operators.
An interesting feature of our results is that they would provide generalizations of those given in earlier
works and new estimates on these types of inequalities.
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3. Main Results

Lemma 3.1. Let f : [a,b] — R be a differentiable function on (a,b) with a < b. If f € L[a,b], then we have the
following identity involving generalized fractional integral operators:

(b =2\ F 7, [l =21+ (x = a) F 7 [w(x — )]
[ (b — )1 ]f(x

( a))\+1[( p,Ax— w (a PAwa)(b)]

1
= f u®) f'(ta + (1 - t)b)dt (12)
0
foreach t € [0,1], where A, p > 0, w € R and
_tATF;T*' Llw(b —a)Pte] , te[0, %)
p(t) =
(1 - t)/\ p+/\+1[w(b - a)P(l - t)P] 7 te [lz, ;/ 1]

forall x € [a, b].

Proof. Integrating by parts, we get

'y
Il

1
f u(t)f (ta + (1 — B)b)dt

f § “( F o [w(b - )1 f (ta + (1 - Dbt

ﬁ (1= 'F 0, [ — )’ (1 =PI (ta + (1 — D)t

b-a

f(ta + (1 —Hb) |

= (F gl - a1

0

. I)b e 1Tp“/\[w(b o] f(ta + (1b— t)b)

fta+ (1 -t)b)|"
a-b

f(ta+ (1 —1t)b)
a->b

b—x

+(1 = )'F [l — a)’ (1 - D]

b=x
b-a

1
- t)“ﬁgfm[w(b —a)P(1 -] dt

b-

box

‘b% - P [w(b — a) ] f(ta + (1~ t)b)dt
o (x )
- (ch a) 7, A+1[w(x - ﬂ)p] f
e ). (1= 1 [ — (L~ D91 + (1 = D
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Using the change of the variable u = ta + (1 — f)b for t € [0, 1], we have

b A
Gl =01

_6775ﬂTJNw‘“ﬂ4ﬁﬁﬂw@—uVUWMu

_ A
PGl [w(x - a)°1f(%)

(b )A+1 pA+

- a)A+1 f (u—a)™ 19"’”A[w(u —a)P1f(u)du

(b- x)ATGAH[w(b X)PT+ (x — ﬂ)ATU,\H[w(b x)°]
= [ (b — a) 1t fx)

1
_m [( Z,A,x—;wf) (a) + ( 0,A,x+; w )(b)] :

So, the proof is completed. 0O

Remark 3.2. In Lemma 3.1, let A = a, 0(0) = 1 and w = 1. Then Lemma 3.1 reduces to Lemma 1.2 in [45].

Theorem 3.3. Let f : [a,b] - Rbea dzﬁ‘erentzablefunctzon on (a,b) with a < b such that f' € Lla,b]. If|f’| is
s-convex function in the second sense on [a, b], for some fixed s € (0, 1], then the following inequality for generalized
fractional integral operators holds:

(b- x)’\T‘TAH[w(b - 0P+ (x - ”)Aﬂf)m[w(x —a)’]
(b — a)/\+1 X

( a))\+1 [(]p Ax— wf)(a) + (Ig/;\,ﬂ;wf)(b)] |

[(b _ X)M'”H
(b — a)A+s+1

A+s+1
[—E’; aimﬂ Fonallwlle = a1+ F 7% [wl(b - a)P]]|f ()|

Forialll0 =)+ 757 ol =) 1 @)

where A,p >0, weR, k=0,1,2,..., B(x;a,b) is incompleted beta function and

1

7= o s

(k) _a(k)B( A+ pk+l, s+1)

o3(k) —a(k)B( ;A+pk+1, s+1)
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Proof. From Lemma 3.1 and by using the properties of modulus, we have

(b—x)*F° lw® = )P+ (x - a)rFe lwlx —a)]
‘ [ i (b —a)*1 e lf(x)

‘ﬁ [(IZ,A,x_;wf)(a) + (T A f)(b)] '

< fb | - tl’\?‘fﬂl[lwl(b —a)PtP]|f" (ta + (1 — £)b)|dt

f 11— t'F Ml[lwl(b —a)’(1 = 1P (ta + (1 — £)b)|dt.

Since |f’| is s-convex in the second sense on [a, b], we get

= x)A?"Ml [w® - x)P] + (x — a)"?‘p",ﬂl[w(x —a)’]
(b — a)}*1 flx

( )A+1 [(]p A x— w ((1) + (]S,A,x+;wf)(b)] |

b—x

fo AT Il - AP RIEIF @)+ (L= L )t

IA

1
+f (1= ' F 7 ) allwl — )P (1 =PI @)] + (1= £FIf ©)l]dt

f'(a)l f PHF T allwl(b - a)tP1dt
+ £/ (O)] f P =t F 5 [0l(b — a)P tP1dt
O A A
b7111
P @) f (1= "=F7 el - a)P (1 - 1P

— a(k) |w|k(b - a)Pk & A+pk+s
- If()IZ T(A+ pk+1) e

G(k)|w|kb a)pk = A+pk s
+|f(b|Z T+ pken) J, -

k k(p — q)Pk

G(k)|w|kb a)P Nepkes
'f(b)|Z (L + pk+ 1) f(l A

5600
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b— A+s+1
Iﬁmﬂﬁyj%%ggfjhﬂmﬂb—xfl+?§LJWMb—MW]

(x _ a)A+s+1

+ W@M@jamqfﬁJWM—wﬂ+ﬁﬁJWW—®ﬂ

where used the facts that

1
B - Bk = B(%;/\ L pk+1s+ 1)

J
jwéﬂmhwﬁ_w—xww“ﬁl 1

0 T (b—a)Mekrstl A 4 pk s+ 1
1 (1 ~ t)/\+pk+sdt _ (x _ a)/\+pk+s+1 1
bex (b —a)Mekrs+tl A + pk+s5+1

b-a

—

b-x

f'“ PHPR(L — yd = B(—;/\+pk+1,s+ 1).
0 b—-a

So, the proof is completed. [

Corollary 3.4. If we choose s = 1 in Theorem 3.3, we obtain

‘ [(b - x)/\fp‘i/\ﬂ[w(b - 0PI+ (x - a)AﬂfMl[w(x —a)f] l fx

(b — a)/\+1
1 ) )
oo [05 1o D@ + 5 O] '
b— A42
S[%T%mfﬁﬂwwhﬂﬂ+Zﬁwa—mﬂvwn

_ A2
¢ [ GoR T alel =T+ 735 T = a1 0

where

1
o1(k) := U(k)m,

o2 (k) = o(K)B (;—:Z;A Tk + 1,2)

and

a3(k) := o(k)B (Z‘T;‘;A + pk + 1,2).

5601

(13)

Remark 3.5. If we choose 6(0) = 1, w = 0 in Corollary 3.3, the inequality (13) reduces to inequality (2.1) of

Theorem 2.1 in [45].

Theorem 3.6. Let f : [a,b] — R be a differentiable function on (a,b) with a < b such that f’ € L[a,b]. If |f'|7 is
s-convex function in the second sense on [a, b], for some fixed s € (0,1], g > 1 with % + % = 1, then the following
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inequality for generalized fractional integral operators holds:

(b= 'F 7 lwb =0T+ (= a)' F e, [wlx = a)]
(b _ a)/Hl f(x)

- G [ca§O 4 00|

b—x A+1 If;(x)|q+|f/(b)|q %
< 7wl - )](b_a) ( s+1 )

- a)"“ (If’(a)lq + |f'(x>w)3

b-a s+1

s Tl — o))

where x € [a,b], A,p >0, w € R, and

1

Uz(k) = U(k) (W)p .

Proof. From Lemma 3.1 and using the Holder inequality, we get

(b -0)'FO, [wb - x)P]+ (x —a)'F7,  [w(x —a)f]
- b — a)r 1 e lf(x)

( ))\+1 [(]p Ax— wf)(a) + (IZ,A,X_'_;wf)(b)] |

b—x

< f P llwl( — )P 1 f (ta + (1 = Hb)ldt
0
1
+ fbx(l = ' allwl( = a) (1= DPIf (ta + (1 - Hb)ldt
R G il I I
i kz;-m+—pk+1>[f PIF (G + (1= Dbt
1
+ ] - B PR 7 (b + (1 - t)b)|dt}
v oMl b= [ (5 ) (T %
< X TS| ([ ) ([ s - oo

k=0

+( f:(l—t)wﬂklp)’l’( f |f’(ta+(1—t)b)|’7dt);].

Since |f’| is s-convex in the second sense on [4, b], by the inequality (1) we have

b—x

= - "l + | (b))
fo |f'(ta+(1—t)b)|ths(Z_Z)['f @ + IO ]

s+1

and

1 ; /
f’; |f'(ta + (1 = Hb)ldt < (z - Z) [lf @0 +1f (x)w] '

s+1
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Also, by simple compulation, we obtain

b—x

bz [A+pklp+1
fb HA+PRp g = L box
0 [A+pklp+1\b-a

and 1
_ n[A+pklp g4 1 x — q\[A+pklp+1
%(1 f) ppdt_[)\+pk]p+1(b— ) _
We, therefore, get
(b- x)Aff,m[w(b —x)P]+ (x — LZ)AT;AH[w(x —a)°]
‘ (b — a)'+1 flx
- )m [Up e D@ + U5 3 o HO)] |
i a(k)|w[*(b — a)P*
S T(A+ pk+1)

X

1 F(b—x\"P (b -\ [ @1 + b))
[[)\+pk]p+1] b—a b—a s+1

o] (20 () [t |
pKip

o b—x\" (L@ +1F B\
B 7:pA+1“w|(b_x)P](b a) ( s+1 )

— g\l )9 q
, () (L e v
F panlivllc=a) ](b a s+1

So, the proof is completed. [

Corollary 3.7. If we choose s = 1 in Theorem 3.6, we obtain
‘ [(b x)/\jﬂ.'o/\+1[w(b - x)P] + (x - Q)Aﬁi)\_‘_l [ZU(X - a)p]l
x

(b_a)/\+1
= )A+1 [Upr wf )(ﬂ)+(]g,A,x+;wf)(b)]| ”
o\ ) q () %
< F Ll - )1(2_z) (V%wlzv%>|)
02 —_ g\l | /(a)lq_'_l ,(X)|’7 %
bl =a) (=) (f 2 ! )

where A, p >0, w € Rand
1

O'z(k) = O'(k) (W)’ .

Remark 3.8. If we choose 0(0) = 1, w = 0 in Corollary 3.7, the inequality (14) reduces to inequality (2.3) of
Theorem 2.2 in [45].
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Theorem 3.9. Let f : [a,b] — R be a differentiable function on (a,b) with a < b such that f' € L[a,b]. If |f'|7
is s-convex function in the second sense on [a, b], for some fixed s € (0,1], g > 1 and x € [a, b] then the following
inequality for generalized fractional integral operators hold:

(0 -0 [wb —x)P]+ (x —a)'F7 . [w(x —a)f]
‘ [ e (b —a)M1 e lf(x)

&= )M [T5 1 @) + <f;,A,x+;wf><b>]|

< (Folule-0) " (7 ( o ol - 9PN @0 + 775, [l — P 1 )’
(7Ll = o)) 7 (F7 el = P I @ + 725 Lol — a1 O)F)'

where A,p >0, weR, k=0,1,2,..., B(x;a,b) is incomplete beta function and

A\ Aarstl
o3(k) —a(k)( ) = o(k)(%) .

pk+1 Ag+s+17
o5(k) := o(k)B (b ;Aq+pk+1, s+1) ae(k) _o‘(k)(_a)ﬁ
_ A\ Ag+s+1
o7(k) := o(k)B ( ;Ag+pk+1, s+1) as(k) —o(k)( a) q ﬁ

Proof. From Lemma 3.1, using |f’|? is s-convex in the second sense and the well-known power mean
inequality, we get

(b—x)*F° lw® =P+ (x - a)rFe lwlx —a)]
‘ [ i (b —a)M1 e lf(x)

1
- g (0§ + 00|

br

< f PFO ol — a) 11 (ta + (1 - Hb)ldt

ﬁx(l - t)AT;AH[lwl(b —a)P(A = tP1f'(ta + (1 - t)b)|dt

b-a
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1-1

[f M+1 |w|(b—a)PtP]dt] 4

1,,_

X P,Ml[lwl(b — a)P 1M f (ta + (1 - t)b)l”’dt)
0

1
-3

1
q

. f Tl - a1 - t)P]dt]

1

x f T llwlo = @) (1= P11 = DYIf ta+ (1 - t)b)lth]q

o(k)wlk(b — a)P* b 1-1
Z W Pk ¢
k=0 ( + pk + ) o

(k) [wlk(b — a)P*
X Z (A + pk+1)

IN

1

Wﬂ’k[ﬂ @)+ (1 -ty f’(b)|‘7]dt] |
k=0

- o(k)lwl (b — a)* ;
+Zo‘ T(A+ pk+ 1) f(l t)pdt]

G(k)|w|k _a)Pk A+k s s
" ;)‘F(M—plwl) z:(l YIS @ + 1= 1 O |

i ol —a)* (b —x)P! ]1_}7

ey r'A+ pk +1) (b- a)Pk+1(pk +1)

= o (k)|wlk(b — a)Pk v fb_ - " fg Ak e 7
xZ T+ pk+1) If" @) t dat +|f' (b)l i PR — Py dt

k=0

i o(k)[wl*(b — a)P* (x — a)Pk*1 -
k=0 F(A+pk+1) (b-a)(pk+1)

1

© oG- C
X kz_;m+—pk+1)[|f (a)lf’fg_;(l—t) HPREdE + | f (b)|qu(1_t) gpkes gy
- (Tpofm[lwl(b—x)ﬁ])l—% (7—‘03\+ ol = I @I + F5, [l = )T b)|ﬂ)5
+<77pg,3\+1[|wl(x—a)P]) (7—‘“A+1[|w| (x —a)’]lf’ (a)|q+7_~og/\+1[|w| —aPllf (b)|‘f)%

where it is easily seen that

fi_;fpkdt _(bmx\ L
0 b—a pk+1’

bz Ag+pk+s+1
o phapkts gy — b—x\"" 1
0 b—a Ag+pk+s+17
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x—a)f’k“ 1
b—a pk+1’

x—a )Aq+pk+s+1 1

1
(1 — t)Pkdr

|
(

(1 )Aq+pk+sdt
bex

b=a
b2

17—/1
f PR — pPdr = B(b x)\+pk+1s+1)
0

1
f (1 — HMPkgy
bex

b-a

Ag+pk+s+1

T‘

B(; a ;A+pk+1, s+1)

Hence the proof is completed. [

Corollary 3.10. If we choose s = 1 in Theorem 3.9, we obtain

(b—-x)"Fo o lw® —x)PT+ (x - a)\Fo lwlx —a)]
‘ [ — (b — )1 i lf (%) (15)

1
- g (0§ + 50|
< (7Tl ) T (FD b~ X I @F + 75, Dol - 271 OF)

(F 0 ol =) T (F Dol = P I @ + F 5, Dol - P G’

where
1 b qu+2 1
o5(k) = o(k)B (b g+ pk+1, 2) o6(k) —o(k)(x Z)pkl-i-l
Ag+2
o7(K) —o(k)B( g+ pk+1, 2) o5(k) —o(k)( Z)q q1+2.

Remark 3.11. If we choose ¢(0) = 1, w = 0 in Corollary 3.10, the inequality (15) reduces to inequality (2.4)
of Theorem 2.3 in [45].

Theorem 3.12. Let f : [a,b] —» R bea dgﬁ‘erentzablefunctlon on (a,b) witha < b such that feLla bl IfIf'17is
s-convex function in the second sense on [a, b], for some fixed s € (0,1], g > 1 wzth + - =1, then the following

inequality for generalized fractional integral operators hold:

(b -)'FO [wb - x)P]+ (x —a)'F7,  [w(x —a)f]
‘ [ i (b — a)M1 e lf(x)

1
~ =y [Uasa @+ O '
b— A+1 b
= 7_’(;{3+1[|w|(b—x)f’](Tz) f’(%)
o1 x —a\M1 a+x
" ) r ()

b
o allol - 0] (3=

(16)
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where A, p >0, w € Rand

— (DL 1 ’
o1(k) = o (k)2 ([)\+pk]p+1) .

Proof. From Lemma 3.1 and using the Holder inequality, we get

(b= X)'F7,, [wlb - 0]+ (v = ) F, [eo(x — )]
‘ (b — ayM1 fx)

e )M |75 o @) + (1;,A,x+;wf)(b>]|

fo T Tl - P G + (L D

1
+ . 1- t)AT‘le[le(b —a)P(1 = 0P]f (ta + (1 — t)b)|dt

v ak>|w|k<b—a>f’k I
= ZS T kD) [f PR £ (b + (1 — £)b)\dt

. (1 — YR ' (ta + (1 - t)b)ldt]

IA

2 I

b—x 1

i %M[( fba t[A+Pk]pdt)ll)( ]O‘Ii_'; F(ta+ (1 - t)b)lth)q
k=0

( L a- )[“Pk]”dt] ( ﬁ (1 — £y PR ' (ta + 1—t)b)|‘7dt]q].

b-a b-a

IN

Since |f’| is s-convex in the second sense on [4, b], by the inequality (1) we have

fom If(ta + (1 - Hb)Pdt < 2571 (Z‘T;‘) 7 (b ’; x)

q

and

q

57

ﬁ) If/(ta+ (1 - Bb)Fdt < 2° 1(; Z)

b-a

Therefore

(0 -7, [wb - x)P]+ (x —a)*F7,  [w(x —a)]
‘ [ - (b — ayt e }f(x)

- 1)/\+1 [(]fmx zuf)(a)‘*'(]ZAerwf)(b)]’
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o o(O)lwl (b — a)Pk
= k;- T+ pk+1)

% [ 1 :Ittlj b—x /\+pk+% b—x %2(5_1)%
[A+pklp+1]1 \b—a b-a

+[ 1 ];(x—a)“f’“i(x—a ]
[A+pklp+1]1 \b—a b-a

b—x A+l
= Fallwl®-x)°] (Ta)

b

o x—a A+1
Tl -] (322)

So, the proof is completed. O

Remark 3.13. If we choose 6(0) = 1, w = 0 and s = 1 in Theorem 3.12, the inequality (16) reduces to
inequality (2.8) of Theorem 2.4 in [45].

4. Conclusion

In this paper, we established the Ostrowski type inequalities for mappings whose first derivatives in
absolute value are s-convex in the second sense involving generalised fractional integral operator. The
results presented in this paper would provide generalizations of those given in earlier works.
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